不等式課件
發(fā)布時間:2023-09-29
不等式課件
2023不等式課件14篇。
經(jīng)驗時常告訴我們,做事要提前做好準(zhǔn)備。在平日里的學(xué)習(xí)中,幼兒園教師時常會提前準(zhǔn)備好有用的資料。資料可以指人事物的相關(guān)多類信息、情報。有了資料才能更好地安排接下來的學(xué)習(xí)工作!你是否收藏了一些有用的幼師資料內(nèi)容呢?以下是由小編為大家整理的“2023不等式課件14篇”,僅供參考,歡迎大家閱讀。
不等式課件 篇1
七年級數(shù)學(xué)不等式課件
教學(xué)目標(biāo):
通過對具體實例的學(xué)習(xí),使學(xué)生能夠了解生活中的不等量關(guān)系,理解不等式的概念,知道什么是不等式的解,為以后學(xué)習(xí)不等式的解法奠定基礎(chǔ).
知識與能力:
1.通過對具體事例的分析和探索,得到生活中不等量的關(guān)系.
2.通過理解得到不等式的概念,從而使學(xué)生經(jīng)歷實際問題中數(shù)量的分析、抽象過程,體會現(xiàn)實中有各種各樣錯綜復(fù)雜的數(shù)量關(guān)系.
3.了解不等式的意義,知道不等式是用來刻畫生活中的數(shù)量關(guān)系的.
4.知道什么是不等式的解.
過程與方法:
1.引導(dǎo)學(xué)生分析具體事例,從對具體事例的分析中得到不等量關(guān)系.
2.引導(dǎo)并幫助學(xué)生列出不等式,分析不等式的成立條件.
3.通過分析、抽象得到不等式的概念和不等式的解的概念.
4.通過習(xí)題鞏固和加深對概念的理解.
情感、態(tài)度與價值觀:
1.通過學(xué)生的分析和抽象過程使他們體會現(xiàn)實中錯綜復(fù)雜的數(shù)量關(guān)系,然后從而培養(yǎng)其抽象思維能力.
2.通過分組討論學(xué)習(xí),體會在解決具體問題的過程中與他人合作的重要性,培養(yǎng)學(xué)生的團(tuán)體協(xié)作精神,使學(xué)生獲得合作交流的學(xué)習(xí)方式.
3.通過聯(lián)系與發(fā)展、對立與統(tǒng)一的思考方法對學(xué)生進(jìn)行辯證唯物主義教育.
4.通過創(chuàng)設(shè)問題串,讓學(xué)生仔細(xì)觀察、對比、歸納、整理,嘗試對有理數(shù)進(jìn)行分類,然后體驗教學(xué)活動充滿著探索性和創(chuàng)造性.
教學(xué)重、難點及教學(xué)突破
重點:不等式的概念和不等式的解的概念.
難點:對文字表述的數(shù)量關(guān)系能列出不等式.
教學(xué)突破:由于學(xué)生在以前已經(jīng)對數(shù)量的大小關(guān)系和含數(shù)字的不等式有所了解,但還沒有接觸過含未知數(shù)的不等式,在學(xué)生分析問題的時候注意引入現(xiàn)實中大量存在的數(shù)量間的不等關(guān)系,研究它們的變化規(guī)律,使學(xué)生知道用不等式解決實際問題的方便之處.在本節(jié)的教學(xué)中能夠在組織學(xué)生討論的過程中適當(dāng)?shù)貪B透變量的知識,讓學(xué)生感受其中的函數(shù)思想,并引導(dǎo)學(xué)生發(fā)現(xiàn)不等式的解與方程的解之間的區(qū)別.在處理本節(jié)難點時指導(dǎo)學(xué)生練習(xí)有理數(shù)和代數(shù)式的知識,準(zhǔn)確“譯出”不等式.
教學(xué)過程:
一.研究問題:
世紀(jì)公園的票價是:每人5元,一次購票滿30張可少收1元.某班有27名少先隊員去世公園進(jìn)行活動.當(dāng)領(lǐng)隊王小華準(zhǔn)備好了零錢到售票處買了27張票時,愛動腦的李敏同紀(jì)學(xué)喊住了王小華,提議買30張票.但有的同學(xué)不明白.明明只有27個人,買30張票,豈不浪費嗎?
那么,究竟李敏的提議對不對呢?是不是真的浪費呢
二.新課探究:
分析上面的問題:設(shè)有x人要進(jìn)世紀(jì)公園,①若x≥30,應(yīng)該如何買票?②若x
結(jié)論:至少要有多少人進(jìn)公園時,買30張票才合算?
概括:1、不等式的定義:表示不等關(guān)系的式子,叫做不等式.不等式用符號>,
2、不等式的解:能使不等式成立的未知數(shù)的值,叫做不等式的解.
3、不等式的分類:⑴恒不等式:-71+4,a+2>a+1.
⑵條件不等式:x+3>6,a+2>3,y-3>-5.
三、基礎(chǔ)訓(xùn)練.
例1、用不等式表示:⑴a是正數(shù);⑵b不是負(fù)數(shù);⑶c是非負(fù)數(shù);⑷x的平方是非負(fù)數(shù);⑸x的一半小于-1;⑹y與4的和不小于3.
注:⑴不等式表示代數(shù)式之間的不相等關(guān)系,與方程表示相等關(guān)系相對應(yīng);
⑵研究不等關(guān)系列不等式的重點是抓關(guān)鍵詞,弄清不等關(guān)系.
例2、用不等式表示:⑴a與1的和是正數(shù);⑵x的2倍與y的3倍的差是非負(fù)數(shù);⑶x的2倍與1的和大于—1;⑷a的一半與4的差的絕對值不小于a.
例3、當(dāng)x=2時,不等式x-1
注:⑴檢驗字母的值能否使不等式成立,只要代入不等式的左右兩邊,如果符合不等號所表示的關(guān)系,就成立,否則就不成立.⑵代入法是檢驗不等式的解的重要方法.
學(xué)生練習(xí):課本P42練習(xí)1、2、3.
四、能力拓展
學(xué)校組織學(xué)生觀看電影,某電影院票價每張12元,50人以上(含50人)的團(tuán)體票可享受8折優(yōu)惠,現(xiàn)有45名學(xué)生一起到電影院看電影,為享受8折優(yōu)惠,必須按50人購團(tuán)體票.
⑴請問他們購買團(tuán)體票是否比不打折而按45人購票便宜;
⑵若學(xué)生到該電影院人數(shù)不足50人,應(yīng)至少有多少人買團(tuán)體票比不打折而按實際人數(shù)購票便宜.
解:⑴按實際45人購票需付錢_________ 元,然后如果按50人購買團(tuán)體票則需付錢50×12×80%=480元,所以購買團(tuán)體票便宜.
⑵設(shè)有x人到電影院觀看電影,當(dāng)x_____時,按實際人數(shù)買票______張,需付款_______元,而按團(tuán)體票購票需付款________元,如果買團(tuán)體票合算,那么應(yīng)有不等式________________,
由①得,當(dāng)x=45時,上式成立,讓我們再取一些數(shù)據(jù)試一試,將結(jié)果填入下表:
x12x比較480與12x的大小48
由上表可見,至少要__________人時進(jìn)電影院,購團(tuán)體票才合算.
五、小結(jié):
⑴不等式的定義,不等式的'解.
⑵對實際問題中探索得到的不等式的解,然后不僅要滿足數(shù)學(xué)式子,而且要注意實際意義.
六、作業(yè)課本P42習(xí)題8.1第1、2、3題.
補(bǔ)充題:
1.用不等式表示:
(1)與1的和是正數(shù);(2)的與的的差是非負(fù)數(shù);
(3)的2倍與1的和大于3;(4)的一半與4的差的絕對值不小于.
(5)的2倍減去1不小于與3的和;(6)與的平方和是非負(fù)數(shù);
(7)的2倍加上3的和大于-2且小于4;(8)減去5的差的絕對值不大于
2.小李和小張決定把省下的零用錢存起來.這個月小李存了168元,然后小張存了85元.下個月開始小李每月存16元,小張每月存25元.問幾個月后小張的存款數(shù)能超過小李?(試根據(jù)題意列出不等式,并參照教科書中問題1的探索,找出所列不等式的解)
3.某公司在甲、乙兩座倉庫分別有農(nóng)用車12輛和6輛,現(xiàn)需要調(diào)往A縣10輛,調(diào)往B縣8輛,已知從甲倉庫調(diào)運(yùn)一輛農(nóng)用車到A縣和B縣的運(yùn)費分別為40元和80元,然后從乙倉庫調(diào)運(yùn)一輛農(nóng)用車到A縣和B縣的運(yùn)費分別為30元和50元,(1)設(shè)從乙倉庫調(diào)往A縣農(nóng)用車輛,用含的代數(shù)式表示總運(yùn)費W元;(2)請你用嘗試的方法,探求總運(yùn)費不超過900元,共有幾種調(diào)運(yùn)方案?你能否求出總運(yùn)費最低的調(diào)運(yùn)方案.
不等式課件 篇2
(1)本節(jié)內(nèi)容,是在學(xué)習(xí)了用方程思想解決實際問題和一元一次不等式的性質(zhì)及其解法等知識的基礎(chǔ)上,把實際問題和一元一次不等式結(jié)合在一起,既是對已學(xué)知識的運(yùn)用和深化,又為今后用不等式組解決實際問題以及更廣泛的應(yīng)用數(shù)學(xué)建模的思想方法奠定基礎(chǔ),具有在代數(shù)學(xué)中承上啟下的作用;
(2)通過本節(jié)的學(xué)習(xí),學(xué)生將繼續(xù)經(jīng)歷把生活中的數(shù)和數(shù)量關(guān)系轉(zhuǎn)化為數(shù)學(xué)符號的體驗過程,體會不等式和方程一樣都是刻畫現(xiàn)實世界數(shù)量關(guān)系的重要模型。
(3)在列不等式解決實際問題的探索過程中,引導(dǎo)學(xué)生注意估算意識,體會算式結(jié)果所對應(yīng)的實際意義,滲透建立數(shù)學(xué)模型,分類討論等數(shù)學(xué)思想,對提升學(xué)生應(yīng)用數(shù)學(xué)意識思考和解決問題的能力起到積極的作用。
對于用不等式解決實際問題,學(xué)生容易出現(xiàn)的認(rèn)知困難主要有兩個方面:①哪類的實際問題需要用一元一次不等式來解決;②如何將實際問題轉(zhuǎn)化為一元一次不等式并加以解決。
根據(jù)以上的分析和《數(shù)學(xué)課程標(biāo)準(zhǔn)》對本課內(nèi)容的教學(xué)要求,本節(jié)課的教學(xué)重點是:一元一次不等式在決策類實際問題中的應(yīng)用;難點是:如何將實際問題中的數(shù)量關(guān)系符號化,并根據(jù)解集和結(jié)合實際情況分類討論得出合理結(jié)論。
根據(jù)本課教材的特點、《數(shù)學(xué)課程標(biāo)準(zhǔn)》對本節(jié)課的教學(xué)要求以及學(xué)生的認(rèn)知水平,我從三個方面確定了以下教學(xué)目標(biāo):
1、能進(jìn)一步熟練的解一元一次不等式,能從實際問題中抽象出不等關(guān)系的數(shù)學(xué)模型,并結(jié)合解集解決簡單的實際問題。
2、通過觀察、實踐、討論等活動,積累利用一元一次不等式解決實際問題的經(jīng)驗,提高分類考慮、討論問題的能力,感知方程與不等式的內(nèi)在聯(lián)系,體會不等式和方程同樣都是刻畫現(xiàn)實世界數(shù)量關(guān)系的重要模型。
3、在積極參與數(shù)學(xué)學(xué)習(xí)活動的過程中,體會實事求是的態(tài)度和從數(shù)學(xué)的角度思考問題的習(xí)慣;學(xué)會在解決困難時,與其他同學(xué)交流,相互啟發(fā),培養(yǎng)合作精神。
根據(jù)教學(xué)內(nèi)容、教學(xué)目標(biāo)和學(xué)生的認(rèn)知水平,我主要采取教師啟發(fā)引導(dǎo),學(xué)生自主探究的教學(xué)方法.教學(xué)過程中,創(chuàng)設(shè)適當(dāng)?shù)慕虒W(xué)情境,引導(dǎo)學(xué)生獨立思考、共同探究,使學(xué)生經(jīng)歷將生活中的數(shù)和數(shù)量關(guān)系轉(zhuǎn)化為數(shù)學(xué)符號的具體建模過程,體會不等式作為刻畫現(xiàn)實世界數(shù)量關(guān)系的重要模型的價值。
教學(xué)中使用多媒體投影、計算機(jī)輔助教學(xué),目的是充分發(fā)揮其快捷、生動、形象的特點,為學(xué)生提供直觀感性的材料,有助于學(xué)生對問題的關(guān)注和理解,激發(fā)學(xué)生的學(xué)習(xí)興趣.
為了達(dá)到本節(jié)課的教學(xué)目標(biāo),突出重點,突破難點,我把教學(xué)過程通過兩個實際問題逐步深入;最后歸納小結(jié),布置作業(yè).具體過程如下:
1、課題引入:
我們以前已經(jīng)學(xué)過了一元一次方程以及二元一次方程組的解法,并在解決許多實際問題的過程中感受到:將相等關(guān)系用數(shù)學(xué)符號抽象后所得到的“方程”確實是一種有效數(shù)學(xué)工具,它能讓我們的思維過程更加準(zhǔn)確和簡明!
但是,生活中除了相等的數(shù)量關(guān)系以外,還存在著大量的不等關(guān)系,通過前幾節(jié)課的學(xué)習(xí),我們也已經(jīng)基本了解了不等式的性質(zhì)和簡單不等式的解法。今天,就讓我們通過一些帶有選擇“決策”意義的實際問題來共同探討一下一元一次不等式這種數(shù)學(xué)模型是如何解決生活中的實際問題的。
實際情景1:在為我校初一年級學(xué)生選定營養(yǎng)餐的過程中選中了有兩家公司.
這兩家公司某種適合初一學(xué)生的營養(yǎng)餐的報價均是是6.5元/份,營養(yǎng)含量和服務(wù)承諾也均相同,且都表示對學(xué)生優(yōu)惠:甲公司表示每份按報價的90%收費,乙公司表示購買100份以上的部分按報價的80%收費.
結(jié) 合新課標(biāo)對本小節(jié)的要求:會用一元一次不等式解決簡單的實際問題,我選擇的是從數(shù)量關(guān)系上與教材例題類似的收費問題,并且真實數(shù)值與所在年級事情相一致,比書上的例題更能貼近學(xué)生的實際生活,引發(fā)學(xué)生探求的`興趣。特別的,通常此類題目是不給出具體單價的,因為并不影響最后結(jié)論,考慮到學(xué)生現(xiàn)階段的數(shù)學(xué)抽象 仍以識別數(shù)量的具體含義為主,所以我在此處添加了單價,并增設(shè)了問題一,用以降低抽象思維的梯度,為后續(xù)的設(shè)未知數(shù)的“代數(shù)化抽象”作適當(dāng)?shù)匿亯|。
問題(1)請你判斷,我們年級580人用餐,應(yīng)該選擇哪家公司能讓每位學(xué)生的餐費平均算來更低呢?
預(yù)案 一:教師應(yīng)關(guān)注學(xué)生能否在討論中認(rèn)清“每位學(xué)生的餐費平均算來更低”所對應(yīng)的數(shù)量意義,將之轉(zhuǎn)化為“付給公司的總金額少”。在此處不排除學(xué)生因生活經(jīng)歷的缺乏,而對題目中所隱含的數(shù)量關(guān)系抽象能力弱。應(yīng)關(guān)注每一位同學(xué)的感受,讓同學(xué)們充分理解交流,擴(kuò)大參與思考的廣度,獲得基本抽象思維的生長點。
預(yù)案二:在進(jìn)行甲乙公司所需費用的計算時,會有分部計算和綜合計算兩種計算形式,對于那些列綜合算式的同學(xué),教師應(yīng)多給予展示機(jī)會,從而幫助其他同學(xué)整理思路,理解算式的實際含義;為后續(xù)的字母抽象做好鋪墊。具體計算學(xué)生可以合理使用計算器提高課堂速度。
預(yù)案三:學(xué)生還有可能不通過計算,直接猜測甲公司合算或者乙公司合算,對于這種有可能產(chǎn)生的聲音,教師應(yīng)從估算的角度加以引導(dǎo)。引導(dǎo)學(xué)生體會在580人的前提下,超過100人部分(480人)的甲公司是九折乙公司是八折, 10%的差距,;100人以內(nèi)(少于100人)甲公司九折,乙公司不打折10%的差距,480的10%明顯大于100的10%,所以選乙合算,并引導(dǎo)學(xué)生用計算的方法驗證估算的準(zhǔn)確性。
結(jié)論:580人時選擇乙公司能讓每位學(xué)生的餐費平均算來更低。
問題(2)你能否用以前學(xué)過的知識,在不知道具體人數(shù)的前提下制定一套方案,當(dāng)其他學(xué)校的初一年級也想在這兩家公司之間進(jìn)行選擇時,不用重復(fù)第一題的計算過程,只要知道人數(shù)就馬上能根據(jù)你方案的結(jié)論作出決策呢?
結(jié)合以前的訓(xùn)練,學(xué)生很容易想到要通過設(shè)未知數(shù)的方法進(jìn)行符號表達(dá),將非常關(guān)鍵而題目中并未給出的學(xué)生人數(shù)設(shè)為未知數(shù)。由于本題的具體分析過程仍然是由學(xué)生分析討論完成,可能出現(xiàn)的情況是:
預(yù)案一:一部分綜合能力較強(qiáng)的同學(xué)會根據(jù)實際意義直接列出綜合算式:或
此處教師應(yīng)該引導(dǎo)學(xué)生觀察,在化簡不等式的過程中單價并未影響結(jié)果(利用不等式性質(zhì)二將其作為公倍數(shù)約去),即:題目中沒有具體的單價也不會影響本題的決策。
還可以結(jié)合小學(xué)單位一的思想化簡不等式,引導(dǎo)學(xué)生體會并不是題目中出現(xiàn)的所有數(shù)量都會影響不等關(guān)系,有可能引發(fā)學(xué)生的關(guān)于數(shù)量關(guān)系的深層次思考。
預(yù)案 二:還有一部分學(xué)生會因為生活經(jīng)驗少的關(guān)系,綜合思考能力弱,無法快速的理清數(shù)量關(guān)系,列出綜合算式,思考受阻,教師應(yīng)引導(dǎo)學(xué)生體會在第一題的算式意義的提示下,如何分別列出表達(dá)甲乙公司所需總費用的過程量代數(shù)式。然后在通過將之用不等號連接的方式,來表達(dá)兩筆費用的大小,降低因綜合性所引起的思維梯度, 在過程中讓學(xué)生體會“分步建?!钡乃季S的條理性。
問題(1)如果你是該企業(yè)的高級管理人員,請你設(shè)計該企業(yè)在購買設(shè)備時兩種型號有幾種不同的組合方案;
問題(2)若按固定產(chǎn)量預(yù)算企業(yè)每月產(chǎn)生的污水量約為20xx噸,為了節(jié)約資金,應(yīng)選擇哪種購買方案?
實際情景2的選擇除涉及“角色扮演”和“環(huán)保”等人文因素的考慮以外,在在結(jié)合本節(jié)的教學(xué)目標(biāo)上還有如下考慮,
1、 本題取材于真實的實際生活問題,情景中的符號和數(shù)量關(guān)系較多,不等關(guān)系在文字語言的敘述中顯得比第一題更加隱蔽,需要學(xué)生更深化的思考才能列出算式,是在第一個情景的基礎(chǔ)上的擴(kuò)展和深化。
2、 在學(xué)生的討論過程中,教師應(yīng)注重引導(dǎo)學(xué)生體會,用圖表表示的數(shù)字信息比文字表達(dá)更便于觀察和有序思考,感受“有序表達(dá)”在實際中的價值。
3、 結(jié)合本題每一個的具體問題的分析和解決,學(xué)生必須要從表格中分析篩選相關(guān)的有用數(shù)據(jù),(例如:在第一問設(shè)計方案時未用到“處理污水量”和“年消耗費”,在第二問中未用到“價格”和“年消耗費”)這種分析和篩選的思考經(jīng)歷將有助于加強(qiáng)學(xué)生對數(shù)據(jù)關(guān)系的理解和運(yùn)用能力。
結(jié)合以前的訓(xùn)練,在思考問題(1)學(xué)生很容易想到要通過設(shè)A型或B型設(shè)備的
例如:(1)設(shè)購買污水處理設(shè)備A型 臺,則B型(10 – )臺,由題意知:
在此處,將“限額為105萬元”轉(zhuǎn)化為“≤105”是學(xué)生要突破的第一關(guān),教師應(yīng)在次處多展示同學(xué)的對“限額為105萬元”語言解釋,盡可能多的在具有不同經(jīng)歷基礎(chǔ)的同學(xué)心中將這個抽象過程生活化、自然化。
因為在實際情景中往往要根據(jù)未知數(shù)所代表的具體含義為未知數(shù)的加一個取值范圍的限定,而這個隱含的限制條件往往是學(xué)生中所不容易考慮到的,教師應(yīng)注意引導(dǎo)學(xué)生注意這一問題,
例如:本題中的 是設(shè)備的臺數(shù),應(yīng)用非負(fù)整數(shù)的限制,所以 可取0、1、2,因此有三種購買方案:
①購A型0臺,B型10臺;
②購A型1臺,B型9臺;
③購A型2臺,B型8臺。
此處細(xì)節(jié)性的思考經(jīng)歷,有助于提高學(xué)生在建模過程中更全面的考慮數(shù)值的實際意義,促進(jìn)抽象符號與具體意義在頭腦中的融合。
特別的,此處的“0”是學(xué)生最容易忽視和丟掉的,教師在此處應(yīng)重點引導(dǎo)學(xué)生思考當(dāng)“ ”時,往往是企業(yè)最可能選的方案,因為不同的設(shè)備涉及到不同的維護(hù)問題,單一品種的設(shè)備往往更便于管理,這種思考有助于發(fā)散學(xué)生的思維,促進(jìn)其結(jié)合實際作更全面的思考。
問題(2)的思維梯度較前幾個問題進(jìn)一步加大,學(xué)生必須理解“節(jié)約資金”這個目的的達(dá)成 一定是在“完成任務(wù)”的前提下的,要先通過對(1)中所得的三套方案是否能完成任務(wù)加以討論和驗證,然后再涉及計算哪個方案費用更低的問題
在驗證三套方案的可行性時,收思維方式的局限,學(xué)生往往會選擇逐一列舉計算的討論方式,并且由于數(shù)量少,很容易得出答案,教師可引導(dǎo)學(xué)生思考,如果滿足(1)的方案不是三種,而是三十種呢?三百種呢?除了逐一討論以外還有沒有什么更好的方式能幫助我們迅速縮小范圍呢?引導(dǎo)學(xué)生將所買設(shè)備能否完成任務(wù)量轉(zhuǎn)化為如下不等關(guān)系:
(2)同(1)所設(shè)購買污水處理設(shè)備A型 臺,則B型(10 – )臺,
240 +200(10 – )≥20xx;
因此為了節(jié)約資金,應(yīng)選購A型1臺,B型9臺。
此處的分析和引導(dǎo)有助于學(xué)生體會不等式在有效縮小討論范圍時的實際價值。
通過以上問題的解決,學(xué)生對不等式和方程一樣都是刻畫現(xiàn)實世界數(shù)量關(guān)系的重要模型有了進(jìn)一部的認(rèn)識,并感受到不等式確實是從實際問題中提出,又為解決實際問題提供明確的幫助有效數(shù)學(xué)工具。
本階段通過學(xué)習(xí)小結(jié)進(jìn)行課堂教學(xué)的反饋,組織和指導(dǎo)學(xué)生歸納知識、技能、方法,深化對數(shù)學(xué)思想方法的認(rèn)識,為后續(xù)學(xué)習(xí)打好基礎(chǔ)。
不等式課件 篇3
(1)本節(jié)內(nèi)容,是在學(xué)習(xí)了用方程思想解決實際問題和一元一次不等式的性質(zhì)及其解法等知識的基礎(chǔ)上,把實際問題和一元一次不等式結(jié)合在一起,既是對已學(xué)知識的運(yùn)用和深化,又為今后用不等式組解決實際問題以及更廣泛的應(yīng)用數(shù)學(xué)建模的思想方法奠定基礎(chǔ),具有在代數(shù)學(xué)中承上啟下的作用;
(2)通過本節(jié)的學(xué)習(xí),學(xué)生將繼續(xù)經(jīng)歷把生活中的數(shù)和數(shù)量關(guān)系轉(zhuǎn)化為數(shù)學(xué)符號的體驗過程,體會不等式和方程一樣都是刻畫現(xiàn)實世界數(shù)量關(guān)系的重要模型。
(3)在列不等式解決實際問題的探索過程中,引導(dǎo)學(xué)生注意估算意識,體會算式結(jié)果所對應(yīng)的實際意義,滲透建立數(shù)學(xué)模型,分類討論等數(shù)學(xué)思想,對提升學(xué)生應(yīng)用數(shù)學(xué)意識思考和解決問題的能力起到積極的作用。
對于用不等式解決實際問題,學(xué)生容易出現(xiàn)的認(rèn)知困難主要有兩個方面:①哪類的實際問題需要用一元一次不等式來解決;②如何將實際問題轉(zhuǎn)化為一元一次不等式并加以解決。
根據(jù)以上的分析和《數(shù)學(xué)課程標(biāo)準(zhǔn)》對本課內(nèi)容的教學(xué)要求,本節(jié)課的教學(xué)重點是:一元一次不等式在決策類實際問題中的應(yīng)用;難點是:如何將實際問題中的數(shù)量關(guān)系符號化,并根據(jù)解集和結(jié)合實際情況分類討論得出合理結(jié)論。
根據(jù)本課教材的特點、《數(shù)學(xué)課程標(biāo)準(zhǔn)》對本節(jié)課的教學(xué)要求以及學(xué)生的認(rèn)知水平,我從三個方面確定了以下教學(xué)目標(biāo):
1.能進(jìn)一步熟練的解一元一次不等式,能從實際問題中抽象出不等關(guān)系的數(shù)學(xué)模型,并結(jié)合解集解決簡單的實際問題。
2.通過觀察、實踐、討論等活動,積累利用一元一次不等式解決實際問題的經(jīng)驗,提高分類考慮、討論問題的能力,感知方程與不等式的內(nèi)在聯(lián)系,體會不等式和方程同樣都是刻畫現(xiàn)實世界數(shù)量關(guān)系的重要模型。
3.在積極參與數(shù)學(xué)學(xué)習(xí)活動的過程中,體會實事求是的態(tài)度和從數(shù)學(xué)的角度思考問題的習(xí)慣;學(xué)會在解決困難時,與其他同學(xué)交流,相互啟發(fā),培養(yǎng)合作精神。
三、教學(xué)方法的選擇
根據(jù)教學(xué)內(nèi)容、教學(xué)目標(biāo)和學(xué)生的認(rèn)知水平,我主要采取教師啟發(fā)引導(dǎo),學(xué)生自主探究的教學(xué)方法.教學(xué)過程中,創(chuàng)設(shè)適當(dāng)?shù)慕虒W(xué)情境,引導(dǎo)學(xué)生獨立思考、共同探究,使學(xué)生經(jīng)歷將生活中的數(shù)和數(shù)量關(guān)系轉(zhuǎn)化為數(shù)學(xué)符號的具體建模過程,體會不等式作為刻畫現(xiàn)實世界數(shù)量關(guān)系的重要模型的價值,
教學(xué)中使用多媒體投影、計算機(jī)輔助教學(xué),目的是充分發(fā)揮其快捷、生動、形象的特點,為學(xué)生提供直觀感性的材料,有助于學(xué)生對問題的.關(guān)注和理解,激發(fā)學(xué)生的學(xué)習(xí)興趣.
為了達(dá)到本節(jié)課的教學(xué)目標(biāo),突出重點,突破難點,我把教學(xué)過程通過兩個實際問題逐步深入;最后歸納小結(jié),布置作業(yè).具體過程如下:
1、課題引入:
我們以前已經(jīng)學(xué)過了一元一次方程以及二元一次方程組的解法,并在解決許多實際問題的過程中感受到:將相等關(guān)系用數(shù)學(xué)符號抽象后所得到的“方程”確實是一種有效數(shù)學(xué)工具,它能讓我們的思維過程更加準(zhǔn)確和簡明!
但是,生活中除了相等的數(shù)量關(guān)系以外,還存在著大量的不等關(guān)系,通過前幾節(jié)課的學(xué)習(xí),我們也已經(jīng)基本了解了不等式的性質(zhì)和簡單不等式的解法。今天,就讓我們通過一些帶有選擇“決策”意義的實際問題來共同探討一下一元一次不等式這種數(shù)學(xué)模型是如何解決生活中的實際問題的。
實際情景1:在為我校初一年級學(xué)生選定營養(yǎng)餐的過程中選中了有兩家公司.
這兩家公司某種適合初一學(xué)生的營養(yǎng)餐的報價均是是6.5元/份,營養(yǎng)含量和服務(wù)承諾也均相同,且都表示對學(xué)生優(yōu)惠:甲公司表示每份按報價的90%收費,乙公司表示購買100份以上的部分按報價的80%收費.
結(jié) 合新課標(biāo)對本小節(jié)的要求:會用一元一次不等式解決簡單的實際問題,我選擇的是從數(shù)量關(guān)系上與教材例題類似的收費問題,并且真實數(shù)值與所在年級事情相一致,比書上的例題更能貼近學(xué)生的實際生活,引發(fā)學(xué)生探求的興趣。特別的,通常此類題目是不給出具體單價的,因為并不影響最后結(jié)論,考慮到學(xué)生現(xiàn)階段的數(shù)學(xué)抽象 仍以識別數(shù)量的具體含義為主,所以我在此處添加了單價,并增設(shè)了問題一,用以降低抽象思維的梯度,為后續(xù)的設(shè)未知數(shù)的“代數(shù)化抽象”作適當(dāng)?shù)匿亯|。
問題(1)請你判斷,我們年級580人用餐,應(yīng)該選擇哪家公司能讓每位學(xué)生的餐費平均算來更低呢?
預(yù)案 一:教師應(yīng)關(guān)注學(xué)生能否在討論中認(rèn)清“每位學(xué)生的餐費平均算來更低”所對應(yīng)的數(shù)量意義,將之轉(zhuǎn)化為“付給公司的總金額少”。在此處不排除學(xué)生因生活經(jīng)歷的缺乏,而對題目中所隱含的數(shù)量關(guān)系抽象能力弱。應(yīng)關(guān)注每一位同學(xué)的感受,讓同學(xué)們充分理解交流,擴(kuò)大參與思考的廣度,獲得基本抽象思維的生長點。
預(yù)案二:在進(jìn)行甲乙公司所需費用的計算時,會有分部計算和綜合計算兩種計算形式,對于那些列綜合算式的同學(xué),教師應(yīng)多給予展示機(jī)會,從而幫助其他同學(xué)整理思路,理解算式的實際含義;為后續(xù)的字母抽象做好鋪墊。具體計算學(xué)生可以合理使用計算器提高課堂速度。
預(yù)案三:學(xué)生還有可能不通過計算,直接猜測甲公司合算或者乙公司合算,對于這種有可能產(chǎn)生的聲音,教師應(yīng)從估算的角度加以引導(dǎo)。引導(dǎo)學(xué)生體會在 580人的前提下,超過100人部分(480人)的甲公司是九折乙公司是八折, 10%的差距,;100人以內(nèi)(少于100人)甲公司九折,乙公司不打折10%的差距,480的10%明顯大于100的10%,所以選乙合算,并引導(dǎo)學(xué)生用計算的方法驗證估算的準(zhǔn)確性。
不等式課件 篇4
教學(xué)建議
一、知識結(jié)構(gòu)
本書首先結(jié)合實例引入一元一次不等式組的解集的概念,然后通過三個例題說明利用數(shù)軸解一元一次不等式組的方法,最后對一元一次不等式組的解法步驟進(jìn)行了總結(jié).
二、重點、難點分析
本節(jié)教學(xué)的重點是掌握一元一次不等式組的解法步驟并準(zhǔn)確地求出解集.難點是正確應(yīng)用不等式的基本性質(zhì)對不等式進(jìn)行變形、求不等式組中各個不等式解集的公共部分.不等式在中學(xué)代數(shù)中是研究問題的重要工具,例如求函數(shù)的定義域、值域、研究函數(shù)的單調(diào)性,求最大值、最小值,一元二次方程根的討論等,都要用到不等式的知識.不等式也是進(jìn)一步學(xué)習(xí)其他數(shù)學(xué)內(nèi)容的基礎(chǔ).學(xué)習(xí)和掌握不等式的求解和不等式的證明方法,對培養(yǎng)學(xué)生邏輯思維能力也有極其重要的作用.在處理解不等式的問題中,一元一次不等式組的解法,具有特別重要的意義.這是因為,解各類不等式的問題都可以歸結(jié)為解一些由簡單不等式所組成的不等式組.
1、在構(gòu)成不等式組的幾個不等式中
①這幾個一元一次不等式必須含有同一個未知數(shù);
②這里的“幾個”并未確定不等式的個數(shù),只要不是一個,兩個,三個,四個……都行.
2、當(dāng)幾個不等式的解集沒有公共部分時,我們就說這個不等式組無解.
3、由兩個一元一次不等式組成的不等式的解集,共歸結(jié)為下面四種基本情況:
【注意】①其中第(4)個不等式組,實質(zhì)上是矛盾不等式組,任何數(shù)都不能使兩個不等式同時成立。所以說這個不等式組無解或說其解集為空集。②從上面列出的表中,我們可以概括出來不等式組公共解的一規(guī)律:同大取大,同小取小,一大一小中間找。
三、教法建議
1.解本節(jié)的引例及例1、例2、例3時,注意把解不等式組的思路講清楚,即先分別解每一個不等式,求出解集,再求這些解集的公共部分.求公共部分的過程一定要結(jié)合數(shù)軸來講。
2.這節(jié)課的講解自始至終要突出解不等式組的基本思想以及解一元一次不等式組的步驟這兩個重點.準(zhǔn)確熟練地解一元一次不等式以及用數(shù)軸上的點表示不等式的解集是這節(jié)課的基礎(chǔ),因此講新課之前要復(fù)習(xí)提問這些內(nèi)容。
3.求公共解集是這節(jié)課的新授內(nèi)容,教師要充分利用數(shù)軸表示不等式解集具有形象、直觀、易于說明問題這些優(yōu)點.解集的公共部分教師可用彩筆在數(shù)軸的相應(yīng)部分描畫出來,使學(xué)生感到醒目,便于理解記憶。
4.每組不等式不要超過三個,關(guān)鍵是使學(xué)生理解和掌握解不等式組的基本思想和兩個步驟,不宜做過于難、過于多、重復(fù)的機(jī)械計算。
不等式課件 篇5
(一)復(fù)習(xí)提問:
三角形的三邊關(guān)系?
(二)列一元一次不等式組
問題:現(xiàn)有兩根木條a和b,a長10cm,b長3cm.如果要再找一根木條c,用這三根木條釘成一個三角形木框,那么對木條c的長度有什么要求?
注:這個問題是本節(jié)的'引入問題,三角形木框的形狀不唯一確定,只要能成為三角形即可.
探究:用三根長度分別為14cm,9cm,6cm的木條c1,c2,c3分別試試,其中哪根木條能與木條a和b一起釘成三角形木框?
可以發(fā)現(xiàn),當(dāng)木條a和b的長度確定后,木條c太長或太短,都不能與a和b一起釘成三角形.
由于“三角形中兩邊之和大于第三邊,兩邊之差小于第三邊”,設(shè)木條c長xcm,則x必須同時滿足不等式x10+3①和x10-3②
注:木條c必須同時滿足兩個條件,即ca+b,ca-b.
類似于方程組,把這兩個不等式合起來,組成一個一元一次不等式組記作注:這里并未正式給一元一次不等式組下定義,只是說這兩個不等式合起來,組成一個一元一次不等式組.實際上,兩個或更多的一元一次不等式組合起來,都組成一個一元一次不等式組.
(三)一元一次不等式組的解集
類比方程組的解,怎樣確定不等式組中x的可取值的范圍呢?
不等式組中的各不等式解集的公共部分,就是不等式組中x可以取值的范圍.
注:這里還未正式出現(xiàn)不等式組的解集的概念,但已點出各不等式的解集的公共部分即不等式組中未知數(shù)的可取值范圍.
由不等式①解得x13.
由不等式②解得x7.
從圖9.3—2容易看出,x可以取值的范圍為713.
注:利用數(shù)軸可以直觀形象地認(rèn)識公共部分.這個公共部分是兩端有界的開區(qū)間.
這就是說,當(dāng)木條c比7cm長并且比13cm短時,它能與木條a和b一起釘成三角形木框.
一般地,幾個不等式的解集的公共部分,叫做由它們所組成的不等式組的解集.解不等式組就是求它的解集.
注:這里正式給出不等式組的解集以及解不等式組的定義13.注:利用數(shù)軸可以直觀形象地認(rèn)識公共部分.這個公共部分是兩端有界的開區(qū)間.這就是說,當(dāng)木條c比7cm長并且比13cm短時,它能與木條a和b一起釘成三角形木框.一般地,幾個不等式的解集的公共部分,叫做由它們所組成的不等式組的解集.解不等式組就是求它的解集.注:這里正式給出不等式組的解集以及解不等式組的定義。
不等式課件 篇6
一元一次不等式組(2)
文星中學(xué)唐波
一、教學(xué)目標(biāo)
(一)知識與技能目標(biāo)
1、熟練掌握一元一次不等式組的解法,會用一元一次不等式組解決有關(guān)的實際問題。
2、理解一元一次不等式組應(yīng)用題的一般解題步驟,逐步形成分析問題和解決問題的能力。
(二)過程與方法目標(biāo)
通過利用列一元一次不等式組解答實際問題,初步學(xué)會從數(shù)學(xué)的角度提出問題、理解問題、并能綜合運(yùn)用所學(xué)的知識解決問題,發(fā)展應(yīng)用意識。
(三)情感態(tài)度與價值觀
通過解決實際問題,體驗數(shù)學(xué)學(xué)習(xí)的樂趣,初步認(rèn)識數(shù)學(xué)與人類生活的密切聯(lián)系。
二、教學(xué)重難點
(一)重點:建立用不等式組解決實際問題的數(shù)學(xué)模型。
(二)難點:正確分析實際問題中的不等關(guān)系,根據(jù)具體信息列出不等式組。
三、學(xué)法引導(dǎo)
(一)教師教法:直觀演示、引導(dǎo)探究相結(jié)合。
(二)學(xué)生學(xué)法:觀察發(fā)現(xiàn)、交流探究、練習(xí)鞏固相結(jié)合。
四、教具準(zhǔn)備:多媒體演示
五、教學(xué)過程
(一)、設(shè)問激趣,引入新課
猜一猜:我屬狗,請同學(xué)們根據(jù)我的實際情況來猜測我的年齡。(學(xué)生大膽猜想,利用不等關(guān)系分析得出答案。)
(二)、觀察發(fā)現(xiàn),競賽闖關(guān)
1、比一比:填表找規(guī)律
(學(xué)生搶答,教師補(bǔ)充。)2利用發(fā)現(xiàn)的規(guī)律解不等式組 ?(學(xué)生解答,抽生演板。)你可以得到它的整數(shù)解嗎?
(抽生回答:因為大于11小于14的整數(shù)有12和13,所以整數(shù)解為12和13。)3填空:三角形三邊長分別為2、7、c,則 c的取值范圍是__________。如果c是一個偶
數(shù),則 c=__________。
(學(xué)生回答,教師補(bǔ)充更正。)
(三)、欣賞圖片,探究新知
1、欣賞“五岳看山”。
2、利用欣賞引出例題(教科書P139例2仿編)
例:3名同學(xué)計劃在10天內(nèi)到嵩山拍照500張(每天拍照數(shù)量相同),按原來的計劃,不能完成任務(wù);如果每人每天比原計劃多拍1張,就能提前完成任務(wù),每個同學(xué)原計劃每天............拍多少張?
生齊讀,找出題中的已知條件和未知條件;再默讀,找一找表示數(shù)量關(guān)系的句子。師引導(dǎo)分析,并提出問題:
(1)你是怎樣理解“不能完成任務(wù)”的數(shù)量含義的?你是怎樣理解“提前完成任務(wù)”的數(shù)量含義的?
(2)解決這個問題,你打算怎樣設(shè)未知數(shù)?
(3)在本題中,可以找出幾個不等關(guān)系,可以列出幾個不等式?(學(xué)生交流討論,教師指導(dǎo)。)
?7x?98
?7(x?3)?98
解答完成后,學(xué)生自學(xué)課本例2。
3、由例解題答過程,類比列二元一次方程組解應(yīng)用題的步驟,總結(jié)列一元一次不等式組的解題步驟:
(1)、分析題意,設(shè)未知數(shù); .(2)、利用不等關(guān)系,列不等式組; .(3)、解不等式組; .
(4)、檢驗,根據(jù)題意寫出答案。.(學(xué)生總結(jié),抽生回答,教師補(bǔ)充。)
(四)、闖關(guān)練習(xí),鞏固新知
1練一練:為紀(jì)念“5·12”大地震一周年,“五一”部分同學(xué)到青城山拍照留念,如果每人拍8張則多于如果每人拍9張則不夠問共有多少個同學(xué)參加青城山旅游? ..150張;..180張。
教師引導(dǎo):抓住重點詞語,找到不等關(guān)系,列出不等式組。學(xué)生獨立完成,抽生回答。
比較列二元一次方程組和列一元一次不等式組解應(yīng)用題的區(qū)別:
(學(xué)生類比找區(qū)別,教師補(bǔ)充。)2練一練(教科書P140練習(xí)第2題):一本英語書共98頁,張力讀了一周(7天)還沒讀完,而李永不到一周就已讀完。李永平均每天比張力多讀3頁,張力平均每天讀多少頁(答案取整數(shù))?
學(xué)生分析列出不等式組,教師指導(dǎo)。(前面的練習(xí)已解出不等式組。)
(五)、暢所欲言,歸納小結(jié) 學(xué)生暢所欲言,談收獲體會 多媒體展示,本課內(nèi)容小結(jié):
1、解一元一次不等式組的秘笈:同大取大,同小取小,大小小大中間找,大大小小解不了。
2、具有多種不等關(guān)系的問題,可通過不等式組解決。
3、列一元一次不等式組解應(yīng)用題的步驟是:(1)、分析題意,設(shè)未知數(shù);(2)、利用不等關(guān)系,列不等式組;(3)、解不等式組;
(4)、檢驗,根據(jù)題意寫出答案。
(六)、課后演練,終極挑戰(zhàn)
必做題:教材習(xí)題第4、5、6題;
選做題:一個兩位數(shù),它的十位數(shù)字比個位數(shù)字大1,而且這個兩位數(shù)大于30小于42,則這個兩位數(shù)是多少?
六、板書設(shè)計
一元一次不等式組(2)
解:設(shè)每個同學(xué)原計劃每天拍x張,得
① ?3?10x?500
?
?3?10(x?1)?500②
1、分析題意,設(shè)未知數(shù);
解得x
3根據(jù)題意,x應(yīng)為整數(shù),所以x=16 答:每個同學(xué)原計劃每天拍16張。
2??
2、找不等關(guān)系,列不等式組; ?
?
3、解不等式組; ?步驟
??
?
4、檢驗并根據(jù)題意寫出答案。?
不等式課件 篇7
科學(xué)合理的教學(xué)方法能使教學(xué)效果事半功倍,達(dá)到教與學(xué)的和諧完美統(tǒng)一。
基于此,我準(zhǔn)備采用的教法講授法、討論法。德國教育學(xué)家第斯多慧:差的教師只會奉送真理,好的教師則交給學(xué)生如何發(fā)現(xiàn)真理,老師的教是為了不教,這才是教學(xué)的最高境界,所以我采用的學(xué)法是練習(xí)法、自主合作法。
在這節(jié)課的教學(xué)過程中,我注重突出重點,條理清晰,緊湊合理。各項活動的安排也注重互動、交流,最大限度的調(diào)動學(xué)生參與課堂的積極性、主動性。
首先是導(dǎo)入環(huán)節(jié),我采用復(fù)習(xí)舊知的導(dǎo)入方法。我會讓學(xué)生回憶不等式的概念以及一元一次方程的概念,明確指出今天學(xué)習(xí)的內(nèi)容是《一元一次不等式》。
這樣的設(shè)計既可以考查學(xué)生對之前知識的掌握情況,還能夠為今天學(xué)習(xí)一元一次方程的概念打下基礎(chǔ)。而且開門見山的導(dǎo)入方式能夠快速地進(jìn)入主題。
接下來是新知探索環(huán)節(jié),首先我請學(xué)生類比不等式以及一元一次方程的概念,給一元一次不等式下定義。
能夠總結(jié)出:含有一個未知數(shù),未知數(shù)的次數(shù)是1的不等式,叫做一元一次不等式。
接下來讓學(xué)生回憶上節(jié)課學(xué)習(xí)的不等式x-7>26如何解決的,通過學(xué)生回憶總結(jié)可以得到:通過“不等式的兩邊都加7,不等號的方向不變”而得到的。
接下來提問學(xué)生有沒有更加簡便的方法解不等式?讓學(xué)生類比解一元一次方程的步驟進(jìn)行解題??梢缘玫较喈?dāng)于可以用“移項”,來解決。
在這個過程中,強(qiáng)調(diào)每一個步驟,在第二題最后一步,強(qiáng)調(diào)當(dāng)不等式的兩邊同時乘以(或除以)同一個負(fù)數(shù)時,不等號的方向改變。
解完不等式,先讓學(xué)生回憶解一元一次方程的步驟是什么?并類比解一元一次方程的步驟,總結(jié)一下解一元一次不等式的步驟是什么?
從而我們歸納:解一元一次方程,要根據(jù)等式的性質(zhì),將方程逐步化為x=a的形式;而解一元一次不等式,則要根據(jù)不等式的性質(zhì),將不等式逐步化為xa的形式。
《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者和合作者”。根據(jù)這一教學(xué)理念,在本環(huán)節(jié)中,我組織學(xué)生進(jìn)行了自主探究活動,讓學(xué)生在保持高度學(xué)習(xí)熱情和探究欲望的活動過程中,始終以愉悅的心情,親身經(jīng)歷和體驗知識的形成過程。培養(yǎng)學(xué)生的探究能力、分析思維能力,激發(fā)他們的創(chuàng)新意識、參與意識。
第三個環(huán)節(jié)是課堂練習(xí)環(huán)節(jié),出示問題,解不等式,并在數(shù)軸上表示數(shù)集:5x+15>4x-1
之所以這樣設(shè)計是因為練習(xí)是掌握知識、形成技能、發(fā)展思維的重要手段,針對本課的教學(xué)重點和難點,上述練習(xí),目的是讓學(xué)生進(jìn)一步鞏固對新知的理解??梢陨罨虒W(xué)內(nèi)容,培養(yǎng)思維的靈活性。
最后一個環(huán)節(jié)為小結(jié)作業(yè)環(huán)節(jié),關(guān)于課堂小結(jié),我打算讓學(xué)生自己來總結(jié)今天的收獲。
這樣既發(fā)揮了學(xué)生的主體性,又可以提高學(xué)生的總結(jié)概括能力,讓我在第一時間得到學(xué)習(xí)反饋,及時加以疏導(dǎo)。
通過這樣的方式能夠為本節(jié)課學(xué)習(xí)的知識進(jìn)行進(jìn)一步的鞏固。
我的板書設(shè)計遵循簡潔明了突出重點的意圖,這是我的板書設(shè)計:
不等式課件 篇8
1、了解一元一次不等式組的概念。
2、理解一元一次不等式組的解集,能求一元一次不等式組的解集。
3、會解一元一次不等式組。
通過具體問題得到一元一次不等式組,從而了解一元一次不等式組的概念,解出每個不等式,利用數(shù)軸求出各不等式解集的公共部分,從而得到不等式組的解集,通過解幾個有代表性的一元一次不等式組,總結(jié)出求不等式組解集的法則。
運(yùn)用數(shù)軸確定不等式組的解集是行之有效的方法。這種“數(shù)形結(jié)合”的方法今后經(jīng)常用到,鍛煉同學(xué)們數(shù)形結(jié)合的能力,提高學(xué)習(xí)興趣。
一元一次不等式組的解法。
確定一元一次不等式組的解集。
一、情境導(dǎo)入,初步認(rèn)識
問題1現(xiàn)有兩根木條a和b,a長10cm,b長3cm,如果要再找一根木條c,用這三根木條釘成一個三角形木框,那么木條c的長度有什么要求?
解:由于三角形中兩邊之____大于第三邊,兩邊之____小于第三邊,設(shè)c的長為xcm,則x<____,①x>____,②合起來,組成一個__________。
由①解得_____________,由②解得_____________。
在數(shù)軸上表示就是________________。
容易看出:x的取值范圍是____________________。
這就是說,當(dāng)木條c比____cm長并且比____cm短時,它能與木條a和b一起釘成三角形木框。
問題2由上面的解不等式組的過程用自己的語言歸納出一元一次不等式組的.解法。
全班同學(xué)可獨立作業(yè),也可分組自由討論,10分鐘后交流成果,逐步得出結(jié)論。
二、思考探究,獲取新知
思考什么叫一元一次不等式組,什么叫一元一次不等式組的解集,什么叫解不等式組?
1、定義:
(1)一元一次不等式組:幾個含有相同未知數(shù)的一元一次不等式合起來組成一個一元一次不等式組。
(2)一元一次不等式組的解集:幾個不等式的解集的公共部分,叫做由它們所組成的不等式的解集。
(3)解不等式組:求一元一次不等式組的解集的過程叫解一元一次不等式組。
2、一元一次不等式組的解法:
(1)求出每個一元一次不等式的解集。
(2)求出這些解集的公共部分,便得到一元一次不等式組的解集。
不等式課件 篇9
本節(jié)教學(xué)的重點是不等式的解集的概念及在數(shù)軸上表示不等式的解集的方法.難點為不等式的解集的概念.
相同點:定義方式相同(使方程成立的未知數(shù)的值,叫做方程的解);解的表示方法也相同.
不同點:解的個數(shù)不同,一般地,一個不等式有無數(shù)多個解,而一個方程只有一個或幾個解,例如, 能使不等式 成立,那么 是不等式的一個解,類似地 等也能使不等式 成立,它們都是不等式 的解,事實上,當(dāng) 取大于 的數(shù)時,不等式 都成立,所以不等式 有無數(shù)多個解.
不等式的解與不等式的解集是兩個不同的概念,不等式的解是指滿足這個不等式的未知數(shù)的某個值,而不等式的解集,是指滿足這個不等式的未知數(shù)的所有的值,不等式的所有解組成了解集,解集中包括了每一個解.
注意:不等式的解集必須滿足兩個條件:第一,解集中的任何一個數(shù)值,都能使不等式成立;第二,解集外的任何一個數(shù)值,都不能使不等式成立.
一般地,一個含未知數(shù)的不等式有無數(shù)多個解,其解集是某個范圍,這個范圍可用一個最簡單的不等式表示出來,例如,不等式 的解集是 .
如不等式 的解集 ,可以用數(shù)軸上表示4的點的左邊部分表示,因為 包含 ,所以在表示4的點上畫實心圓.
如不等式 的解集 ,可以用數(shù)軸上表示4的點的左邊部分表示,因為 包含 ,所以在表示4的點上畫實心圈.
注意:在數(shù)軸上,右邊的點表示的數(shù)總比左邊的點表示的數(shù)大,所以在數(shù)軸上表示不等式的解集時應(yīng)牢記:大于向右畫,小于向左畫;有等號的畫實心圓點,無等號的畫空心圓圈.
1.使學(xué)生了解不等式的解集、解不等式的概念,會在數(shù)軸上表示出不等式的解集.
2.知道不等式的“解集”與方程“解”的不同點.
通過教學(xué),使學(xué)生能夠正確地在數(shù)軸上表示出不等式的解集,并且能把數(shù)軸上的某部分?jǐn)?shù)集用相應(yīng)的不等式表示.
通過講解不等式的“解集”與方程“解”的關(guān)系,向?qū)W生滲透對立統(tǒng)一的辯證觀點.
通過本節(jié)課的學(xué)習(xí),讓學(xué)生了解不等式的解集可利用圖形來表達(dá),滲透數(shù)形結(jié)合的數(shù)學(xué)美.
2.學(xué)生學(xué)法:明確不等式的解與解集的區(qū)別和聯(lián)系,并能熟練地用數(shù)軸表示不等式的解集,在數(shù)軸上表示不等式的解集時,要特別注意:大于向右畫,小于向左畫;有等號的畫實心圓點,無等號的畫空心圓圈.
不等式課件 篇10
1.了解不等式及一元一次不等式概念。
2.理解不等式的解、解集,能正確表示不等式的解集。
通過類比等式的對應(yīng)知識,探索不等式的概念和解,體會不等式與等式的異同,初步掌握類比的思想方法。
1.經(jīng)歷把實際問題抽象為不等式的過程,能夠列出不等關(guān)系式。
2.初步體會不等式(組)是刻畫現(xiàn)實世界中不等關(guān)系的一種有效數(shù)學(xué)模型,培養(yǎng)學(xué)生的建模意識。
通過對不等式概念及其解集等有關(guān)概念的探索,培養(yǎng)學(xué)生的知識遷移能力和建模意識,加強(qiáng)同學(xué)之間的使用與交流。
活動一:
感知不等關(guān)系,了解不等式的概念。
通過實例,讓學(xué)生認(rèn)識到不等關(guān)系在生活中的存在,通過問題的解答,讓學(xué)生了解不等式的概念,體會不等式是解決實際問題的有效工具。
活動二:
通過類比方程,繼續(xù)探索出不等式的解、解集及其表示方法。
通過解決上個環(huán)節(jié)的問題,得出不等式的解,再引導(dǎo)學(xué)生觀察解的特點,探索出解集的兩種表示方法(符號表示、數(shù)軸表示),并且培養(yǎng)學(xué)生用估算方法求解集的技能。
活動三:
繼續(xù)探索,歸納出一元一次不等式的意義。
針對所學(xué)的不等式,讓學(xué)生歸納出特點,得到一元一次不等式的概念,并對概念進(jìn)行辨析。
運(yùn)用本節(jié)所學(xué)的知識,解決實際問題,使學(xué)生經(jīng)歷將實際問題轉(zhuǎn)化為數(shù)學(xué)問題,再加以解決的過程,實現(xiàn)對所學(xué)知識的鞏固和深化。
讓學(xué)生通過自我反思和互相質(zhì)疑提問,歸納總結(jié)本節(jié)課的主要內(nèi)容,交流在概念、解及解集學(xué)習(xí)中的心得和體會,不斷積累數(shù)學(xué)活動經(jīng)驗,教師應(yīng)主動參與學(xué)生小結(jié)中,作好引導(dǎo)工作,布置好作業(yè),并作及時反饋。
小強(qiáng)準(zhǔn)備隨父母乘車去武當(dāng)山春游。
⑴在車上看到兒童買票所需的測身高標(biāo)識線。
①x滿足______時,他可免票。
②x滿足______時,他該買全票。
⑵已知襄樊與武當(dāng)山的距離為150千米,他們上午10點鐘從襄樊出發(fā),汽車勻速行駛。
①若該車計劃中午12點準(zhǔn)時到達(dá)武當(dāng)山,車速應(yīng)滿足什么條件?
②若該車實際上在中午12點之前已到達(dá)武當(dāng)山,車速應(yīng)滿足什么條件?
用不等式表示:
⑴a是正數(shù);⑵a是負(fù)數(shù);⑶a與5的和小于7;⑷a與2的差大于-1;
⑸a的4倍大于8;
⑹a的一半小于3。
學(xué)生回答①這兩個由實際生活情境設(shè)置的問題,應(yīng)非常容易.問題②相對①難度加大了,難在題意中的條件不象上面那樣直接明了,并且可從距離和時間兩個角度來分析、解決問題,而七年級學(xué)生恰恰缺乏閱讀分析題意、多維度思考解決問題的能力,所以采用小組討論交流的形式解決問題②
學(xué)生討論角度估計大都集中在距離這一角度,教師可深入小組討論中,認(rèn)真聽聽同學(xué)們的思路,應(yīng)鼓勵學(xué)生多發(fā)表意見,并適當(dāng)點撥,直到得出兩種不等式。
此次活動中,教師應(yīng)重點關(guān)注:討論要有足夠的時間和空間,學(xué)生在小組討論交流時,是否敢于發(fā)表自己的想法。
再給出不等式概念:
像前面式子一樣用“>”或“
教師可要求學(xué)生舉出一些表示大小的式子,學(xué)生舉出的不等式中,可能會有一些不含未知數(shù)的,如5>3等。教師此時應(yīng)總結(jié):不等式中可含有未知數(shù),也可不含未知數(shù)。
教師根據(jù)學(xué)生舉例給出表示不等關(guān)系的第三種符號“≠”,并強(qiáng)調(diào):像前面式子一樣用“≠”表示不等關(guān)系的式子也是不等式。
鞏固練習(xí)是讓學(xué)生用不等式來刻畫題中6個簡單的不等關(guān)系。學(xué)生得出答案并不難,所以該環(huán)節(jié)讓學(xué)生獨立完成、互相評價,教師可深入到學(xué)生的解題過程中,觀察指導(dǎo)學(xué)生的解題思路,傾聽學(xué)生的評價。
問題1在課本中起導(dǎo)入新課作用,考慮學(xué)生實際情況(分析應(yīng)用題能力尚欠缺)和題目難度,所以設(shè)置問題串,降低難度。這樣編排教材我認(rèn)為更能體現(xiàn)知識呈現(xiàn)的序列性,從易到難,讓學(xué)生“列不等式”能力實現(xiàn)螺旋上升。
問題3作用僅僅起鞏固上面所學(xué)的知識,所以采用書中的一組習(xí)題,讓學(xué)生獨立完成,進(jìn)一步培養(yǎng)學(xué)生列不等式能力。
采用學(xué)生熟悉的生活情境作為導(dǎo)入內(nèi)容,然后層層推進(jìn),步步設(shè)問,環(huán)環(huán)相扣,直至推出不等式的概念及概念理解中應(yīng)注意的地方。這樣實現(xiàn)了:讓學(xué)生從已有的數(shù)學(xué)經(jīng)驗出發(fā),從生活中建構(gòu)數(shù)學(xué)模型,為后面利用“不等式”這一模型解決生活中實際問題作好鋪墊,體現(xiàn)了數(shù)學(xué)生活化、生活
不等式課件 篇11
1、一元一次不等式的概念:一般地,不等式中只含有一個未知數(shù),未知數(shù)的次數(shù)是1,且不等式的兩邊都是整式,這樣的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步驟:(1)去分母(2)去括號(3)移項(4)合并同類項(5)將x項的系數(shù)化為1
1、一元一次不等式組的概念:幾個一元一次不等式合在一起,就組成了一個一元一次不等式組。
2、幾個一元一次不等式的解集的公共部分,叫做它們所組成的一元一次不等式組的解集。
3、求不等式組的解集的過程,叫做解不等式組。
4、當(dāng)任何數(shù)x都不能使不等式同時成立,我們就說這個不等式組無解或其解為空集。
3、代數(shù)式1-m的值大于-1,又不大于3,則m的取值范圍是( )
A.x≥1 B.x≥-1/2 C.x>1 D.x>-1/2
A.5+4>8 B.2x-1 C.2x-5≤1 D.1/x-3x≥0
A. a>0? B.a≥0? C.a
11、若關(guān)于x的不等式組 的解集是x>2a,則a的取值范圍是
A. a>4 B. a>2 C. a=2 D.a≥2
12、若方程組 中,若未知數(shù)x、y滿足x+y>0,則m的取值范圍是
13、不等式2(1) x>-3的解集是 。
14、用代數(shù)式表示,比x的5倍大1的數(shù)不小于x的 與4的差 。
15、若(m-3)x-1,則m .
18、某次個人象棋賽規(guī)定:贏一局得2分,平一局得0分,負(fù)一局得反扣1分。在12局比賽中,積分超過15分就可以晉升下一輪比賽,小王進(jìn)入了下一輪比賽,而且在全部12輪比賽中,沒有出現(xiàn)平局,問小王最多輸 局比賽【www.LiuxUE86.cOm 出國留學(xué)網(wǎng)】
1、定義:把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這個點對稱或中心對稱,這個點叫做對稱中心.這兩個圖形中的對應(yīng)點叫做關(guān)于中心的對稱點。
2、心對稱的兩條基本性質(zhì):
(1)關(guān)于中心對稱的兩個圖形,對稱點所連線段都經(jīng)過對稱中心,而且被對稱中心所平分。
(2)關(guān)于中心對稱的兩個圖形是全等圖形。
把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。
每上第一次課,我所講的課程內(nèi)容都和學(xué)生的錯題有關(guān)。我通常把試卷中的錯題摘抄出幾個典型題,作為課堂的例題再講一遍。而學(xué)生的反應(yīng),或是像沒有見過,或是對題目非常熟悉,但沒有思路。
這些現(xiàn)象的發(fā)生,都是學(xué)生沒有及時總結(jié)的原因。所以第一次課后我都建議我的學(xué)生做一個錯題本,像寫日記一樣,記錄下自己的錯題和感想。
成也審題敗也審題。如何審題呢?
(1)這個題目有哪些個已知條件?我能不能把已知條件分開?
(2)求解的目標(biāo)是什么?對求解有什么要求?
(3)能不能畫一個圖幫助思考?好多問題是沒有看清楚題意致錯。審題不清,你做得越多,可能錯的就越多。
(4)所給出的已知條件相互之間有什么關(guān)系?能不能從中發(fā)現(xiàn)隱含條件?
(5)已知條件與求解目標(biāo)有什么聯(lián)系?能不能從中獲得解題的思路?找到進(jìn)門的門檻?
不等式課件 篇12
1.使學(xué)生感受到生活中存在著大量的不等關(guān)系,了解不等式和一元一次不等式的意義;
2.讓學(xué)生自發(fā)地尋找不等式的解,會在數(shù)軸上正確地表示出不等式的解集;
3.能夠根據(jù)題意準(zhǔn)確迅速地列出相應(yīng)的不等式。
1.通過汽車行駛過a地這一實例的研究,使學(xué)生體會到數(shù)學(xué)來源于生活,又服務(wù)于生活,培養(yǎng)學(xué)生“學(xué)數(shù)學(xué)、用數(shù)學(xué)”的意識;
2.經(jīng)歷由具體實例建立不等模型的過程,探究不等式的解與解集的不同意義的過程,滲透數(shù)形結(jié)合的思想。
㈢情感、態(tài)度、價值觀:
1.通過對不等式、不等式的解與解集的探究,引導(dǎo)學(xué)生在獨立思考的基礎(chǔ)上積極參與對數(shù)學(xué)問題的討論,培養(yǎng)他們的合作交流意識;
2.讓學(xué)生充分體會到生活中處處有數(shù)學(xué),并能將它們應(yīng)用到生活的各個領(lǐng)域中去。
3.培養(yǎng)學(xué)生類比的思想方法、數(shù)形結(jié)合的思想。
1.教學(xué)重點:不等式、一元一次不等式、不等式解與解集的意義;在數(shù)軸上正確地表示出不等式的解集;
2.教學(xué)難點:不等式解集的意義,根據(jù)題意列出相應(yīng)的不等式。
計算機(jī)、自制cai課件、實物投影儀、三角板等。
教師創(chuàng)設(shè)情境引入,學(xué)生交流探討;師生共同歸納;教師示范畫圖,課件交互式練習(xí)。
〖創(chuàng)設(shè)情境——從生活走向數(shù)學(xué)〗
[多媒體展示]“五·一黃金周”快要到了,蕪湖市某兩個商場為了促銷商品,推行以下促銷方案:①甲商場:購物不超過50元者,不優(yōu)惠;超過50元的,超過部分折優(yōu)惠。②乙商場:購物不超過100元者,不優(yōu)惠;超過100元的,超過部分九折優(yōu)惠。親愛的同學(xué),如果五·一期間,你去購物,選擇到哪個商場,才比較合算呢?
(以上教學(xué)內(nèi)容是向?qū)W生設(shè)疑,激發(fā)學(xué)生探索問題、研究問題的積極性,可以讓學(xué)生討論一會兒)
教師:要想正確地解決這個問題,我們大家就要學(xué)習(xí)第九章《不等式和不等式組》,學(xué)完本章的內(nèi)容后,我相信,聰明的你們一定都會作出正確的選擇,真正地做到既經(jīng)濟(jì)又實惠。
首先,我們來共同學(xué)習(xí)本章的第一節(jié)課——9.1.1節(jié)《不等式及其解集》
〖新課學(xué)習(xí)〗
學(xué)習(xí)目標(biāo):
1.能感受到生活中存在著大量的不等關(guān)系,了解不等式和一元一次不等式和意義;
2.會尋找不等式的解,會在數(shù)軸上正確地表示出不等式的解集;
3.能夠根據(jù)題意準(zhǔn)確迅速地列出相應(yīng)的不等式。
[多媒體展示一段動畫]:引例:一輛勻速行駛的汽車在11:20距離a地50千米,要在12:00之前駛過a地,車速應(yīng)滿足什么條件?
設(shè)車速是x千米/小時,
(1)從時間上看,汽車要在12:00之前駛過a地,則以這個速度行駛50千米所用的時間不到 小時,即
(2)從路程上看,汽車要在12:00之前駛過a地,則以這個速度行駛 小時的路程要超過50千米,即
請同學(xué)們觀察上面的兩個式子,式子左右兩邊的大小關(guān)系是怎樣的? 左右兩邊相等嗎?
在學(xué)生充分發(fā)表自己意見的基礎(chǔ)上,師生共同歸納得出:
用“>”或“<”號表示大小關(guān)系的式子叫做不等式;
用“≠”表示不等關(guān)系的式子也是不等式。
判斷下列式子中哪些是不等式,是不等式的請在題后的括號內(nèi)劃“√”,不是的請劃“×”
(1)3> 2????? (???? ) (2)2a+1> 0?? (???? )?? (3)a+b=b+a? (???? )
(4)x< 2x+1?? (???? )???? (5)x=2x-5??? (???? ) (6)2x+4x< 3x+1 (???? )????????? (7)15≠7+9? (???? )
上面的不等式中,有些不含未知數(shù),有些含有未知數(shù),大家把(2)、(4)、(6)式與(5)式類比,(5)式是一個一元一次方程,能不能給(2)、(4)、(6)式也起個名字呢?
含有一個未知數(shù), 未知數(shù)的次數(shù)是1的不等式,叫做一元一次不等式.
問題2:車速可以是78千米/小時嗎?75千米/小時呢? 72千米/小時呢?
問題3:我們曾經(jīng)學(xué)過“使方程兩邊相等的未知數(shù)的值就是方程的解”,那么我們可以把使不等式成立的未知數(shù)的值叫做什么呢?
(師生共同歸納)使不等式成立的未知數(shù)的值叫做不等式的解。
2.課堂練習(xí)二——動一動腦,動一動手,你一定能算得對。
76, 73, 79, 80, 74.9, 75.1, 90, 60
(學(xué)生做完后,師問):你還能找出這個不等式的其他的解嗎?這個不等式有多少個解?你從中發(fā)現(xiàn)了什么規(guī)律?
(學(xué)生討論后,師生共同總結(jié)):當(dāng)x>75時,不等式 x>50總成立;而當(dāng)x<75或x=75時,不等式 x>50不成立,這就是說,任何一個大于75的數(shù)都是不等式 x>50的解,這樣的解有無數(shù)個。因此,x>75表示了能使不等式 x>50成立的x的取值范圍,叫做不等式 x>50的解的集合,簡稱解集。
我們再回到前面的問題,經(jīng)過剛才的分析,可以知道,要使汽車在12:00之前駛過a地,車速必須大于75千米/小時。
一個含有未知數(shù)的不等式的所有的解,組成了這個不等式的解集。
4.在數(shù)軸上表示不等式的解集;
注意:在表示75的點上畫空心圓圈,表示不包括這一點.
5.課堂練習(xí)三——動一動腦,動一動手,你一定能算得對。
判斷下列數(shù)中哪些是不等式x+3>6的解? 哪些不是?
-4, -2.5,? 0,? 1,? 2.5,? 3,? 3.2,? 4.8,? 8,? 12
求不等式的解集的過程叫做解不等式。
7.課堂練習(xí)四——看誰算得最快最準(zhǔn)。
直接想出不等式的解集,并在數(shù)軸上表示出不等式的解集:
(1) x+3>6;??????? (2)2x<8;?? ?(3)x-2>0
解:(1)x>3;???????? (2)x<4;??? (3)x>2。
1.例用不等式表示:
(1)x與1的和是正數(shù);??????(2)的與的的差是負(fù)數(shù);
(3)的2倍與1的和大于3;(4)的一半與4的差小于的3倍.
解:(1)x+1>0;???????? (2)+b<0;
(3)2+1>3;????? (4)-4<3;
2.課堂練習(xí)五——看誰最列得又快又準(zhǔn)。
用不等式表示:
(1)是正數(shù);??????????(2)是負(fù)數(shù);
(3)與5的和小于7;??(4)與2的差大于-1;
(5)的4倍大于8;??????(6)的一半小于3.
答案;(1)>0;??????? (2)<0;?? (3)+5>0;
學(xué)生小結(jié),師生共同完善:
2.會尋找不等式的解,會在數(shù)軸上正確地表示出不等式的解集;
3.能夠根據(jù)題意準(zhǔn)確迅速地列出相應(yīng)的不等式。
不等式課件 篇13
教學(xué)重點:掌握不等式的三條基本性質(zhì),尤其是不等式的基本性質(zhì)3.
教學(xué)難點:正確應(yīng)用不等式的三條基本性質(zhì)進(jìn)行不等式變形.
通過觀察、分析、討論,引導(dǎo)學(xué)生歸納總結(jié)出不等式的三條基本性質(zhì),從具體上升到理論,再由理論指導(dǎo)具體的練習(xí),從而強(qiáng)化學(xué)生對知識的理解與掌握.
(設(shè)計說明:設(shè)置以下習(xí)題是為了溫故而知新,為學(xué)習(xí)本節(jié)內(nèi)容提供必要的知識準(zhǔn)備.)
2、什么是不等式?
3、用“>”或“<”填空.
(教學(xué)說明: 復(fù)習(xí)等式的基本性質(zhì)后學(xué)生自然會聯(lián)想到,不等式是否有與等式相類似的性質(zhì),從而引起學(xué)生的探究欲望.接著問題3為學(xué)生探究不等式的性質(zhì)提供了載體,通過觀察,尋找規(guī)律,得出不等式的性質(zhì).)
先讓學(xué)生獨立思考,后合作交流,通過充分討論,類比等式性質(zhì)得出不等式的性質(zhì).
觀察時,引導(dǎo)學(xué)生注意不等號的方向,通過(1)題學(xué)生容易得出不等式性質(zhì)1:
不等式基本性質(zhì)1 不等式兩邊加(或減)同一個數(shù)(或式子),不等號的方向不變.
比較(2)、(3)題,注意觀察不等號方向,并思考不等號方向的改變與什么有關(guān)?由學(xué)生概括總結(jié),教師補(bǔ)充完善得出:
不等式基本性質(zhì)2 不等式兩邊乘(或除以)同一個不為零的正數(shù),不等號的方向不變.
不等式基本性質(zhì)3 不等式兩邊乘(或除以)同一個不為零的負(fù)數(shù),不等號的方向改變.
通過PPT用圖形演示不等式的基本性質(zhì),讓學(xué)生更加清楚地認(rèn)識不等式的基本性質(zhì)。
不等式有傳遞性嗎?
【學(xué)生通過討論能夠比較容易得出結(jié)論:不等式有對稱性,但要注意其不等號方向的`變化;不等式也有傳遞性,但要注意的是同向傳遞性?!?/p>
三、鞏固訓(xùn)練,熟練技能:
1、(1) a - 3____b - 3;
(3) 0.1a____0.1b;
(5) 2a+3____2b+3;
【本題目采用提問的方式,因為內(nèi)容相對簡單,所以可以迅速得到結(jié)論。要讓提問者說清楚答案,并說明利用不等式的性質(zhì)幾來進(jìn)行判定的?!?/p>
(1)因為7.5>5.7,所以-7.5<-5.7;
(2)因為a+8>4,所以a>-4;
(3)因為4a>4b,所以a>b;
(4)因為-1>-2,所以-a-1>-a-2;
(5)因為3>2,所以3a>2a.
【學(xué)生口答,并說明為什么。本題重點是第5小題,要引導(dǎo)學(xué)生總結(jié)出a的取值會影響到答案。當(dāng)a>0時,3a>2a.(不等式基本性質(zhì)2)
當(dāng) a=0時,3a=2a.當(dāng)a<0時,3a<2a.(不等式基本性質(zhì)3) 】
學(xué)生自己完成以下題目,之后進(jìn)行集體講解。
(1)如果x-5>-1,那么______________________,得:x>4
(2)如果-2x>3,那么那么______________________,得X=______
師生共同小結(jié)本節(jié)課所學(xué)重點,不等式的基本性質(zhì)的具體內(nèi)容。
不等式課件 篇14
基本不等式是數(shù)學(xué)中重要的一個概念,它與不等式的證明和應(yīng)用有著密切的關(guān)系?;静坏仁降慕夥ê退季S方法不僅能讓我們更好地掌握不等式的性質(zhì)和應(yīng)用,同時也能讓我們更好地解決數(shù)學(xué)中的其他問題。下面,讓我們就基本不等式這一主題展開更加深入的探討。
一、基本不等式的定義、證明和性質(zhì)
基本不等式定義:對于任意實數(shù)$x$,$y$,有$(x^2+y^2)\geq 2xy$,等號成立當(dāng)且僅當(dāng)$x=y$時成立。
基本不等式的證明:我們可以通過平方展開和配方進(jìn)行證明,即:
$(x-y)^2\geq 0$
$x^2-2xy+y^2\geq 0$
$x^2+y^2\geq 2xy$
證畢。
基本不等式的性質(zhì):基本不等式可以用于求證其他不等式和解決實際問題,例如可以用基本不等式證明算術(shù)平均數(shù)$\ge$幾何平均數(shù),可以用基本不等式求證要想最小化一個多項式,需要使其中的各項等于彼此等于基本不等式中的相等值等。
二、基本不等式的應(yīng)用及相關(guān)例題
基本不等式的應(yīng)用廣泛,其中最常見的應(yīng)用就是在證明和求解不等式問題中。下面,我們就通過例題來展示基本不等式的具體應(yīng)用。
例題一:
已知$a,b,c$均為正實數(shù),求出$abc$與$\frac{(a+b+c)^3}{27}$的大小關(guān)系。
解:由于$a,b,c$均為正實數(shù),故可運(yùn)用基本不等式進(jìn)行求解,即
$\begin{aligned}
\frac{(a+b+c)}{3}\geq\sqrt[3]{abc}\
(a+b+c)^3\geq 27abc
\end{aligned}$
因此,
$\frac{(a+b+c)^3}{27}\geq abc$
即$\frac{(a+b+c)^3}{27}\geq abc$
得證。
例題二:
已知$a+b=3$,$a^2+b^2=5$,求出$a,b$的大小關(guān)系。
解:由已知條件可得$(a+b)^2=a^2+b^2+2ab$,即
=5+2ab$
$ab=\frac{4}{3}$
由基本不等式知得
ab=\frac{8}{3}\leq a^2+b^2=5$
即$a^2+b^2>2ab$,因此$a^2>b^2$,
又因為$a+b=3$,所以$b=3-a$,
所以$(3-a)^2
+a^2-6a
$a>\frac{3}{2}$
因此,
$a>b>\frac{3}{2}-a$
即id="article-content1">
不等式課件
發(fā)布時間:2023-09-29 不等式課件 2023不等式課件14篇。
經(jīng)驗時常告訴我們,做事要提前做好準(zhǔn)備。在平日里的學(xué)習(xí)中,幼兒園教師時常會提前準(zhǔn)備好有用的資料。資料可以指人事物的相關(guān)多類信息、情報。有了資料才能更好地安排接下來的學(xué)習(xí)工作!你是否收藏了一些有用的幼師資料內(nèi)容呢?以下是由小編為大家整理的“2023不等式課件14篇”,僅供參考,歡迎大家閱讀。
不等式課件 篇1
七年級數(shù)學(xué)不等式課件
教學(xué)目標(biāo):
通過對具體實例的學(xué)習(xí),使學(xué)生能夠了解生活中的不等量關(guān)系,理解不等式的概念,知道什么是不等式的解,為以后學(xué)習(xí)不等式的解法奠定基礎(chǔ).
知識與能力:
1.通過對具體事例的分析和探索,得到生活中不等量的關(guān)系.
2.通過理解得到不等式的概念,從而使學(xué)生經(jīng)歷實際問題中數(shù)量的分析、抽象過程,體會現(xiàn)實中有各種各樣錯綜復(fù)雜的數(shù)量關(guān)系.
3.了解不等式的意義,知道不等式是用來刻畫生活中的數(shù)量關(guān)系的.
4.知道什么是不等式的解.
過程與方法:
1.引導(dǎo)學(xué)生分析具體事例,從對具體事例的分析中得到不等量關(guān)系.
2.引導(dǎo)并幫助學(xué)生列出不等式,分析不等式的成立條件.
3.通過分析、抽象得到不等式的概念和不等式的解的概念.
4.通過習(xí)題鞏固和加深對概念的理解.
情感、態(tài)度與價值觀:
1.通過學(xué)生的分析和抽象過程使他們體會現(xiàn)實中錯綜復(fù)雜的數(shù)量關(guān)系,然后從而培養(yǎng)其抽象思維能力.
2.通過分組討論學(xué)習(xí),體會在解決具體問題的過程中與他人合作的重要性,培養(yǎng)學(xué)生的團(tuán)體協(xié)作精神,使學(xué)生獲得合作交流的學(xué)習(xí)方式.
3.通過聯(lián)系與發(fā)展、對立與統(tǒng)一的思考方法對學(xué)生進(jìn)行辯證唯物主義教育.
4.通過創(chuàng)設(shè)問題串,讓學(xué)生仔細(xì)觀察、對比、歸納、整理,嘗試對有理數(shù)進(jìn)行分類,然后體驗教學(xué)活動充滿著探索性和創(chuàng)造性.
教學(xué)重、難點及教學(xué)突破
重點:不等式的概念和不等式的解的概念.
難點:對文字表述的數(shù)量關(guān)系能列出不等式.
教學(xué)突破:由于學(xué)生在以前已經(jīng)對數(shù)量的大小關(guān)系和含數(shù)字的不等式有所了解,但還沒有接觸過含未知數(shù)的不等式,在學(xué)生分析問題的時候注意引入現(xiàn)實中大量存在的數(shù)量間的不等關(guān)系,研究它們的變化規(guī)律,使學(xué)生知道用不等式解決實際問題的方便之處.在本節(jié)的教學(xué)中能夠在組織學(xué)生討論的過程中適當(dāng)?shù)貪B透變量的知識,讓學(xué)生感受其中的函數(shù)思想,并引導(dǎo)學(xué)生發(fā)現(xiàn)不等式的解與方程的解之間的區(qū)別.在處理本節(jié)難點時指導(dǎo)學(xué)生練習(xí)有理數(shù)和代數(shù)式的知識,準(zhǔn)確“譯出”不等式.
教學(xué)過程:
一.研究問題:
世紀(jì)公園的票價是:每人5元,一次購票滿30張可少收1元.某班有27名少先隊員去世公園進(jìn)行活動.當(dāng)領(lǐng)隊王小華準(zhǔn)備好了零錢到售票處買了27張票時,愛動腦的李敏同紀(jì)學(xué)喊住了王小華,提議買30張票.但有的同學(xué)不明白.明明只有27個人,買30張票,豈不浪費嗎?
那么,究竟李敏的提議對不對呢?是不是真的浪費呢
二.新課探究:
分析上面的問題:設(shè)有x人要進(jìn)世紀(jì)公園,①若x≥30,應(yīng)該如何買票?②若x
結(jié)論:至少要有多少人進(jìn)公園時,買30張票才合算?
概括:1、不等式的定義:表示不等關(guān)系的式子,叫做不等式.不等式用符號>,
2、不等式的解:能使不等式成立的未知數(shù)的值,叫做不等式的解.
3、不等式的分類:⑴恒不等式:-71+4,a+2>a+1.
⑵條件不等式:x+3>6,a+2>3,y-3>-5.
三、基礎(chǔ)訓(xùn)練.
例1、用不等式表示:⑴a是正數(shù);⑵b不是負(fù)數(shù);⑶c是非負(fù)數(shù);⑷x的平方是非負(fù)數(shù);⑸x的一半小于-1;⑹y與4的和不小于3.
注:⑴不等式表示代數(shù)式之間的不相等關(guān)系,與方程表示相等關(guān)系相對應(yīng);
⑵研究不等關(guān)系列不等式的重點是抓關(guān)鍵詞,弄清不等關(guān)系.
例2、用不等式表示:⑴a與1的和是正數(shù);⑵x的2倍與y的3倍的差是非負(fù)數(shù);⑶x的2倍與1的和大于—1;⑷a的一半與4的差的絕對值不小于a.
例3、當(dāng)x=2時,不等式x-1
注:⑴檢驗字母的值能否使不等式成立,只要代入不等式的左右兩邊,如果符合不等號所表示的關(guān)系,就成立,否則就不成立.⑵代入法是檢驗不等式的解的重要方法.
學(xué)生練習(xí):課本P42練習(xí)1、2、3.
四、能力拓展
學(xué)校組織學(xué)生觀看電影,某電影院票價每張12元,50人以上(含50人)的團(tuán)體票可享受8折優(yōu)惠,現(xiàn)有45名學(xué)生一起到電影院看電影,為享受8折優(yōu)惠,必須按50人購團(tuán)體票.
⑴請問他們購買團(tuán)體票是否比不打折而按45人購票便宜;
⑵若學(xué)生到該電影院人數(shù)不足50人,應(yīng)至少有多少人買團(tuán)體票比不打折而按實際人數(shù)購票便宜.
解:⑴按實際45人購票需付錢_________ 元,然后如果按50人購買團(tuán)體票則需付錢50×12×80%=480元,所以購買團(tuán)體票便宜.
⑵設(shè)有x人到電影院觀看電影,當(dāng)x_____時,按實際人數(shù)買票______張,需付款_______元,而按團(tuán)體票購票需付款________元,如果買團(tuán)體票合算,那么應(yīng)有不等式________________,
由①得,當(dāng)x=45時,上式成立,讓我們再取一些數(shù)據(jù)試一試,將結(jié)果填入下表:
x12x比較480與12x的大小48
由上表可見,至少要__________人時進(jìn)電影院,購團(tuán)體票才合算.
五、小結(jié):
⑴不等式的定義,不等式的'解.
⑵對實際問題中探索得到的不等式的解,然后不僅要滿足數(shù)學(xué)式子,而且要注意實際意義.
六、作業(yè)課本P42習(xí)題8.1第1、2、3題.
補(bǔ)充題:
1.用不等式表示:
(1)與1的和是正數(shù);(2)的與的的差是非負(fù)數(shù);
(3)的2倍與1的和大于3;(4)的一半與4的差的絕對值不小于.
(5)的2倍減去1不小于與3的和;(6)與的平方和是非負(fù)數(shù);
(7)的2倍加上3的和大于-2且小于4;(8)減去5的差的絕對值不大于
2.小李和小張決定把省下的零用錢存起來.這個月小李存了168元,然后小張存了85元.下個月開始小李每月存16元,小張每月存25元.問幾個月后小張的存款數(shù)能超過小李?(試根據(jù)題意列出不等式,并參照教科書中問題1的探索,找出所列不等式的解)
3.某公司在甲、乙兩座倉庫分別有農(nóng)用車12輛和6輛,現(xiàn)需要調(diào)往A縣10輛,調(diào)往B縣8輛,已知從甲倉庫調(diào)運(yùn)一輛農(nóng)用車到A縣和B縣的運(yùn)費分別為40元和80元,然后從乙倉庫調(diào)運(yùn)一輛農(nóng)用車到A縣和B縣的運(yùn)費分別為30元和50元,(1)設(shè)從乙倉庫調(diào)往A縣農(nóng)用車輛,用含的代數(shù)式表示總運(yùn)費W元;(2)請你用嘗試的方法,探求總運(yùn)費不超過900元,共有幾種調(diào)運(yùn)方案?你能否求出總運(yùn)費最低的調(diào)運(yùn)方案.
不等式課件 篇2
(1)本節(jié)內(nèi)容,是在學(xué)習(xí)了用方程思想解決實際問題和一元一次不等式的性質(zhì)及其解法等知識的基礎(chǔ)上,把實際問題和一元一次不等式結(jié)合在一起,既是對已學(xué)知識的運(yùn)用和深化,又為今后用不等式組解決實際問題以及更廣泛的應(yīng)用數(shù)學(xué)建模的思想方法奠定基礎(chǔ),具有在代數(shù)學(xué)中承上啟下的作用;
(2)通過本節(jié)的學(xué)習(xí),學(xué)生將繼續(xù)經(jīng)歷把生活中的數(shù)和數(shù)量關(guān)系轉(zhuǎn)化為數(shù)學(xué)符號的體驗過程,體會不等式和方程一樣都是刻畫現(xiàn)實世界數(shù)量關(guān)系的重要模型。
(3)在列不等式解決實際問題的探索過程中,引導(dǎo)學(xué)生注意估算意識,體會算式結(jié)果所對應(yīng)的實際意義,滲透建立數(shù)學(xué)模型,分類討論等數(shù)學(xué)思想,對提升學(xué)生應(yīng)用數(shù)學(xué)意識思考和解決問題的能力起到積極的作用。
對于用不等式解決實際問題,學(xué)生容易出現(xiàn)的認(rèn)知困難主要有兩個方面:①哪類的實際問題需要用一元一次不等式來解決;②如何將實際問題轉(zhuǎn)化為一元一次不等式并加以解決。
根據(jù)以上的分析和《數(shù)學(xué)課程標(biāo)準(zhǔn)》對本課內(nèi)容的教學(xué)要求,本節(jié)課的教學(xué)重點是:一元一次不等式在決策類實際問題中的應(yīng)用;難點是:如何將實際問題中的數(shù)量關(guān)系符號化,并根據(jù)解集和結(jié)合實際情況分類討論得出合理結(jié)論。
根據(jù)本課教材的特點、《數(shù)學(xué)課程標(biāo)準(zhǔn)》對本節(jié)課的教學(xué)要求以及學(xué)生的認(rèn)知水平,我從三個方面確定了以下教學(xué)目標(biāo):
1、能進(jìn)一步熟練的解一元一次不等式,能從實際問題中抽象出不等關(guān)系的數(shù)學(xué)模型,并結(jié)合解集解決簡單的實際問題。
2、通過觀察、實踐、討論等活動,積累利用一元一次不等式解決實際問題的經(jīng)驗,提高分類考慮、討論問題的能力,感知方程與不等式的內(nèi)在聯(lián)系,體會不等式和方程同樣都是刻畫現(xiàn)實世界數(shù)量關(guān)系的重要模型。
3、在積極參與數(shù)學(xué)學(xué)習(xí)活動的過程中,體會實事求是的態(tài)度和從數(shù)學(xué)的角度思考問題的習(xí)慣;學(xué)會在解決困難時,與其他同學(xué)交流,相互啟發(fā),培養(yǎng)合作精神。
根據(jù)教學(xué)內(nèi)容、教學(xué)目標(biāo)和學(xué)生的認(rèn)知水平,我主要采取教師啟發(fā)引導(dǎo),學(xué)生自主探究的教學(xué)方法.教學(xué)過程中,創(chuàng)設(shè)適當(dāng)?shù)慕虒W(xué)情境,引導(dǎo)學(xué)生獨立思考、共同探究,使學(xué)生經(jīng)歷將生活中的數(shù)和數(shù)量關(guān)系轉(zhuǎn)化為數(shù)學(xué)符號的具體建模過程,體會不等式作為刻畫現(xiàn)實世界數(shù)量關(guān)系的重要模型的價值。
教學(xué)中使用多媒體投影、計算機(jī)輔助教學(xué),目的是充分發(fā)揮其快捷、生動、形象的特點,為學(xué)生提供直觀感性的材料,有助于學(xué)生對問題的關(guān)注和理解,激發(fā)學(xué)生的學(xué)習(xí)興趣.
為了達(dá)到本節(jié)課的教學(xué)目標(biāo),突出重點,突破難點,我把教學(xué)過程通過兩個實際問題逐步深入;最后歸納小結(jié),布置作業(yè).具體過程如下:
1、課題引入:
我們以前已經(jīng)學(xué)過了一元一次方程以及二元一次方程組的解法,并在解決許多實際問題的過程中感受到:將相等關(guān)系用數(shù)學(xué)符號抽象后所得到的“方程”確實是一種有效數(shù)學(xué)工具,它能讓我們的思維過程更加準(zhǔn)確和簡明!
但是,生活中除了相等的數(shù)量關(guān)系以外,還存在著大量的不等關(guān)系,通過前幾節(jié)課的學(xué)習(xí),我們也已經(jīng)基本了解了不等式的性質(zhì)和簡單不等式的解法。今天,就讓我們通過一些帶有選擇“決策”意義的實際問題來共同探討一下一元一次不等式這種數(shù)學(xué)模型是如何解決生活中的實際問題的。
實際情景1:在為我校初一年級學(xué)生選定營養(yǎng)餐的過程中選中了有兩家公司.
這兩家公司某種適合初一學(xué)生的營養(yǎng)餐的報價均是是6.5元/份,營養(yǎng)含量和服務(wù)承諾也均相同,且都表示對學(xué)生優(yōu)惠:甲公司表示每份按報價的90%收費,乙公司表示購買100份以上的部分按報價的80%收費.
結(jié) 合新課標(biāo)對本小節(jié)的要求:會用一元一次不等式解決簡單的實際問題,我選擇的是從數(shù)量關(guān)系上與教材例題類似的收費問題,并且真實數(shù)值與所在年級事情相一致,比書上的例題更能貼近學(xué)生的實際生活,引發(fā)學(xué)生探求的`興趣。特別的,通常此類題目是不給出具體單價的,因為并不影響最后結(jié)論,考慮到學(xué)生現(xiàn)階段的數(shù)學(xué)抽象 仍以識別數(shù)量的具體含義為主,所以我在此處添加了單價,并增設(shè)了問題一,用以降低抽象思維的梯度,為后續(xù)的設(shè)未知數(shù)的“代數(shù)化抽象”作適當(dāng)?shù)匿亯|。
問題(1)請你判斷,我們年級580人用餐,應(yīng)該選擇哪家公司能讓每位學(xué)生的餐費平均算來更低呢?
預(yù)案 一:教師應(yīng)關(guān)注學(xué)生能否在討論中認(rèn)清“每位學(xué)生的餐費平均算來更低”所對應(yīng)的數(shù)量意義,將之轉(zhuǎn)化為“付給公司的總金額少”。在此處不排除學(xué)生因生活經(jīng)歷的缺乏,而對題目中所隱含的數(shù)量關(guān)系抽象能力弱。應(yīng)關(guān)注每一位同學(xué)的感受,讓同學(xué)們充分理解交流,擴(kuò)大參與思考的廣度,獲得基本抽象思維的生長點。
預(yù)案二:在進(jìn)行甲乙公司所需費用的計算時,會有分部計算和綜合計算兩種計算形式,對于那些列綜合算式的同學(xué),教師應(yīng)多給予展示機(jī)會,從而幫助其他同學(xué)整理思路,理解算式的實際含義;為后續(xù)的字母抽象做好鋪墊。具體計算學(xué)生可以合理使用計算器提高課堂速度。
預(yù)案三:學(xué)生還有可能不通過計算,直接猜測甲公司合算或者乙公司合算,對于這種有可能產(chǎn)生的聲音,教師應(yīng)從估算的角度加以引導(dǎo)。引導(dǎo)學(xué)生體會在580人的前提下,超過100人部分(480人)的甲公司是九折乙公司是八折, 10%的差距,;100人以內(nèi)(少于100人)甲公司九折,乙公司不打折10%的差距,480的10%明顯大于100的10%,所以選乙合算,并引導(dǎo)學(xué)生用計算的方法驗證估算的準(zhǔn)確性。
結(jié)論:580人時選擇乙公司能讓每位學(xué)生的餐費平均算來更低。
問題(2)你能否用以前學(xué)過的知識,在不知道具體人數(shù)的前提下制定一套方案,當(dāng)其他學(xué)校的初一年級也想在這兩家公司之間進(jìn)行選擇時,不用重復(fù)第一題的計算過程,只要知道人數(shù)就馬上能根據(jù)你方案的結(jié)論作出決策呢?
結(jié)合以前的訓(xùn)練,學(xué)生很容易想到要通過設(shè)未知數(shù)的方法進(jìn)行符號表達(dá),將非常關(guān)鍵而題目中并未給出的學(xué)生人數(shù)設(shè)為未知數(shù)。由于本題的具體分析過程仍然是由學(xué)生分析討論完成,可能出現(xiàn)的情況是:
預(yù)案一:一部分綜合能力較強(qiáng)的同學(xué)會根據(jù)實際意義直接列出綜合算式:或
此處教師應(yīng)該引導(dǎo)學(xué)生觀察,在化簡不等式的過程中單價并未影響結(jié)果(利用不等式性質(zhì)二將其作為公倍數(shù)約去),即:題目中沒有具體的單價也不會影響本題的決策。
還可以結(jié)合小學(xué)單位一的思想化簡不等式,引導(dǎo)學(xué)生體會并不是題目中出現(xiàn)的所有數(shù)量都會影響不等關(guān)系,有可能引發(fā)學(xué)生的關(guān)于數(shù)量關(guān)系的深層次思考。
預(yù)案 二:還有一部分學(xué)生會因為生活經(jīng)驗少的關(guān)系,綜合思考能力弱,無法快速的理清數(shù)量關(guān)系,列出綜合算式,思考受阻,教師應(yīng)引導(dǎo)學(xué)生體會在第一題的算式意義的提示下,如何分別列出表達(dá)甲乙公司所需總費用的過程量代數(shù)式。然后在通過將之用不等號連接的方式,來表達(dá)兩筆費用的大小,降低因綜合性所引起的思維梯度, 在過程中讓學(xué)生體會“分步建?!钡乃季S的條理性。
問題(1)如果你是該企業(yè)的高級管理人員,請你設(shè)計該企業(yè)在購買設(shè)備時兩種型號有幾種不同的組合方案;
問題(2)若按固定產(chǎn)量預(yù)算企業(yè)每月產(chǎn)生的污水量約為20xx噸,為了節(jié)約資金,應(yīng)選擇哪種購買方案?
實際情景2的選擇除涉及“角色扮演”和“環(huán)保”等人文因素的考慮以外,在在結(jié)合本節(jié)的教學(xué)目標(biāo)上還有如下考慮,
1、 本題取材于真實的實際生活問題,情景中的符號和數(shù)量關(guān)系較多,不等關(guān)系在文字語言的敘述中顯得比第一題更加隱蔽,需要學(xué)生更深化的思考才能列出算式,是在第一個情景的基礎(chǔ)上的擴(kuò)展和深化。
2、 在學(xué)生的討論過程中,教師應(yīng)注重引導(dǎo)學(xué)生體會,用圖表表示的數(shù)字信息比文字表達(dá)更便于觀察和有序思考,感受“有序表達(dá)”在實際中的價值。
3、 結(jié)合本題每一個的具體問題的分析和解決,學(xué)生必須要從表格中分析篩選相關(guān)的有用數(shù)據(jù),(例如:在第一問設(shè)計方案時未用到“處理污水量”和“年消耗費”,在第二問中未用到“價格”和“年消耗費”)這種分析和篩選的思考經(jīng)歷將有助于加強(qiáng)學(xué)生對數(shù)據(jù)關(guān)系的理解和運(yùn)用能力。
結(jié)合以前的訓(xùn)練,在思考問題(1)學(xué)生很容易想到要通過設(shè)A型或B型設(shè)備的
例如:(1)設(shè)購買污水處理設(shè)備A型 臺,則B型(10 – )臺,由題意知:
在此處,將“限額為105萬元”轉(zhuǎn)化為“≤105”是學(xué)生要突破的第一關(guān),教師應(yīng)在次處多展示同學(xué)的對“限額為105萬元”語言解釋,盡可能多的在具有不同經(jīng)歷基礎(chǔ)的同學(xué)心中將這個抽象過程生活化、自然化。
因為在實際情景中往往要根據(jù)未知數(shù)所代表的具體含義為未知數(shù)的加一個取值范圍的限定,而這個隱含的限制條件往往是學(xué)生中所不容易考慮到的,教師應(yīng)注意引導(dǎo)學(xué)生注意這一問題,
例如:本題中的 是設(shè)備的臺數(shù),應(yīng)用非負(fù)整數(shù)的限制,所以 可取0、1、2,因此有三種購買方案:
①購A型0臺,B型10臺;
②購A型1臺,B型9臺;
③購A型2臺,B型8臺。
此處細(xì)節(jié)性的思考經(jīng)歷,有助于提高學(xué)生在建模過程中更全面的考慮數(shù)值的實際意義,促進(jìn)抽象符號與具體意義在頭腦中的融合。
特別的,此處的“0”是學(xué)生最容易忽視和丟掉的,教師在此處應(yīng)重點引導(dǎo)學(xué)生思考當(dāng)“ ”時,往往是企業(yè)最可能選的方案,因為不同的設(shè)備涉及到不同的維護(hù)問題,單一品種的設(shè)備往往更便于管理,這種思考有助于發(fā)散學(xué)生的思維,促進(jìn)其結(jié)合實際作更全面的思考。
問題(2)的思維梯度較前幾個問題進(jìn)一步加大,學(xué)生必須理解“節(jié)約資金”這個目的的達(dá)成 一定是在“完成任務(wù)”的前提下的,要先通過對(1)中所得的三套方案是否能完成任務(wù)加以討論和驗證,然后再涉及計算哪個方案費用更低的問題
在驗證三套方案的可行性時,收思維方式的局限,學(xué)生往往會選擇逐一列舉計算的討論方式,并且由于數(shù)量少,很容易得出答案,教師可引導(dǎo)學(xué)生思考,如果滿足(1)的方案不是三種,而是三十種呢?三百種呢?除了逐一討論以外還有沒有什么更好的方式能幫助我們迅速縮小范圍呢?引導(dǎo)學(xué)生將所買設(shè)備能否完成任務(wù)量轉(zhuǎn)化為如下不等關(guān)系:
(2)同(1)所設(shè)購買污水處理設(shè)備A型 臺,則B型(10 – )臺,
240 +200(10 – )≥20xx;
因此為了節(jié)約資金,應(yīng)選購A型1臺,B型9臺。
此處的分析和引導(dǎo)有助于學(xué)生體會不等式在有效縮小討論范圍時的實際價值。
通過以上問題的解決,學(xué)生對不等式和方程一樣都是刻畫現(xiàn)實世界數(shù)量關(guān)系的重要模型有了進(jìn)一部的認(rèn)識,并感受到不等式確實是從實際問題中提出,又為解決實際問題提供明確的幫助有效數(shù)學(xué)工具。
本階段通過學(xué)習(xí)小結(jié)進(jìn)行課堂教學(xué)的反饋,組織和指導(dǎo)學(xué)生歸納知識、技能、方法,深化對數(shù)學(xué)思想方法的認(rèn)識,為后續(xù)學(xué)習(xí)打好基礎(chǔ)。
不等式課件 篇3
(1)本節(jié)內(nèi)容,是在學(xué)習(xí)了用方程思想解決實際問題和一元一次不等式的性質(zhì)及其解法等知識的基礎(chǔ)上,把實際問題和一元一次不等式結(jié)合在一起,既是對已學(xué)知識的運(yùn)用和深化,又為今后用不等式組解決實際問題以及更廣泛的應(yīng)用數(shù)學(xué)建模的思想方法奠定基礎(chǔ),具有在代數(shù)學(xué)中承上啟下的作用;
(2)通過本節(jié)的學(xué)習(xí),學(xué)生將繼續(xù)經(jīng)歷把生活中的數(shù)和數(shù)量關(guān)系轉(zhuǎn)化為數(shù)學(xué)符號的體驗過程,體會不等式和方程一樣都是刻畫現(xiàn)實世界數(shù)量關(guān)系的重要模型。
(3)在列不等式解決實際問題的探索過程中,引導(dǎo)學(xué)生注意估算意識,體會算式結(jié)果所對應(yīng)的實際意義,滲透建立數(shù)學(xué)模型,分類討論等數(shù)學(xué)思想,對提升學(xué)生應(yīng)用數(shù)學(xué)意識思考和解決問題的能力起到積極的作用。
對于用不等式解決實際問題,學(xué)生容易出現(xiàn)的認(rèn)知困難主要有兩個方面:①哪類的實際問題需要用一元一次不等式來解決;②如何將實際問題轉(zhuǎn)化為一元一次不等式并加以解決。
根據(jù)以上的分析和《數(shù)學(xué)課程標(biāo)準(zhǔn)》對本課內(nèi)容的教學(xué)要求,本節(jié)課的教學(xué)重點是:一元一次不等式在決策類實際問題中的應(yīng)用;難點是:如何將實際問題中的數(shù)量關(guān)系符號化,并根據(jù)解集和結(jié)合實際情況分類討論得出合理結(jié)論。
根據(jù)本課教材的特點、《數(shù)學(xué)課程標(biāo)準(zhǔn)》對本節(jié)課的教學(xué)要求以及學(xué)生的認(rèn)知水平,我從三個方面確定了以下教學(xué)目標(biāo):
1.能進(jìn)一步熟練的解一元一次不等式,能從實際問題中抽象出不等關(guān)系的數(shù)學(xué)模型,并結(jié)合解集解決簡單的實際問題。
2.通過觀察、實踐、討論等活動,積累利用一元一次不等式解決實際問題的經(jīng)驗,提高分類考慮、討論問題的能力,感知方程與不等式的內(nèi)在聯(lián)系,體會不等式和方程同樣都是刻畫現(xiàn)實世界數(shù)量關(guān)系的重要模型。
3.在積極參與數(shù)學(xué)學(xué)習(xí)活動的過程中,體會實事求是的態(tài)度和從數(shù)學(xué)的角度思考問題的習(xí)慣;學(xué)會在解決困難時,與其他同學(xué)交流,相互啟發(fā),培養(yǎng)合作精神。
三、教學(xué)方法的選擇
根據(jù)教學(xué)內(nèi)容、教學(xué)目標(biāo)和學(xué)生的認(rèn)知水平,我主要采取教師啟發(fā)引導(dǎo),學(xué)生自主探究的教學(xué)方法.教學(xué)過程中,創(chuàng)設(shè)適當(dāng)?shù)慕虒W(xué)情境,引導(dǎo)學(xué)生獨立思考、共同探究,使學(xué)生經(jīng)歷將生活中的數(shù)和數(shù)量關(guān)系轉(zhuǎn)化為數(shù)學(xué)符號的具體建模過程,體會不等式作為刻畫現(xiàn)實世界數(shù)量關(guān)系的重要模型的價值,
教學(xué)中使用多媒體投影、計算機(jī)輔助教學(xué),目的是充分發(fā)揮其快捷、生動、形象的特點,為學(xué)生提供直觀感性的材料,有助于學(xué)生對問題的.關(guān)注和理解,激發(fā)學(xué)生的學(xué)習(xí)興趣.
為了達(dá)到本節(jié)課的教學(xué)目標(biāo),突出重點,突破難點,我把教學(xué)過程通過兩個實際問題逐步深入;最后歸納小結(jié),布置作業(yè).具體過程如下:
1、課題引入:
我們以前已經(jīng)學(xué)過了一元一次方程以及二元一次方程組的解法,并在解決許多實際問題的過程中感受到:將相等關(guān)系用數(shù)學(xué)符號抽象后所得到的“方程”確實是一種有效數(shù)學(xué)工具,它能讓我們的思維過程更加準(zhǔn)確和簡明!
但是,生活中除了相等的數(shù)量關(guān)系以外,還存在著大量的不等關(guān)系,通過前幾節(jié)課的學(xué)習(xí),我們也已經(jīng)基本了解了不等式的性質(zhì)和簡單不等式的解法。今天,就讓我們通過一些帶有選擇“決策”意義的實際問題來共同探討一下一元一次不等式這種數(shù)學(xué)模型是如何解決生活中的實際問題的。
實際情景1:在為我校初一年級學(xué)生選定營養(yǎng)餐的過程中選中了有兩家公司.
這兩家公司某種適合初一學(xué)生的營養(yǎng)餐的報價均是是6.5元/份,營養(yǎng)含量和服務(wù)承諾也均相同,且都表示對學(xué)生優(yōu)惠:甲公司表示每份按報價的90%收費,乙公司表示購買100份以上的部分按報價的80%收費.
結(jié) 合新課標(biāo)對本小節(jié)的要求:會用一元一次不等式解決簡單的實際問題,我選擇的是從數(shù)量關(guān)系上與教材例題類似的收費問題,并且真實數(shù)值與所在年級事情相一致,比書上的例題更能貼近學(xué)生的實際生活,引發(fā)學(xué)生探求的興趣。特別的,通常此類題目是不給出具體單價的,因為并不影響最后結(jié)論,考慮到學(xué)生現(xiàn)階段的數(shù)學(xué)抽象 仍以識別數(shù)量的具體含義為主,所以我在此處添加了單價,并增設(shè)了問題一,用以降低抽象思維的梯度,為后續(xù)的設(shè)未知數(shù)的“代數(shù)化抽象”作適當(dāng)?shù)匿亯|。
問題(1)請你判斷,我們年級580人用餐,應(yīng)該選擇哪家公司能讓每位學(xué)生的餐費平均算來更低呢?
預(yù)案 一:教師應(yīng)關(guān)注學(xué)生能否在討論中認(rèn)清“每位學(xué)生的餐費平均算來更低”所對應(yīng)的數(shù)量意義,將之轉(zhuǎn)化為“付給公司的總金額少”。在此處不排除學(xué)生因生活經(jīng)歷的缺乏,而對題目中所隱含的數(shù)量關(guān)系抽象能力弱。應(yīng)關(guān)注每一位同學(xué)的感受,讓同學(xué)們充分理解交流,擴(kuò)大參與思考的廣度,獲得基本抽象思維的生長點。
預(yù)案二:在進(jìn)行甲乙公司所需費用的計算時,會有分部計算和綜合計算兩種計算形式,對于那些列綜合算式的同學(xué),教師應(yīng)多給予展示機(jī)會,從而幫助其他同學(xué)整理思路,理解算式的實際含義;為后續(xù)的字母抽象做好鋪墊。具體計算學(xué)生可以合理使用計算器提高課堂速度。
預(yù)案三:學(xué)生還有可能不通過計算,直接猜測甲公司合算或者乙公司合算,對于這種有可能產(chǎn)生的聲音,教師應(yīng)從估算的角度加以引導(dǎo)。引導(dǎo)學(xué)生體會在 580人的前提下,超過100人部分(480人)的甲公司是九折乙公司是八折, 10%的差距,;100人以內(nèi)(少于100人)甲公司九折,乙公司不打折10%的差距,480的10%明顯大于100的10%,所以選乙合算,并引導(dǎo)學(xué)生用計算的方法驗證估算的準(zhǔn)確性。
不等式課件 篇4
教學(xué)建議
一、知識結(jié)構(gòu)
本書首先結(jié)合實例引入一元一次不等式組的解集的概念,然后通過三個例題說明利用數(shù)軸解一元一次不等式組的方法,最后對一元一次不等式組的解法步驟進(jìn)行了總結(jié).
二、重點、難點分析
本節(jié)教學(xué)的重點是掌握一元一次不等式組的解法步驟并準(zhǔn)確地求出解集.難點是正確應(yīng)用不等式的基本性質(zhì)對不等式進(jìn)行變形、求不等式組中各個不等式解集的公共部分.不等式在中學(xué)代數(shù)中是研究問題的重要工具,例如求函數(shù)的定義域、值域、研究函數(shù)的單調(diào)性,求最大值、最小值,一元二次方程根的討論等,都要用到不等式的知識.不等式也是進(jìn)一步學(xué)習(xí)其他數(shù)學(xué)內(nèi)容的基礎(chǔ).學(xué)習(xí)和掌握不等式的求解和不等式的證明方法,對培養(yǎng)學(xué)生邏輯思維能力也有極其重要的作用.在處理解不等式的問題中,一元一次不等式組的解法,具有特別重要的意義.這是因為,解各類不等式的問題都可以歸結(jié)為解一些由簡單不等式所組成的不等式組.
1、在構(gòu)成不等式組的幾個不等式中
①這幾個一元一次不等式必須含有同一個未知數(shù);
②這里的“幾個”并未確定不等式的個數(shù),只要不是一個,兩個,三個,四個……都行.
2、當(dāng)幾個不等式的解集沒有公共部分時,我們就說這個不等式組無解.
3、由兩個一元一次不等式組成的不等式的解集,共歸結(jié)為下面四種基本情況:
【注意】①其中第(4)個不等式組,實質(zhì)上是矛盾不等式組,任何數(shù)都不能使兩個不等式同時成立。所以說這個不等式組無解或說其解集為空集。②從上面列出的表中,我們可以概括出來不等式組公共解的一規(guī)律:同大取大,同小取小,一大一小中間找。
三、教法建議
1.解本節(jié)的引例及例1、例2、例3時,注意把解不等式組的思路講清楚,即先分別解每一個不等式,求出解集,再求這些解集的公共部分.求公共部分的過程一定要結(jié)合數(shù)軸來講。
2.這節(jié)課的講解自始至終要突出解不等式組的基本思想以及解一元一次不等式組的步驟這兩個重點.準(zhǔn)確熟練地解一元一次不等式以及用數(shù)軸上的點表示不等式的解集是這節(jié)課的基礎(chǔ),因此講新課之前要復(fù)習(xí)提問這些內(nèi)容。
3.求公共解集是這節(jié)課的新授內(nèi)容,教師要充分利用數(shù)軸表示不等式解集具有形象、直觀、易于說明問題這些優(yōu)點.解集的公共部分教師可用彩筆在數(shù)軸的相應(yīng)部分描畫出來,使學(xué)生感到醒目,便于理解記憶。
4.每組不等式不要超過三個,關(guān)鍵是使學(xué)生理解和掌握解不等式組的基本思想和兩個步驟,不宜做過于難、過于多、重復(fù)的機(jī)械計算。
不等式課件 篇5
(一)復(fù)習(xí)提問:
三角形的三邊關(guān)系?
(二)列一元一次不等式組
問題:現(xiàn)有兩根木條a和b,a長10cm,b長3cm.如果要再找一根木條c,用這三根木條釘成一個三角形木框,那么對木條c的長度有什么要求?
注:這個問題是本節(jié)的'引入問題,三角形木框的形狀不唯一確定,只要能成為三角形即可.
探究:用三根長度分別為14cm,9cm,6cm的木條c1,c2,c3分別試試,其中哪根木條能與木條a和b一起釘成三角形木框?
可以發(fā)現(xiàn),當(dāng)木條a和b的長度確定后,木條c太長或太短,都不能與a和b一起釘成三角形.
由于“三角形中兩邊之和大于第三邊,兩邊之差小于第三邊”,設(shè)木條c長xcm,則x必須同時滿足不等式x10+3①和x10-3②
注:木條c必須同時滿足兩個條件,即ca+b,ca-b.
類似于方程組,把這兩個不等式合起來,組成一個一元一次不等式組記作注:這里并未正式給一元一次不等式組下定義,只是說這兩個不等式合起來,組成一個一元一次不等式組.實際上,兩個或更多的一元一次不等式組合起來,都組成一個一元一次不等式組.
(三)一元一次不等式組的解集
類比方程組的解,怎樣確定不等式組中x的可取值的范圍呢?
不等式組中的各不等式解集的公共部分,就是不等式組中x可以取值的范圍.
注:這里還未正式出現(xiàn)不等式組的解集的概念,但已點出各不等式的解集的公共部分即不等式組中未知數(shù)的可取值范圍.
由不等式①解得x13.
由不等式②解得x7.
從圖9.3—2容易看出,x可以取值的范圍為713.
注:利用數(shù)軸可以直觀形象地認(rèn)識公共部分.這個公共部分是兩端有界的開區(qū)間.
這就是說,當(dāng)木條c比7cm長并且比13cm短時,它能與木條a和b一起釘成三角形木框.
一般地,幾個不等式的解集的公共部分,叫做由它們所組成的不等式組的解集.解不等式組就是求它的解集.
注:這里正式給出不等式組的解集以及解不等式組的定義13.注:利用數(shù)軸可以直觀形象地認(rèn)識公共部分.這個公共部分是兩端有界的開區(qū)間.這就是說,當(dāng)木條c比7cm長并且比13cm短時,它能與木條a和b一起釘成三角形木框.一般地,幾個不等式的解集的公共部分,叫做由它們所組成的不等式組的解集.解不等式組就是求它的解集.注:這里正式給出不等式組的解集以及解不等式組的定義。
不等式課件 篇6
一元一次不等式組(2)
文星中學(xué)唐波
一、教學(xué)目標(biāo)
(一)知識與技能目標(biāo)
1、熟練掌握一元一次不等式組的解法,會用一元一次不等式組解決有關(guān)的實際問題。
2、理解一元一次不等式組應(yīng)用題的一般解題步驟,逐步形成分析問題和解決問題的能力。
(二)過程與方法目標(biāo)
通過利用列一元一次不等式組解答實際問題,初步學(xué)會從數(shù)學(xué)的角度提出問題、理解問題、并能綜合運(yùn)用所學(xué)的知識解決問題,發(fā)展應(yīng)用意識。
(三)情感態(tài)度與價值觀
通過解決實際問題,體驗數(shù)學(xué)學(xué)習(xí)的樂趣,初步認(rèn)識數(shù)學(xué)與人類生活的密切聯(lián)系。
二、教學(xué)重難點
(一)重點:建立用不等式組解決實際問題的數(shù)學(xué)模型。
(二)難點:正確分析實際問題中的不等關(guān)系,根據(jù)具體信息列出不等式組。
三、學(xué)法引導(dǎo)
(一)教師教法:直觀演示、引導(dǎo)探究相結(jié)合。
(二)學(xué)生學(xué)法:觀察發(fā)現(xiàn)、交流探究、練習(xí)鞏固相結(jié)合。
四、教具準(zhǔn)備:多媒體演示
五、教學(xué)過程
(一)、設(shè)問激趣,引入新課
猜一猜:我屬狗,請同學(xué)們根據(jù)我的實際情況來猜測我的年齡。(學(xué)生大膽猜想,利用不等關(guān)系分析得出答案。)
(二)、觀察發(fā)現(xiàn),競賽闖關(guān)
1、比一比:填表找規(guī)律
(學(xué)生搶答,教師補(bǔ)充。)2利用發(fā)現(xiàn)的規(guī)律解不等式組 ?(學(xué)生解答,抽生演板。)你可以得到它的整數(shù)解嗎?
(抽生回答:因為大于11小于14的整數(shù)有12和13,所以整數(shù)解為12和13。)3填空:三角形三邊長分別為2、7、c,則 c的取值范圍是__________。如果c是一個偶
數(shù),則 c=__________。
(學(xué)生回答,教師補(bǔ)充更正。)
(三)、欣賞圖片,探究新知
1、欣賞“五岳看山”。
2、利用欣賞引出例題(教科書P139例2仿編)
例:3名同學(xué)計劃在10天內(nèi)到嵩山拍照500張(每天拍照數(shù)量相同),按原來的計劃,不能完成任務(wù);如果每人每天比原計劃多拍1張,就能提前完成任務(wù),每個同學(xué)原計劃每天............拍多少張?
生齊讀,找出題中的已知條件和未知條件;再默讀,找一找表示數(shù)量關(guān)系的句子。師引導(dǎo)分析,并提出問題:
(1)你是怎樣理解“不能完成任務(wù)”的數(shù)量含義的?你是怎樣理解“提前完成任務(wù)”的數(shù)量含義的?
(2)解決這個問題,你打算怎樣設(shè)未知數(shù)?
(3)在本題中,可以找出幾個不等關(guān)系,可以列出幾個不等式?(學(xué)生交流討論,教師指導(dǎo)。)
?7x?98
?7(x?3)?98
解答完成后,學(xué)生自學(xué)課本例2。
3、由例解題答過程,類比列二元一次方程組解應(yīng)用題的步驟,總結(jié)列一元一次不等式組的解題步驟:
(1)、分析題意,設(shè)未知數(shù); .(2)、利用不等關(guān)系,列不等式組; .(3)、解不等式組; .
(4)、檢驗,根據(jù)題意寫出答案。.(學(xué)生總結(jié),抽生回答,教師補(bǔ)充。)
(四)、闖關(guān)練習(xí),鞏固新知
1練一練:為紀(jì)念“5·12”大地震一周年,“五一”部分同學(xué)到青城山拍照留念,如果每人拍8張則多于如果每人拍9張則不夠問共有多少個同學(xué)參加青城山旅游? ..150張;..180張。
教師引導(dǎo):抓住重點詞語,找到不等關(guān)系,列出不等式組。學(xué)生獨立完成,抽生回答。
比較列二元一次方程組和列一元一次不等式組解應(yīng)用題的區(qū)別:
(學(xué)生類比找區(qū)別,教師補(bǔ)充。)2練一練(教科書P140練習(xí)第2題):一本英語書共98頁,張力讀了一周(7天)還沒讀完,而李永不到一周就已讀完。李永平均每天比張力多讀3頁,張力平均每天讀多少頁(答案取整數(shù))?
學(xué)生分析列出不等式組,教師指導(dǎo)。(前面的練習(xí)已解出不等式組。)
(五)、暢所欲言,歸納小結(jié) 學(xué)生暢所欲言,談收獲體會 多媒體展示,本課內(nèi)容小結(jié):
1、解一元一次不等式組的秘笈:同大取大,同小取小,大小小大中間找,大大小小解不了。
2、具有多種不等關(guān)系的問題,可通過不等式組解決。
3、列一元一次不等式組解應(yīng)用題的步驟是:(1)、分析題意,設(shè)未知數(shù);(2)、利用不等關(guān)系,列不等式組;(3)、解不等式組;
(4)、檢驗,根據(jù)題意寫出答案。
(六)、課后演練,終極挑戰(zhàn)
必做題:教材習(xí)題第4、5、6題;
選做題:一個兩位數(shù),它的十位數(shù)字比個位數(shù)字大1,而且這個兩位數(shù)大于30小于42,則這個兩位數(shù)是多少?
六、板書設(shè)計
一元一次不等式組(2)
解:設(shè)每個同學(xué)原計劃每天拍x張,得
① ?3?10x?500
?
?3?10(x?1)?500②
1、分析題意,設(shè)未知數(shù);
解得x
3根據(jù)題意,x應(yīng)為整數(shù),所以x=16 答:每個同學(xué)原計劃每天拍16張。
2??
2、找不等關(guān)系,列不等式組; ?
?
3、解不等式組; ?步驟
??
?
4、檢驗并根據(jù)題意寫出答案。?
不等式課件 篇7
科學(xué)合理的教學(xué)方法能使教學(xué)效果事半功倍,達(dá)到教與學(xué)的和諧完美統(tǒng)一。
基于此,我準(zhǔn)備采用的教法講授法、討論法。德國教育學(xué)家第斯多慧:差的教師只會奉送真理,好的教師則交給學(xué)生如何發(fā)現(xiàn)真理,老師的教是為了不教,這才是教學(xué)的最高境界,所以我采用的學(xué)法是練習(xí)法、自主合作法。
在這節(jié)課的教學(xué)過程中,我注重突出重點,條理清晰,緊湊合理。各項活動的安排也注重互動、交流,最大限度的調(diào)動學(xué)生參與課堂的積極性、主動性。
首先是導(dǎo)入環(huán)節(jié),我采用復(fù)習(xí)舊知的導(dǎo)入方法。我會讓學(xué)生回憶不等式的概念以及一元一次方程的概念,明確指出今天學(xué)習(xí)的內(nèi)容是《一元一次不等式》。
這樣的設(shè)計既可以考查學(xué)生對之前知識的掌握情況,還能夠為今天學(xué)習(xí)一元一次方程的概念打下基礎(chǔ)。而且開門見山的導(dǎo)入方式能夠快速地進(jìn)入主題。
接下來是新知探索環(huán)節(jié),首先我請學(xué)生類比不等式以及一元一次方程的概念,給一元一次不等式下定義。
能夠總結(jié)出:含有一個未知數(shù),未知數(shù)的次數(shù)是1的不等式,叫做一元一次不等式。
接下來讓學(xué)生回憶上節(jié)課學(xué)習(xí)的不等式x-7>26如何解決的,通過學(xué)生回憶總結(jié)可以得到:通過“不等式的兩邊都加7,不等號的方向不變”而得到的。
接下來提問學(xué)生有沒有更加簡便的方法解不等式?讓學(xué)生類比解一元一次方程的步驟進(jìn)行解題??梢缘玫较喈?dāng)于可以用“移項”,來解決。
在這個過程中,強(qiáng)調(diào)每一個步驟,在第二題最后一步,強(qiáng)調(diào)當(dāng)不等式的兩邊同時乘以(或除以)同一個負(fù)數(shù)時,不等號的方向改變。
解完不等式,先讓學(xué)生回憶解一元一次方程的步驟是什么?并類比解一元一次方程的步驟,總結(jié)一下解一元一次不等式的步驟是什么?
從而我們歸納:解一元一次方程,要根據(jù)等式的性質(zhì),將方程逐步化為x=a的形式;而解一元一次不等式,則要根據(jù)不等式的性質(zhì),將不等式逐步化為xa的形式。
《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者和合作者”。根據(jù)這一教學(xué)理念,在本環(huán)節(jié)中,我組織學(xué)生進(jìn)行了自主探究活動,讓學(xué)生在保持高度學(xué)習(xí)熱情和探究欲望的活動過程中,始終以愉悅的心情,親身經(jīng)歷和體驗知識的形成過程。培養(yǎng)學(xué)生的探究能力、分析思維能力,激發(fā)他們的創(chuàng)新意識、參與意識。
第三個環(huán)節(jié)是課堂練習(xí)環(huán)節(jié),出示問題,解不等式,并在數(shù)軸上表示數(shù)集:5x+15>4x-1
之所以這樣設(shè)計是因為練習(xí)是掌握知識、形成技能、發(fā)展思維的重要手段,針對本課的教學(xué)重點和難點,上述練習(xí),目的是讓學(xué)生進(jìn)一步鞏固對新知的理解??梢陨罨虒W(xué)內(nèi)容,培養(yǎng)思維的靈活性。
最后一個環(huán)節(jié)為小結(jié)作業(yè)環(huán)節(jié),關(guān)于課堂小結(jié),我打算讓學(xué)生自己來總結(jié)今天的收獲。
這樣既發(fā)揮了學(xué)生的主體性,又可以提高學(xué)生的總結(jié)概括能力,讓我在第一時間得到學(xué)習(xí)反饋,及時加以疏導(dǎo)。
通過這樣的方式能夠為本節(jié)課學(xué)習(xí)的知識進(jìn)行進(jìn)一步的鞏固。
我的板書設(shè)計遵循簡潔明了突出重點的意圖,這是我的板書設(shè)計:
不等式課件 篇8
1、了解一元一次不等式組的概念。
2、理解一元一次不等式組的解集,能求一元一次不等式組的解集。
3、會解一元一次不等式組。
通過具體問題得到一元一次不等式組,從而了解一元一次不等式組的概念,解出每個不等式,利用數(shù)軸求出各不等式解集的公共部分,從而得到不等式組的解集,通過解幾個有代表性的一元一次不等式組,總結(jié)出求不等式組解集的法則。
運(yùn)用數(shù)軸確定不等式組的解集是行之有效的方法。這種“數(shù)形結(jié)合”的方法今后經(jīng)常用到,鍛煉同學(xué)們數(shù)形結(jié)合的能力,提高學(xué)習(xí)興趣。
一元一次不等式組的解法。
確定一元一次不等式組的解集。
一、情境導(dǎo)入,初步認(rèn)識
問題1現(xiàn)有兩根木條a和b,a長10cm,b長3cm,如果要再找一根木條c,用這三根木條釘成一個三角形木框,那么木條c的長度有什么要求?
解:由于三角形中兩邊之____大于第三邊,兩邊之____小于第三邊,設(shè)c的長為xcm,則x<____,①x>____,②合起來,組成一個__________。
由①解得_____________,由②解得_____________。
在數(shù)軸上表示就是________________。
容易看出:x的取值范圍是____________________。
這就是說,當(dāng)木條c比____cm長并且比____cm短時,它能與木條a和b一起釘成三角形木框。
問題2由上面的解不等式組的過程用自己的語言歸納出一元一次不等式組的.解法。
全班同學(xué)可獨立作業(yè),也可分組自由討論,10分鐘后交流成果,逐步得出結(jié)論。
二、思考探究,獲取新知
思考什么叫一元一次不等式組,什么叫一元一次不等式組的解集,什么叫解不等式組?
1、定義:
(1)一元一次不等式組:幾個含有相同未知數(shù)的一元一次不等式合起來組成一個一元一次不等式組。
(2)一元一次不等式組的解集:幾個不等式的解集的公共部分,叫做由它們所組成的不等式的解集。
(3)解不等式組:求一元一次不等式組的解集的過程叫解一元一次不等式組。
2、一元一次不等式組的解法:
(1)求出每個一元一次不等式的解集。
(2)求出這些解集的公共部分,便得到一元一次不等式組的解集。
不等式課件 篇9
本節(jié)教學(xué)的重點是不等式的解集的概念及在數(shù)軸上表示不等式的解集的方法.難點為不等式的解集的概念.
相同點:定義方式相同(使方程成立的未知數(shù)的值,叫做方程的解);解的表示方法也相同.
不同點:解的個數(shù)不同,一般地,一個不等式有無數(shù)多個解,而一個方程只有一個或幾個解,例如, 能使不等式 成立,那么 是不等式的一個解,類似地 等也能使不等式 成立,它們都是不等式 的解,事實上,當(dāng) 取大于 的數(shù)時,不等式 都成立,所以不等式 有無數(shù)多個解.
不等式的解與不等式的解集是兩個不同的概念,不等式的解是指滿足這個不等式的未知數(shù)的某個值,而不等式的解集,是指滿足這個不等式的未知數(shù)的所有的值,不等式的所有解組成了解集,解集中包括了每一個解.
注意:不等式的解集必須滿足兩個條件:第一,解集中的任何一個數(shù)值,都能使不等式成立;第二,解集外的任何一個數(shù)值,都不能使不等式成立.
一般地,一個含未知數(shù)的不等式有無數(shù)多個解,其解集是某個范圍,這個范圍可用一個最簡單的不等式表示出來,例如,不等式 的解集是 .
如不等式 的解集 ,可以用數(shù)軸上表示4的點的左邊部分表示,因為 包含 ,所以在表示4的點上畫實心圓.
如不等式 的解集 ,可以用數(shù)軸上表示4的點的左邊部分表示,因為 包含 ,所以在表示4的點上畫實心圈.
注意:在數(shù)軸上,右邊的點表示的數(shù)總比左邊的點表示的數(shù)大,所以在數(shù)軸上表示不等式的解集時應(yīng)牢記:大于向右畫,小于向左畫;有等號的畫實心圓點,無等號的畫空心圓圈.
1.使學(xué)生了解不等式的解集、解不等式的概念,會在數(shù)軸上表示出不等式的解集.
2.知道不等式的“解集”與方程“解”的不同點.
通過教學(xué),使學(xué)生能夠正確地在數(shù)軸上表示出不等式的解集,并且能把數(shù)軸上的某部分?jǐn)?shù)集用相應(yīng)的不等式表示.
通過講解不等式的“解集”與方程“解”的關(guān)系,向?qū)W生滲透對立統(tǒng)一的辯證觀點.
通過本節(jié)課的學(xué)習(xí),讓學(xué)生了解不等式的解集可利用圖形來表達(dá),滲透數(shù)形結(jié)合的數(shù)學(xué)美.
2.學(xué)生學(xué)法:明確不等式的解與解集的區(qū)別和聯(lián)系,并能熟練地用數(shù)軸表示不等式的解集,在數(shù)軸上表示不等式的解集時,要特別注意:大于向右畫,小于向左畫;有等號的畫實心圓點,無等號的畫空心圓圈.
不等式課件 篇10
1.了解不等式及一元一次不等式概念。
2.理解不等式的解、解集,能正確表示不等式的解集。
通過類比等式的對應(yīng)知識,探索不等式的概念和解,體會不等式與等式的異同,初步掌握類比的思想方法。
1.經(jīng)歷把實際問題抽象為不等式的過程,能夠列出不等關(guān)系式。
2.初步體會不等式(組)是刻畫現(xiàn)實世界中不等關(guān)系的一種有效數(shù)學(xué)模型,培養(yǎng)學(xué)生的建模意識。
通過對不等式概念及其解集等有關(guān)概念的探索,培養(yǎng)學(xué)生的知識遷移能力和建模意識,加強(qiáng)同學(xué)之間的使用與交流。
活動一:
感知不等關(guān)系,了解不等式的概念。
通過實例,讓學(xué)生認(rèn)識到不等關(guān)系在生活中的存在,通過問題的解答,讓學(xué)生了解不等式的概念,體會不等式是解決實際問題的有效工具。
活動二:
通過類比方程,繼續(xù)探索出不等式的解、解集及其表示方法。
通過解決上個環(huán)節(jié)的問題,得出不等式的解,再引導(dǎo)學(xué)生觀察解的特點,探索出解集的兩種表示方法(符號表示、數(shù)軸表示),并且培養(yǎng)學(xué)生用估算方法求解集的技能。
活動三:
繼續(xù)探索,歸納出一元一次不等式的意義。
針對所學(xué)的不等式,讓學(xué)生歸納出特點,得到一元一次不等式的概念,并對概念進(jìn)行辨析。
運(yùn)用本節(jié)所學(xué)的知識,解決實際問題,使學(xué)生經(jīng)歷將實際問題轉(zhuǎn)化為數(shù)學(xué)問題,再加以解決的過程,實現(xiàn)對所學(xué)知識的鞏固和深化。
讓學(xué)生通過自我反思和互相質(zhì)疑提問,歸納總結(jié)本節(jié)課的主要內(nèi)容,交流在概念、解及解集學(xué)習(xí)中的心得和體會,不斷積累數(shù)學(xué)活動經(jīng)驗,教師應(yīng)主動參與學(xué)生小結(jié)中,作好引導(dǎo)工作,布置好作業(yè),并作及時反饋。
小強(qiáng)準(zhǔn)備隨父母乘車去武當(dāng)山春游。
⑴在車上看到兒童買票所需的測身高標(biāo)識線。
①x滿足______時,他可免票。
②x滿足______時,他該買全票。
⑵已知襄樊與武當(dāng)山的距離為150千米,他們上午10點鐘從襄樊出發(fā),汽車勻速行駛。
①若該車計劃中午12點準(zhǔn)時到達(dá)武當(dāng)山,車速應(yīng)滿足什么條件?
②若該車實際上在中午12點之前已到達(dá)武當(dāng)山,車速應(yīng)滿足什么條件?
用不等式表示:
⑴a是正數(shù);⑵a是負(fù)數(shù);⑶a與5的和小于7;⑷a與2的差大于-1;
⑸a的4倍大于8;
⑹a的一半小于3。
學(xué)生回答①這兩個由實際生活情境設(shè)置的問題,應(yīng)非常容易.問題②相對①難度加大了,難在題意中的條件不象上面那樣直接明了,并且可從距離和時間兩個角度來分析、解決問題,而七年級學(xué)生恰恰缺乏閱讀分析題意、多維度思考解決問題的能力,所以采用小組討論交流的形式解決問題②
學(xué)生討論角度估計大都集中在距離這一角度,教師可深入小組討論中,認(rèn)真聽聽同學(xué)們的思路,應(yīng)鼓勵學(xué)生多發(fā)表意見,并適當(dāng)點撥,直到得出兩種不等式。
此次活動中,教師應(yīng)重點關(guān)注:討論要有足夠的時間和空間,學(xué)生在小組討論交流時,是否敢于發(fā)表自己的想法。
再給出不等式概念:
像前面式子一樣用“>”或“
教師可要求學(xué)生舉出一些表示大小的式子,學(xué)生舉出的不等式中,可能會有一些不含未知數(shù)的,如5>3等。教師此時應(yīng)總結(jié):不等式中可含有未知數(shù),也可不含未知數(shù)。
教師根據(jù)學(xué)生舉例給出表示不等關(guān)系的第三種符號“≠”,并強(qiáng)調(diào):像前面式子一樣用“≠”表示不等關(guān)系的式子也是不等式。
鞏固練習(xí)是讓學(xué)生用不等式來刻畫題中6個簡單的不等關(guān)系。學(xué)生得出答案并不難,所以該環(huán)節(jié)讓學(xué)生獨立完成、互相評價,教師可深入到學(xué)生的解題過程中,觀察指導(dǎo)學(xué)生的解題思路,傾聽學(xué)生的評價。
問題1在課本中起導(dǎo)入新課作用,考慮學(xué)生實際情況(分析應(yīng)用題能力尚欠缺)和題目難度,所以設(shè)置問題串,降低難度。這樣編排教材我認(rèn)為更能體現(xiàn)知識呈現(xiàn)的序列性,從易到難,讓學(xué)生“列不等式”能力實現(xiàn)螺旋上升。
問題3作用僅僅起鞏固上面所學(xué)的知識,所以采用書中的一組習(xí)題,讓學(xué)生獨立完成,進(jìn)一步培養(yǎng)學(xué)生列不等式能力。
采用學(xué)生熟悉的生活情境作為導(dǎo)入內(nèi)容,然后層層推進(jìn),步步設(shè)問,環(huán)環(huán)相扣,直至推出不等式的概念及概念理解中應(yīng)注意的地方。這樣實現(xiàn)了:讓學(xué)生從已有的數(shù)學(xué)經(jīng)驗出發(fā),從生活中建構(gòu)數(shù)學(xué)模型,為后面利用“不等式”這一模型解決生活中實際問題作好鋪墊,體現(xiàn)了數(shù)學(xué)生活化、生活
不等式課件 篇11
1、一元一次不等式的概念:一般地,不等式中只含有一個未知數(shù),未知數(shù)的次數(shù)是1,且不等式的兩邊都是整式,這樣的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步驟:(1)去分母(2)去括號(3)移項(4)合并同類項(5)將x項的系數(shù)化為1
1、一元一次不等式組的概念:幾個一元一次不等式合在一起,就組成了一個一元一次不等式組。
2、幾個一元一次不等式的解集的公共部分,叫做它們所組成的一元一次不等式組的解集。
3、求不等式組的解集的過程,叫做解不等式組。
4、當(dāng)任何數(shù)x都不能使不等式同時成立,我們就說這個不等式組無解或其解為空集。
3、代數(shù)式1-m的值大于-1,又不大于3,則m的取值范圍是( )
A.x≥1 B.x≥-1/2 C.x>1 D.x>-1/2
A.5+4>8 B.2x-1 C.2x-5≤1 D.1/x-3x≥0
A. a>0? B.a≥0? C.a
11、若關(guān)于x的不等式組 的解集是x>2a,則a的取值范圍是
A. a>4 B. a>2 C. a=2 D.a≥2
12、若方程組 中,若未知數(shù)x、y滿足x+y>0,則m的取值范圍是
13、不等式2(1) x>-3的解集是 。
14、用代數(shù)式表示,比x的5倍大1的數(shù)不小于x的 與4的差 。
15、若(m-3)x-1,則m .
18、某次個人象棋賽規(guī)定:贏一局得2分,平一局得0分,負(fù)一局得反扣1分。在12局比賽中,積分超過15分就可以晉升下一輪比賽,小王進(jìn)入了下一輪比賽,而且在全部12輪比賽中,沒有出現(xiàn)平局,問小王最多輸 局比賽【www.LiuxUE86.cOm 出國留學(xué)網(wǎng)】
1、定義:把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這個點對稱或中心對稱,這個點叫做對稱中心.這兩個圖形中的對應(yīng)點叫做關(guān)于中心的對稱點。
2、心對稱的兩條基本性質(zhì):
(1)關(guān)于中心對稱的兩個圖形,對稱點所連線段都經(jīng)過對稱中心,而且被對稱中心所平分。
(2)關(guān)于中心對稱的兩個圖形是全等圖形。
把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。
每上第一次課,我所講的課程內(nèi)容都和學(xué)生的錯題有關(guān)。我通常把試卷中的錯題摘抄出幾個典型題,作為課堂的例題再講一遍。而學(xué)生的反應(yīng),或是像沒有見過,或是對題目非常熟悉,但沒有思路。
這些現(xiàn)象的發(fā)生,都是學(xué)生沒有及時總結(jié)的原因。所以第一次課后我都建議我的學(xué)生做一個錯題本,像寫日記一樣,記錄下自己的錯題和感想。
成也審題敗也審題。如何審題呢?
(1)這個題目有哪些個已知條件?我能不能把已知條件分開?
(2)求解的目標(biāo)是什么?對求解有什么要求?
(3)能不能畫一個圖幫助思考?好多問題是沒有看清楚題意致錯。審題不清,你做得越多,可能錯的就越多。
(4)所給出的已知條件相互之間有什么關(guān)系?能不能從中發(fā)現(xiàn)隱含條件?
(5)已知條件與求解目標(biāo)有什么聯(lián)系?能不能從中獲得解題的思路?找到進(jìn)門的門檻?
不等式課件 篇12
1.使學(xué)生感受到生活中存在著大量的不等關(guān)系,了解不等式和一元一次不等式的意義;
2.讓學(xué)生自發(fā)地尋找不等式的解,會在數(shù)軸上正確地表示出不等式的解集;
3.能夠根據(jù)題意準(zhǔn)確迅速地列出相應(yīng)的不等式。
1.通過汽車行駛過a地這一實例的研究,使學(xué)生體會到數(shù)學(xué)來源于生活,又服務(wù)于生活,培養(yǎng)學(xué)生“學(xué)數(shù)學(xué)、用數(shù)學(xué)”的意識;
2.經(jīng)歷由具體實例建立不等模型的過程,探究不等式的解與解集的不同意義的過程,滲透數(shù)形結(jié)合的思想。
㈢情感、態(tài)度、價值觀:
1.通過對不等式、不等式的解與解集的探究,引導(dǎo)學(xué)生在獨立思考的基礎(chǔ)上積極參與對數(shù)學(xué)問題的討論,培養(yǎng)他們的合作交流意識;
2.讓學(xué)生充分體會到生活中處處有數(shù)學(xué),并能將它們應(yīng)用到生活的各個領(lǐng)域中去。
3.培養(yǎng)學(xué)生類比的思想方法、數(shù)形結(jié)合的思想。
1.教學(xué)重點:不等式、一元一次不等式、不等式解與解集的意義;在數(shù)軸上正確地表示出不等式的解集;
2.教學(xué)難點:不等式解集的意義,根據(jù)題意列出相應(yīng)的不等式。
計算機(jī)、自制cai課件、實物投影儀、三角板等。
教師創(chuàng)設(shè)情境引入,學(xué)生交流探討;師生共同歸納;教師示范畫圖,課件交互式練習(xí)。
〖創(chuàng)設(shè)情境——從生活走向數(shù)學(xué)〗
[多媒體展示]“五·一黃金周”快要到了,蕪湖市某兩個商場為了促銷商品,推行以下促銷方案:①甲商場:購物不超過50元者,不優(yōu)惠;超過50元的,超過部分折優(yōu)惠。②乙商場:購物不超過100元者,不優(yōu)惠;超過100元的,超過部分九折優(yōu)惠。親愛的同學(xué),如果五·一期間,你去購物,選擇到哪個商場,才比較合算呢?
(以上教學(xué)內(nèi)容是向?qū)W生設(shè)疑,激發(fā)學(xué)生探索問題、研究問題的積極性,可以讓學(xué)生討論一會兒)
教師:要想正確地解決這個問題,我們大家就要學(xué)習(xí)第九章《不等式和不等式組》,學(xué)完本章的內(nèi)容后,我相信,聰明的你們一定都會作出正確的選擇,真正地做到既經(jīng)濟(jì)又實惠。
首先,我們來共同學(xué)習(xí)本章的第一節(jié)課——9.1.1節(jié)《不等式及其解集》
〖新課學(xué)習(xí)〗
學(xué)習(xí)目標(biāo):
1.能感受到生活中存在著大量的不等關(guān)系,了解不等式和一元一次不等式和意義;
2.會尋找不等式的解,會在數(shù)軸上正確地表示出不等式的解集;
3.能夠根據(jù)題意準(zhǔn)確迅速地列出相應(yīng)的不等式。
[多媒體展示一段動畫]:引例:一輛勻速行駛的汽車在11:20距離a地50千米,要在12:00之前駛過a地,車速應(yīng)滿足什么條件?
設(shè)車速是x千米/小時,
(1)從時間上看,汽車要在12:00之前駛過a地,則以這個速度行駛50千米所用的時間不到 小時,即
(2)從路程上看,汽車要在12:00之前駛過a地,則以這個速度行駛 小時的路程要超過50千米,即
請同學(xué)們觀察上面的兩個式子,式子左右兩邊的大小關(guān)系是怎樣的? 左右兩邊相等嗎?
在學(xué)生充分發(fā)表自己意見的基礎(chǔ)上,師生共同歸納得出:
用“>”或“<”號表示大小關(guān)系的式子叫做不等式;
用“≠”表示不等關(guān)系的式子也是不等式。
判斷下列式子中哪些是不等式,是不等式的請在題后的括號內(nèi)劃“√”,不是的請劃“×”
(1)3> 2????? (???? ) (2)2a+1> 0?? (???? )?? (3)a+b=b+a? (???? )
(4)x< 2x+1?? (???? )???? (5)x=2x-5??? (???? ) (6)2x+4x< 3x+1 (???? )????????? (7)15≠7+9? (???? )
上面的不等式中,有些不含未知數(shù),有些含有未知數(shù),大家把(2)、(4)、(6)式與(5)式類比,(5)式是一個一元一次方程,能不能給(2)、(4)、(6)式也起個名字呢?
含有一個未知數(shù), 未知數(shù)的次數(shù)是1的不等式,叫做一元一次不等式.
問題2:車速可以是78千米/小時嗎?75千米/小時呢? 72千米/小時呢?
問題3:我們曾經(jīng)學(xué)過“使方程兩邊相等的未知數(shù)的值就是方程的解”,那么我們可以把使不等式成立的未知數(shù)的值叫做什么呢?
(師生共同歸納)使不等式成立的未知數(shù)的值叫做不等式的解。
2.課堂練習(xí)二——動一動腦,動一動手,你一定能算得對。
76, 73, 79, 80, 74.9, 75.1, 90, 60
(學(xué)生做完后,師問):你還能找出這個不等式的其他的解嗎?這個不等式有多少個解?你從中發(fā)現(xiàn)了什么規(guī)律?
(學(xué)生討論后,師生共同總結(jié)):當(dāng)x>75時,不等式 x>50總成立;而當(dāng)x<75或x=75時,不等式 x>50不成立,這就是說,任何一個大于75的數(shù)都是不等式 x>50的解,這樣的解有無數(shù)個。因此,x>75表示了能使不等式 x>50成立的x的取值范圍,叫做不等式 x>50的解的集合,簡稱解集。
我們再回到前面的問題,經(jīng)過剛才的分析,可以知道,要使汽車在12:00之前駛過a地,車速必須大于75千米/小時。
一個含有未知數(shù)的不等式的所有的解,組成了這個不等式的解集。
4.在數(shù)軸上表示不等式的解集;
注意:在表示75的點上畫空心圓圈,表示不包括這一點.
5.課堂練習(xí)三——動一動腦,動一動手,你一定能算得對。
判斷下列數(shù)中哪些是不等式x+3>6的解? 哪些不是?
-4, -2.5,? 0,? 1,? 2.5,? 3,? 3.2,? 4.8,? 8,? 12
求不等式的解集的過程叫做解不等式。
7.課堂練習(xí)四——看誰算得最快最準(zhǔn)。
直接想出不等式的解集,并在數(shù)軸上表示出不等式的解集:
(1) x+3>6;??????? (2)2x<8;?? ?(3)x-2>0
解:(1)x>3;???????? (2)x<4;??? (3)x>2。
1.例用不等式表示:
(1)x與1的和是正數(shù);??????(2)的與的的差是負(fù)數(shù);
(3)的2倍與1的和大于3;(4)的一半與4的差小于的3倍.
解:(1)x+1>0;???????? (2)+b<0;
(3)2+1>3;????? (4)-4<3;
2.課堂練習(xí)五——看誰最列得又快又準(zhǔn)。
用不等式表示:
(1)是正數(shù);??????????(2)是負(fù)數(shù);
(3)與5的和小于7;??(4)與2的差大于-1;
(5)的4倍大于8;??????(6)的一半小于3.
答案;(1)>0;??????? (2)<0;?? (3)+5>0;
學(xué)生小結(jié),師生共同完善:
2.會尋找不等式的解,會在數(shù)軸上正確地表示出不等式的解集;
3.能夠根據(jù)題意準(zhǔn)確迅速地列出相應(yīng)的不等式。
不等式課件 篇13
教學(xué)重點:掌握不等式的三條基本性質(zhì),尤其是不等式的基本性質(zhì)3.
教學(xué)難點:正確應(yīng)用不等式的三條基本性質(zhì)進(jìn)行不等式變形.
通過觀察、分析、討論,引導(dǎo)學(xué)生歸納總結(jié)出不等式的三條基本性質(zhì),從具體上升到理論,再由理論指導(dǎo)具體的練習(xí),從而強(qiáng)化學(xué)生對知識的理解與掌握.
(設(shè)計說明:設(shè)置以下習(xí)題是為了溫故而知新,為學(xué)習(xí)本節(jié)內(nèi)容提供必要的知識準(zhǔn)備.)
2、什么是不等式?
3、用“>”或“<”填空.
(教學(xué)說明: 復(fù)習(xí)等式的基本性質(zhì)后學(xué)生自然會聯(lián)想到,不等式是否有與等式相類似的性質(zhì),從而引起學(xué)生的探究欲望.接著問題3為學(xué)生探究不等式的性質(zhì)提供了載體,通過觀察,尋找規(guī)律,得出不等式的性質(zhì).)
先讓學(xué)生獨立思考,后合作交流,通過充分討論,類比等式性質(zhì)得出不等式的性質(zhì).
觀察時,引導(dǎo)學(xué)生注意不等號的方向,通過(1)題學(xué)生容易得出不等式性質(zhì)1:
不等式基本性質(zhì)1 不等式兩邊加(或減)同一個數(shù)(或式子),不等號的方向不變.
比較(2)、(3)題,注意觀察不等號方向,并思考不等號方向的改變與什么有關(guān)?由學(xué)生概括總結(jié),教師補(bǔ)充完善得出:
不等式基本性質(zhì)2 不等式兩邊乘(或除以)同一個不為零的正數(shù),不等號的方向不變.
不等式基本性質(zhì)3 不等式兩邊乘(或除以)同一個不為零的負(fù)數(shù),不等號的方向改變.
通過PPT用圖形演示不等式的基本性質(zhì),讓學(xué)生更加清楚地認(rèn)識不等式的基本性質(zhì)。
不等式有傳遞性嗎?
【學(xué)生通過討論能夠比較容易得出結(jié)論:不等式有對稱性,但要注意其不等號方向的`變化;不等式也有傳遞性,但要注意的是同向傳遞性?!?/p>
三、鞏固訓(xùn)練,熟練技能:
1、(1) a - 3____b - 3;
(3) 0.1a____0.1b;
(5) 2a+3____2b+3;
【本題目采用提問的方式,因為內(nèi)容相對簡單,所以可以迅速得到結(jié)論。要讓提問者說清楚答案,并說明利用不等式的性質(zhì)幾來進(jìn)行判定的?!?/p>
(1)因為7.5>5.7,所以-7.5<-5.7;
(2)因為a+8>4,所以a>-4;
(3)因為4a>4b,所以a>b;
(4)因為-1>-2,所以-a-1>-a-2;
(5)因為3>2,所以3a>2a.
【學(xué)生口答,并說明為什么。本題重點是第5小題,要引導(dǎo)學(xué)生總結(jié)出a的取值會影響到答案。當(dāng)a>0時,3a>2a.(不等式基本性質(zhì)2)
當(dāng) a=0時,3a=2a.當(dāng)a<0時,3a<2a.(不等式基本性質(zhì)3) 】
學(xué)生自己完成以下題目,之后進(jìn)行集體講解。
(1)如果x-5>-1,那么______________________,得:x>4
(2)如果-2x>3,那么那么______________________,得X=______
師生共同小結(jié)本節(jié)課所學(xué)重點,不等式的基本性質(zhì)的具體內(nèi)容。
不等式課件 篇14
基本不等式是數(shù)學(xué)中重要的一個概念,它與不等式的證明和應(yīng)用有著密切的關(guān)系?;静坏仁降慕夥ê退季S方法不僅能讓我們更好地掌握不等式的性質(zhì)和應(yīng)用,同時也能讓我們更好地解決數(shù)學(xué)中的其他問題。下面,讓我們就基本不等式這一主題展開更加深入的探討。
一、基本不等式的定義、證明和性質(zhì)
基本不等式定義:對于任意實數(shù)$x$,$y$,有$(x^2+y^2)\geq 2xy$,等號成立當(dāng)且僅當(dāng)$x=y$時成立。
基本不等式的證明:我們可以通過平方展開和配方進(jìn)行證明,即:
$(x-y)^2\geq 0$
$x^2-2xy+y^2\geq 0$
$x^2+y^2\geq 2xy$
證畢。
基本不等式的性質(zhì):基本不等式可以用于求證其他不等式和解決實際問題,例如可以用基本不等式證明算術(shù)平均數(shù)$\ge$幾何平均數(shù),可以用基本不等式求證要想最小化一個多項式,需要使其中的各項等于彼此等于基本不等式中的相等值等。
二、基本不等式的應(yīng)用及相關(guān)例題
基本不等式的應(yīng)用廣泛,其中最常見的應(yīng)用就是在證明和求解不等式問題中。下面,我們就通過例題來展示基本不等式的具體應(yīng)用。
例題一:
已知$a,b,c$均為正實數(shù),求出$abc$與$\frac{(a+b+c)^3}{27}$的大小關(guān)系。
解:由于$a,b,c$均為正實數(shù),故可運(yùn)用基本不等式進(jìn)行求解,即
$\begin{aligned}
\frac{(a+b+c)}{3}\geq\sqrt[3]{abc}\\
(a+b+c)^3\geq 27abc
\end{aligned}$
因此,
$\frac{(a+b+c)^3}{27}\geq abc$
即$\frac{(a+b+c)^3}{27}\geq abc$
得證。
例題二:
已知$a+b=3$,$a^2+b^2=5$,求出$a,b$的大小關(guān)系。
解:由已知條件可得$(a+b)^2=a^2+b^2+2ab$,即
$9=5+2ab$
$ab=\frac{4}{3}$
由基本不等式知得
$2ab=\frac{8}{3}\leq a^2+b^2=5$
即$a^2+b^2>2ab$,因此$a^2>b^2$,
又因為$a+b=3$,所以$b=3-a$,
所以$(3-a)^2
$9+a^2-6a
$a>\frac{3}{2}$
因此,
$a>b>\frac{3}{2}-a$
即$0
例題三:
已知$a,b,c>0$,求證$\frac{(a+b)^2}{c}+\frac{(b+c)^2}{a}+\frac{(c+a)^2}\geq 12(a+b+c)$
解:由基本不等式得
$(a+b)^2\geq 4ab,(b+c)^2\geq 4bc,(c+a)^2\geq 4ac$
將以上三個式子代入原式變化得
$\frac{4ab}{c}+\frac{4bc}{a}+\frac{4ac}\geq 12(a+b+c)$
即$4(ab^2+bc^2+ca^2)\geq 12abc(a+b+c)$
即$(ab^2+bc^2+ca^2)\geq 3abc$
由于$a,b,c>0$,故得證。
三、基本不等式的擴(kuò)展
除了基本不等式外,還有一些基本不等式的擴(kuò)展形式,例如平均值不等式和柯西施瓦茲不等式等。這些擴(kuò)展形式大大豐富了不等式的證明和應(yīng)用,并為數(shù)學(xué)研究提供了更加廣泛的空間。下面,我們就來簡單介紹一下平均值不等式和柯西施瓦茲不等式的相關(guān)內(nèi)容。
平均值不等式:對于$n$個非負(fù)實數(shù)$x_1,x_2,\cdots,x_n$,有
$\frac{x_1+x_2+\cdots+x_n}{n}\geq\sqrt[n]{x_1x_2\cdots x_n}$
其中等號成立當(dāng)且僅當(dāng)$x_1=x_2=\cdots=x_n$時成立。
柯西施瓦茲不等式:對于任意實數(shù)$x_1,x_2,\cdots,x_n$和$y_1,y_2,\cdots,y_n$,有
$(x_1^2+x_2^2+\cdots+x_n^2)(y_1^2+y_2^2+\cdots+y_n^2)\geq(x_1y_1+x_2y_2+\cdots+x_ny_n)^2$
其中等號成立當(dāng)且僅當(dāng)$\frac{x_1}{y_1}=\frac{x_2}{y_2}=\cdots=\frac{x_n}{y_n}$時成立。
四、總結(jié)
綜上所述,基本不等式是數(shù)學(xué)中重要的一個概念,它與不等式的證明和應(yīng)用有著密切的關(guān)系?;静坏仁降慕夥ê退季S方法不僅能讓我們更好地掌握不等式的性質(zhì)和應(yīng)用,同時也能讓我們更好地解決數(shù)學(xué)中的其他問題。在學(xué)習(xí)和應(yīng)用基本不等式時,我們還需掌握其相關(guān)的擴(kuò)展形式,如平均值不等式和柯西施瓦茲不等式等。只有充分掌握了這些知識點,我們才能更加深入地理解并應(yīng)用不等式的知識。
Yjs21.coM更多幼師資料延伸讀
不等式的課件
老師在開學(xué)前需要把教案課件準(zhǔn)備好,每個人都要計劃自己的教案課件了。教案是實現(xiàn)高效教學(xué)的不可或缺要素之一。如果您想深入理解這一話題不妨看看“不等式的課件”,本文的內(nèi)容必將給您帶來很多有用的收獲!
不等式的課件 篇1
【教學(xué)目標(biāo)】
1、知識與技能目標(biāo)
(1)掌握基本不等式 ,認(rèn)識其運(yùn)算結(jié)構(gòu);
(2)了解基本不等式的幾何意義及代數(shù)意義;
(3)能夠利用基本不等式求簡單的最值。
2、過程與方法目標(biāo)
(1)經(jīng)歷由幾何圖形抽象出基本不等式的過程;
(2)體驗數(shù)形結(jié)合思想。
3、情感、態(tài)度和價值觀目標(biāo)
(1)感悟數(shù)學(xué)的發(fā)展過程,學(xué)會用數(shù)學(xué)的眼光觀察、分析事物;
(2)體會多角度探索、解決問題。
【能力培養(yǎng)】
培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、規(guī)范的學(xué)習(xí)能力,辯證地分析問題的能力,學(xué)以致用的能力,分析問題、解決問題的能力。
【教學(xué)重點】
應(yīng)用數(shù)形結(jié)合的思想理解不等式,并從不同角度探索不等式 的證明過程。
【教學(xué)難點】
基本不等式 等號成立條件。
【教學(xué)方法】
教師啟發(fā)引導(dǎo)與學(xué)生自主探索相結(jié)合
【教學(xué)工具】
課件輔助教學(xué)、實物演示實驗
【教學(xué)流程】
SHAPE MERGEFORMAT
【教學(xué)過程設(shè)計】
創(chuàng)設(shè)情景,引入新課
如圖是在北京召開的第24屆國際數(shù)學(xué)家大會的會標(biāo), 這是根據(jù)趙爽弦圖而設(shè)計的。用課前折好的趙爽弦圖示范,比較 4個直角三角形的面積和與大正方形的面積,你會得到怎樣的相 等和不等關(guān)系?
趙爽弦圖
1.探究圖形中的不等關(guān)系
將圖中的“風(fēng)車”抽象成如圖,在正方形ABCD中右個全等的直角三角形。
設(shè)直角三角形的兩條直角邊長為a,b那么正方形的邊長為 。這樣,4個直角三角形的面積的和是2ab,正方形的面積為 。由于4個直角三角形的面積小于正方形的面積,我們就得到了一個不等式: 。
當(dāng)直角三角形變?yōu)榈妊苯侨切危碼=b時,正方形EFGH縮為一個點,這時有 。
2.得到結(jié)論:一般的,如果
3.思考證明:你能給出它的證明嗎?
證明:因為
當(dāng)
所以, ,即
4.基本不等式
1)特別的,如果a>0,b>0,我們用分別代替a、b ,可得 ,通常我們把上式寫作:
2)從不等式的性質(zhì)推導(dǎo)基本不等式
用分析法證明:
要證 (1)
只要證 (2)
要證(2),只要證 a+b- 0 (3)
要證(3),只要證 ( - ) (4)
顯然,(4)是成立的。當(dāng)且僅當(dāng)a=b時,(4)中的等號成立。
3)理解基本不等式 的幾何意義
不等式的課件 篇2
基本不等式教學(xué)設(shè)計
數(shù)學(xué)與應(yīng)用數(shù)學(xué) 鐘林
課題:人教A版必修5第3章4節(jié),基本不等式
【教學(xué)目標(biāo)】
1.通過兩個探究實例,引導(dǎo)學(xué)生從幾何圖形中獲得兩個基本不等式,了解基本不等式的幾何背景,體會數(shù)形結(jié)合的思想。
2.進(jìn)一步提煉、完善基本不等式,并從代數(shù)角度給出不等式的證明,組織學(xué)生分析證明方法,加深對基本不等式的認(rèn)識,提高邏輯推理論證能力。 3.結(jié)合課本的探究圖形,引導(dǎo)學(xué)生進(jìn)一步探究基本不等式的幾何解釋,強(qiáng)化數(shù)形結(jié)合的思想。
4.借助例1嘗試用基本不等式解決簡單的最值問題,通過例2及其變式引導(dǎo)學(xué)生
a?b領(lǐng)會運(yùn)用基本不等式ab?的三個限制條件(一正二定三相等)在解決最
2值中的作用,提升解決問題的能力,體會方法與策略。
【重點難點】
重點:應(yīng)用數(shù)形結(jié)合的思想理解基本不等式,并從不同角度探索不等式a?bab?的證明過程。
2難點:在幾何背景下抽象出基本不等式,并理解基本不等式。
【教學(xué)設(shè)計】
(一)問題導(dǎo)入
欣賞2002年國際數(shù)學(xué)家大會會徽,會徽是根據(jù)中國古代數(shù)學(xué)家趙爽的弦圖設(shè)計的,顏色的明暗使它看上去象一個風(fēng)車,代表中國人民熱情好客。你能發(fā)現(xiàn)它是什么圖形構(gòu)成的嗎?請根據(jù)會徽探索一些常見相等或不等關(guān)系。
探究一:在這張“弦圖”中能找出一些相等關(guān)系和不等關(guān)系嗎? 在正方形ABCD中有4個全等的直角三角形.設(shè)直角三角形兩條直角邊長為,a,b。
22a?b那么正方形的邊長為。
于是,4個直角三角形的面積之和S1?2ab。 正方形的面積S2?a2?b2。 由圖可知S2?S1,即a2?b2?2ab。
當(dāng)直角三角形變?yōu)榈妊苯侨切?,即時,正方形EFGH縮為一個點,這時 a2?b2?2ab
所以a2?b2?2ab。
探究二:如下圖所示的梯形中,EF是梯形ABCD的中位線,梯形ABGH相似于梯 形GHDC。
梯形ABCD的上底是a,下底是b。讓同學(xué)們自主研究GH和EF的大小關(guān)系。
a?b因為EF是中位線,所以EF?,
2由相似,可以得出GH?ab, 同樣因為相似,有
AGABa, ??GDGHb又因為a?b,所以AG?GD,即AG?AE,
a?b。 2顯然,當(dāng)AB逐漸趨近CD的時候,GH也逐漸向EF靠近, 當(dāng)AB=CD的時候,即ABCD是矩形的時候,GH與EF重合。
a?b即,當(dāng)且僅當(dāng)a?b時,ab?。
2a?b所以,ab?,當(dāng)且僅當(dāng)a?b時,等號成立。
2所以GH?EF,即ab?
(二)概念深入
根據(jù)上述兩個幾何背景,初步形成不等式結(jié)論:
若a,b?R?,則a2?b2?2ab。(當(dāng)且僅當(dāng)a=b時,等號成立)
a?b。(當(dāng)且僅當(dāng)a=b時,等號成立) 2請同學(xué)們運(yùn)用代數(shù)法證明: 作法一(作差法): 若a,b?R?,則ab?a2?b2?2ab?(a?b)2?0a?b?2ab22
當(dāng)且僅當(dāng)a=b時,等號成立。且發(fā)現(xiàn)這里且a和b可以是全體實數(shù)、單項式、多項式。
作法二(分析法):
要證明a?b?ab, 2只需證明a?b?2ab, 即證a?b-2ab?0, 即為?a-b?2?0,該式顯然成立,所以,當(dāng)a?b時取等號。
于是有這樣的結(jié)論:
稱ab為a,b的幾何平均數(shù);稱基本不等式ab?a?b為a,b的算術(shù)平均數(shù), 2a?b又可敘述為: 2兩個正數(shù)的幾何平均數(shù)不大于它們的算術(shù)平均數(shù)
作法三(幾何法):
如圖,AB是圓O的直徑,點C是AB上一點,AC=a,BC=b.過點C作 垂直于AB的弦DE,連接AD,BD。 從而有CD?ab,OD?a?b。 2a?b。 2a?b當(dāng)且僅當(dāng)C點與圓心O點重合時,即a=b時,ab?
2故再次證明:
a?ba?0,b?0,ab?,當(dāng)且僅當(dāng)a=b時,等號成立。
2a?b也說明了ab?的幾何意義:半徑不小于半弦。
2由于直角三角形COD中,直角邊CD
(三)例題講解
例1.(1)用籬笆圍一個面積為100平方米的矩形菜園,問這個矩形的長、寬各為多少時,所用籬笆最短,最短的籬笆是多少?
(2)一段長為36米的籬笆圍成一個矩形菜園,問這個矩形的長、寬為多少時,菜園的面積最大,最大面積是多少?
(通過例1的講解,總結(jié)歸納利用基本不等式求最值問題的特征,實現(xiàn)積與和的轉(zhuǎn)化)
對于x,y?R?,
(1)若xy?p(定值),則當(dāng)且僅當(dāng)x?y時,x?y有最小值2p;
s2(2)若x?y?s(定值),則當(dāng)且僅當(dāng)x?y時,xy有最大值。
4(鼓勵學(xué)生自己探索推導(dǎo),不但可使他們加深基本不等式的理解,還鍛煉了他們的思維,培養(yǎng)了勇于探索的精神。)
1例2.求y?x?(x?0)的值域。
x1變式1.若x?2,求x?的最小值.
x?21在運(yùn)用基本不等式解題的基礎(chǔ)上,利用幾何畫板展示y?x?(x?0)的函數(shù)
x圖象,使學(xué)生再次感受數(shù)形結(jié)合的數(shù)學(xué)思想。
a?b并通過例2及其變式引導(dǎo)學(xué)生領(lǐng)會運(yùn)用基本不等式ab?的三個限制
2條件(一正二定三相等)在解決最值問題中的作用,提升解決問題的能力,體會方法與策略。
(四)歸納小結(jié)&課后作業(yè) 基本不等式:
若a,b?R?,則a2?b2?2ab。(當(dāng)且僅當(dāng)a=b時,等號成立)
a?b。(當(dāng)且僅當(dāng)a=b時,等號成立) 2(1)基本不等式的幾何解釋(數(shù)形結(jié)合思想); (2)運(yùn)用基本不等式解決簡單最值問題的基本方法。
作業(yè):A組第4題,B組第1題,第2題
若a,b?R?,則ab?
不等式的課件 篇3
課題:3.4.3 基本不等式 的應(yīng)用(二) 科目:數(shù)學(xué) 教學(xué)對象:高二(290)學(xué)生 課時:1課時 提供者:劉和安 單位: 姚安一中 一、教學(xué)內(nèi)容分析 本節(jié)課的研究是起到了對學(xué)生以前所學(xué)知識與方法的復(fù)習(xí)、應(yīng)用,進(jìn)而構(gòu)建他們更完善的知識網(wǎng)絡(luò)。數(shù)學(xué)建模能力的培養(yǎng)與鍛煉是數(shù)學(xué)教學(xué)的一項長期而艱苦的任務(wù),這一點,在本節(jié)課是真正得到了體現(xiàn)和落實。?
根據(jù)本節(jié)課的教學(xué)內(nèi)容,應(yīng)用觀察、閱讀、歸納、邏輯分析、思考、合作交流、探究,對基本不等式展開實際應(yīng)用,進(jìn)行啟發(fā)、探究式教學(xué)并使用投影儀輔助。? 二、教學(xué)目標(biāo) (一)知識目標(biāo):構(gòu)建基本不等式解決函數(shù)的值域、最值問題;
(二)能力目標(biāo):讓學(xué)生探究用基本不等式解決實際問題
(三)情感、態(tài)度和價值觀目標(biāo):
通過具體問題的解決,讓學(xué)生去感受、體驗現(xiàn)實世界和日常生活中存在著大量的不等量關(guān)系并需要從理性的角度去思考,鼓勵學(xué)生用數(shù)學(xué)觀點進(jìn)行類比、歸納、抽象,使學(xué)生感受數(shù) 學(xué)、走進(jìn)數(shù)學(xué)、培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)學(xué)習(xí)習(xí)慣和良好的思維習(xí)慣;? 三、學(xué)習(xí)者特征分析 在本節(jié)課的教學(xué)過程中,仍應(yīng)強(qiáng)調(diào)不等式的現(xiàn)實背景和實際應(yīng)用,真正地把不等式作為刻畫現(xiàn)實世界中不等關(guān)系的工具。通過實際問題的分析解決,讓學(xué)生去體會基本不等式所具有的廣泛的實用價值,同時,也讓學(xué)生去感受數(shù)學(xué)的應(yīng)用價值,從而激發(fā)學(xué)生去熱愛數(shù)學(xué)、研究數(shù)學(xué)。而不是覺得數(shù)學(xué)只是一門枯燥無味的推理學(xué)科。在解決實際問題的過程中,既要求學(xué)生能用數(shù)學(xué)的眼光、觀點去看待現(xiàn)實生活中的許多問題,又會涉及與函數(shù)、方程、三角等許多數(shù)學(xué)本身的知識與方法的處理 四、教學(xué)策略選擇與設(shè)計 1.采用探究法,按照觀察、閱讀、歸納、思考、交流、邏輯分析、抽象應(yīng)用的方法進(jìn)行啟發(fā)式教學(xué);?
2.教師提供問題、素材,并及時點撥,發(fā)揮老師的主導(dǎo)作用和學(xué)生的主體作用;?
3.設(shè)計較典型的具有挑戰(zhàn)性的問題,激發(fā)學(xué)生去積極思考,從而培養(yǎng)他們的數(shù)學(xué)學(xué)習(xí)興趣。?? 五、教學(xué)重點及難點 教學(xué)重點:1.構(gòu)建基本不等式解決函數(shù)的值域、最值問題。?
2.讓學(xué)生探究用基本不等式解決實際問題;?
教學(xué)難點:1.讓學(xué)生探究用基本不等式解決實際問題;?
2.基本不等式應(yīng)用時等號成立條件的考查;?
六、教學(xué)過程 教師活動 學(xué)生活動 設(shè)計意圖 (一)導(dǎo)入新課
(二)推進(jìn)新課
已知 ,若ab為常數(shù)k,那么a+b的值如何變化?
若a+b為常數(shù)s,那么ab的值如何變化?
老師用投影儀給出本節(jié)課的第一組問題
(1)求函數(shù)y=2x2+ (x>0)的最小值。?
(2)求函數(shù)y=x2+ (x>0)的最小值。?
(3)求函數(shù)y=3x2-2x3(0
(4)求函數(shù)y=x(1-x2)(0
(5)設(shè)a>0,b>0,且a2+ =1,求 的最大值。?
(三)合作探究 我們來考慮運(yùn)用正數(shù)的算術(shù)平均數(shù)與幾何平均數(shù)之間的關(guān)系來解答這些問題。根據(jù)函數(shù)最值的含義,我們不難發(fā)現(xiàn)若平均值不等式的某一端為常數(shù),則當(dāng)?shù)忍柲軌蛉〉綍r,這個常數(shù)即為另一端的一個最值。 ?
(四)例題精析?
【例】某工廠要建造一個長方體形無蓋貯水池,其容積為4 800 m3,深為 3 m.如果池底每平方米的造價為150元,池壁每平方米的造價為120元,怎樣設(shè)計水池能使總造價最低?最低總造價是多少?
當(dāng)且僅當(dāng)a=b時,a+b就有最小值為2k.?
當(dāng)且僅當(dāng)a=b時,ab就有最大值 (或ab有 最大值 ).?
學(xué)生完成
留五分鐘的時間讓學(xué)生思考,合作交流
(根據(jù)學(xué)生完成的典型情況,找五位學(xué)生到黑板板演,然后老師根據(jù)學(xué)生到黑板板演的完成情況再一次作點評)?
學(xué)生思考、回答,
不等式的課件 篇4
不等式
教材分析:本課由實際問題中的不等關(guān)系引出不等式的概念;類比方程的解,明確不等式解和解集的概念,以及不等式解集的兩種表示方法。
教學(xué)目標(biāo):了解不等式概念,理解不等式的解和解集。 教學(xué)重難點:不等式及解集概念的理解。 教學(xué)過程: 一:引出新知。
現(xiàn)實世界中存在大量的數(shù)量關(guān)系,包括相等關(guān)系和不等關(guān)系。用等式(包括方程),我們可以研究相等關(guān)系,而研究不等關(guān)系需要用本章的不等式,如引言中選擇購物商場問題.二:探索新知。
問題1 一輛勻速行駛的汽車在11:20距離A地50 km,要在12:00之前駛過A地.你能用式子表示出車速應(yīng)滿足的條件嗎?
1、汽車在12:00之前駛過A地的意思是什么? 從時間上看,汽車要在12:00之前駛過A地,則 以這個速度行駛50 km所用的時間不到。
從路程上看,汽車要在12:00之前駛過A地,則以這個速度行駛的路程要超過50 km。
2、如何用式子表示以上不等關(guān)系? 設(shè):車速為x km/h. 從時間上看: 從路程上看:
(1)對于不等式 而言,車速可以是80 km/h嗎?78 km/h呢?75 km/h呢?72 km/h呢?
(2)類比方程的解,什么叫不等式的解?
使不等式成立的未知數(shù)的值.(3)不等式還有其他解嗎?如果有,這些解應(yīng)滿足什么條件?
一般地,一個含有未知數(shù)的不等式的所有的解,組成這個不等式的解集.求不等式的解集的過程叫做解不等式. (4)除了用不等式表示取值范圍,還有其他表示方法嗎? 數(shù)軸
三、運(yùn)用新知。 例1 請用不等式表示:
(1) 是負(fù)數(shù);
(2) 與5的和小于-7;
(3) 的一半大于3.例2 直接說出不等式的解集,并在數(shù)軸上表
示出來.
四、歸納總結(jié) (1)什么叫不等式?
(2)什么叫不等式的解?不等式的解和方程的解的區(qū)別? (3)什么叫不等式的解集?不等式的解和不等式的解集的區(qū)別?
五、布置作業(yè)
教科書 習(xí)題 第
1、
2、3題。
不等式的課件 篇5
[教學(xué)目標(biāo)]
依據(jù)《新標(biāo)準(zhǔn)》對《不等式》學(xué)段的目標(biāo)要求和本班學(xué)生實際情況,特確定如下目標(biāo):
1、知識與能力目標(biāo):理解掌握基本不等式,并能運(yùn)用基本不等式解決一些簡單問題(求最值、證明不等式);培養(yǎng)學(xué)生探究能力以及分析問題解決問題的能力。
2、過程與方法目標(biāo):按照創(chuàng)設(shè)情景,提出問題→ 剖析歸納證明→ 幾何解釋→ 應(yīng)用(最值的求法、不等式的證明)的過程呈現(xiàn)。啟動觀察、分析、歸納、總結(jié)、抽象概括等思維活動,培養(yǎng)學(xué)生的思維能力,體會數(shù)學(xué)概念的學(xué)習(xí)方法,通過運(yùn)用多媒體的教學(xué)手段,引領(lǐng)學(xué)生主動探索基本不等式性質(zhì),體會學(xué)習(xí)數(shù)學(xué)規(guī)律的方法,體驗成功的樂趣。
3、情感與態(tài)度目標(biāo):通過問題情境的設(shè)置,使學(xué)生認(rèn)識到數(shù)學(xué)是從實際中來,培養(yǎng)學(xué)生用數(shù)學(xué)的眼光看世界,通過數(shù)學(xué)思維認(rèn)知世界,從而培養(yǎng)學(xué)生善于思考、勤于動手的良好品質(zhì)。
二、 [教學(xué)重點]
基本不等式 的證明過程及應(yīng)用。
三、 [教學(xué)難點]
1、基本不等式成立時的三個限制條件(簡稱一正、二定、三相等)的正確理解;
2、靈活利用基本不等式求解實際問題中的最大值和最小值。
四、 [教學(xué)方法]
本節(jié)課采啟發(fā)誘導(dǎo)、講練結(jié)合的教學(xué)方法,結(jié)合現(xiàn)代信息技術(shù)多媒體課件、幾何畫板作為教學(xué)輔助手段,加深學(xué)生對基本不等式的理解。
[教學(xué)用具]
多媒體、幾何畫板
六、 [教學(xué)過程]
教學(xué)過程設(shè)計以問題為中心,以探究解決問題的方法為主線展開。這種安排強(qiáng)調(diào)過程,符合學(xué)生的認(rèn)知規(guī)律,使數(shù)學(xué)教學(xué)過程成為學(xué)生對知識的再創(chuàng)造、再發(fā)現(xiàn)的過程,從而培養(yǎng)學(xué)生的創(chuàng)新意識。
具體過程安排如下:
(一)、創(chuàng)設(shè)情景,提出問題;
上圖是在北京召開的第24屆國際數(shù)學(xué)家大會的會標(biāo),會標(biāo)是根據(jù)中國古代數(shù)學(xué)家趙爽的弦圖設(shè)計的,顏色的明暗使它看上去像一個風(fēng)車,代表中國人民熱情好客。
[問]你能在這個圖中找出一些相等關(guān)系或不等關(guān)系嗎?
利用圖中相關(guān)面積間存在的數(shù)量關(guān)系,抽象出不等式 。在此基礎(chǔ)上,引導(dǎo)學(xué)生認(rèn)識基本不等式。
同時,(幾何畫板輔助教學(xué))通過幾何畫板演示,
讓學(xué)生更直觀的抽象、歸納出結(jié)論:
(二)、抽象歸納:
一般地,對于任意實數(shù) ,有 ,當(dāng)且僅當(dāng) 時,等號成立。
[問] 你能給出它的證明嗎?
學(xué)生在黑板上板書。
特別地,當(dāng) 時,在不等式 中,以 、 分別代替 ,得到什么?
答案: 。
【歸納總結(jié)】
如果 都是正數(shù),那么 ,當(dāng)且僅當(dāng) 時,等號成立。
我們稱此不等式為基本不等式。 其中 稱為 的算術(shù)平均數(shù), 稱為 的幾何平均數(shù)。
(三)、理解升華:
1、文字語言敘述:
兩個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)。
2、符號語言敘述:
若 ,則有 ,當(dāng)且僅當(dāng) 時, 。
[問] 怎樣理解“當(dāng)且僅當(dāng)”?
3、探究基本不等式證明方法:
[問] 如何證明基本不等式?
方法一:作差比較或由 展開證明。
方法二:分析法。
分析法,實際上是尋找結(jié)論的充分條件,執(zhí)果索因的一種思維方法。
4、探究基本不等式的幾何意義:
讀書破萬卷下筆如有神,以上就是一米范文范文為大家?guī)淼?篇《2023高中數(shù)學(xué)基本不等式教學(xué)教案》,希望對您有一些參考價值。
不等式的課件 篇6
不等式和不等式組復(fù)習(xí)課教學(xué)設(shè)計
一、設(shè)計思想:
“不等式”是初中數(shù)學(xué)核心內(nèi)容之一。就不等式的解法來說,它是一種重要的數(shù)學(xué)技能;而就不等式的廣泛作用來說,不管是與實際相關(guān)的問題,還是純粹的數(shù)學(xué)問題,不管是代數(shù)方面的問題,還是幾何圖形方面的問題,乃至更為一般化的問題,只要是求未知數(shù)的值或范圍的問題,經(jīng)常要借助于不等式,可見學(xué)好不等式具有非常重要的意義。
這節(jié)課是中考前的專題復(fù)習(xí)課,知識點不多。由于學(xué)生已經(jīng)學(xué)過本章內(nèi)容,因此在本節(jié)復(fù)習(xí)中主要以提問的形式進(jìn)行知識要點的復(fù)習(xí),以學(xué)生自主探索和合作探究的學(xué)習(xí)方法學(xué)習(xí)本節(jié)內(nèi)容。教師主要在習(xí)題的設(shè)計上選好典型例題,復(fù)習(xí)的知識盡量全面。教學(xué)效果上使不同的學(xué)生有不同的收獲。
二、教學(xué)內(nèi)容分析:
1.《課程標(biāo)準(zhǔn)》對本專題教學(xué)內(nèi)容的要求:
(1)結(jié)合具體問題,了解不等式的意義,探索不等式的基本性質(zhì)。 (2)能解簡單的一元一次不等式,并能在數(shù)軸上表示出解集;會用數(shù)軸確定由兩個一元一次不等式組成的不等式組的解集。
(3)能根據(jù)具體問題中的數(shù)量關(guān)系,列出一元一次不等式,解決簡單的問題。 2.本節(jié)內(nèi)容在中考中的地位和作用。
本部分內(nèi)容在中考中大約6~12分,約占全卷分?jǐn)?shù)的5%~8%左右。而且,近幾年考試中,經(jīng)常與方程、函數(shù)三角函數(shù)、幾何等內(nèi)容一起綜合考查,因此學(xué)好本節(jié)內(nèi)容對于解決這些綜合問題起著舉足輕重的作用。
三、教學(xué)目標(biāo):
1、知識技能:
①掌握不等式的概念和性質(zhì),能根據(jù)不等式的性質(zhì)解決有關(guān)問題;
②掌握不等式(組)的解法,會求不等式(組)的解集,特別是不等式組的整數(shù)解;
③能根據(jù)不等式組的解集確定字母系數(shù)的范圍;
④會列不等式(組)解決簡單的實際問題,特別是方案設(shè)計問題。
2、數(shù)學(xué)思考:通過列不等式或不等式組解決具有不等關(guān)系的實際問題,讓學(xué)生體會不等式是解決實際問題的有效的數(shù)學(xué)模型。
3、解決問題:通過不等式(組)描述不等關(guān)系解決實際問題,發(fā)展學(xué)生由實際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力。
4、情感態(tài)度:①通過復(fù)習(xí)教學(xué),繼續(xù)強(qiáng)化用數(shù)學(xué)的意識,從而使學(xué)生樂于接觸社會環(huán)境中的數(shù)學(xué)信息,愿意談?wù)撃承?shù)學(xué)話題,能夠在數(shù)學(xué)活動中發(fā)揮積極作用。
②.通過探索,增進(jìn)學(xué)生之間的配合,使學(xué)生敢于面對數(shù)學(xué)活動中的困難,并有克服困難和運(yùn)用知識解決問題的成功體驗,樹立學(xué)好數(shù)學(xué)的自信心。
教學(xué)重點:不等式(組)的解法的規(guī)范性及實際應(yīng)用
教學(xué)難點:不等式組有無解的問題中字母系數(shù)的確定和實際問題中不等式(組)的列出
教學(xué)方法:依托多媒體平臺,啟發(fā)、談?wù)?、互動探究法(學(xué)生討論、教師點撥)、講練結(jié)合。
教學(xué)手段:計算機(jī)多媒體輔助教學(xué)。 教學(xué)時間:1課時
教學(xué)準(zhǔn)備:1.學(xué)生準(zhǔn)備:預(yù)習(xí)教材,了解本節(jié)的知識要點。
2.教師準(zhǔn)備:將學(xué)生分組,選好組長;制作多媒體課件。
教學(xué)設(shè)計
一 情境設(shè)計
導(dǎo)入新課
出示多媒體課件
1、問題情境:問題:某化妝品店老板到廠家選購A、B兩種品牌的化妝品,若銷售1套A品牌的化妝品可獲利30元,銷售1套B品牌的化妝品可獲利20元,根據(jù)市場需求,化妝品店老板決定,購進(jìn)B品牌化妝品的數(shù)量比購進(jìn)A品牌化妝品數(shù)量的2倍還多4套,且B品牌化妝品最多可購進(jìn)40套,這樣化妝品全部售出后,可使總的獲利不少于1200元,問有幾種進(jìn)貨方案?如何進(jìn)貨? 教師:同學(xué)們,如果你是這個化妝品店的老板,你怎么解決進(jìn)貨方案問題? (學(xué)生思考):
教師:如何用數(shù)學(xué)符號表示標(biāo)有下劃線的詞語?應(yīng)該考查我們哪部分知識? 學(xué)生:最多 —— ≤;不少于—— -≥。 教師:我們學(xué)過的哪章知識與它們聯(lián)系最密切?由此我們想到了哪部分知識? 學(xué)生:不等式和不等式組
教師:下面我們就來復(fù)習(xí)有關(guān)這方面的內(nèi)容,“專題復(fù)習(xí)
(二)方程和不等式-----------不等式和不等式”。 (板書課題)
(多媒體出示教學(xué)目標(biāo)。圖略)
二、展示教學(xué)目標(biāo)、教學(xué)重點和難點:(讓學(xué)生學(xué)有目的,學(xué)有依據(jù))
三、回顧知識要點:
1.知識網(wǎng)絡(luò)出示;(使學(xué)生對本節(jié)知識的復(fù)習(xí)內(nèi)容一目了然,從總體把握知識間的內(nèi)在聯(lián)系)
實際問題
3、知識要點復(fù)習(xí)不等關(guān)系不等式不等式的性質(zhì)解不等式解集一元一次不等式一元一次不等式組解法解法數(shù)軸表示解集數(shù)軸表示實際應(yīng)用解集數(shù)軸表示 2.知識要點復(fù)習(xí):(通過提問由學(xué)生回答) ①基本概念復(fù)習(xí)
(澄清基本概念,對知識間的內(nèi)在聯(lián)系更明確。)
3、知識要點復(fù)習(xí)
一、基本概念:
1、不等式:
2、不等號:
3、不等式的解:
4、不等式的解集:
5、解不等式:
6、一元一次不等式:
7、一元一次不等式組:
8、一元一次不等式組的解集:
9、解一元一次不等式組: ②不等式性質(zhì)復(fù)習(xí):(它是解不等式和不等式組的重要依據(jù),特別注意第3條性質(zhì),不等號方向改變問題,提醒學(xué)生,此處易錯,提起注意)
3、知識要點復(fù)習(xí)
二、不等式的性質(zhì):(1)如果a>b,那么a+c>b+c,a-c>b-c不等式的兩邊都加上(或減去)同一個數(shù)或同一個整式,不等號的方向不變。ab?(2)如果a>b,并且c>0,那么ac>bc,cc不等式兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變。(3)如果a>b,并且c
3、知識要點復(fù)習(xí)三,規(guī)律與方法:1,不等式的解法:2,解不等式組的方法:3,不等式的解集在數(shù)軸上的表示:大向右,小向左,有等號是實心,無等號是空心.4,求幾個不等式的解的公共部分的方法和規(guī)律:(1)數(shù)軸法(2)口訣法同大取大同小取小一大一小中間找 ④用一元一次不等式組解決實際問題的步驟:(為解決實際問題提供依據(jù),這是本節(jié)的重點知識,學(xué)生可能會類比前邊復(fù)習(xí)的方程和方程組的知識說出。)
3、知識要點復(fù)習(xí)
5、用一元一次不等式組解決實際問題的步驟:實際問題設(shè)未知數(shù),列不等式(組)數(shù)學(xué)問題(不等式或不等式組)解不等式組實際問題的解答檢驗數(shù)學(xué)問題的解(不等式(組)的解集)
四、典型例題解析:(這一環(huán)節(jié)也是學(xué)生要達(dá)到的知識技能目標(biāo)的重要一環(huán),學(xué)生解題的順利與否,是教師關(guān)注的重點。學(xué)生能夠獨立解出的,關(guān)注其過程是否規(guī)范,思路是否清晰,方法是否得當(dāng)。不能解出的,先由小組合作探究,看是否能找到解題的思路,得出問題的答案;如果仍不能得出,教師加以點撥,引導(dǎo),幫助學(xué)生找到解題思路,得出問題的答案。)
例1.(本題是一元一次不等式的解法的考查,是本節(jié)的基本題型,估計學(xué)生都能獨立解出,可讓中游的學(xué)生板演,這樣解題步驟展現(xiàn)在大家面前,如果規(guī)范,起個示范作用;不規(guī)范,示范改正,起警示作用。把重點放在解題步驟是否規(guī)范上。)
4、典型例題:例1.解一元一次不等式解:3 (x-1) ≤6 –2(x-2)3x –3 ≤6 –2x+43x+2x ≤6+4+35x ≤13x ≤135自然數(shù)解非負(fù)整數(shù)解正整數(shù)解最大解最大整數(shù)解 (右邊的云形圖中是在學(xué)生解完不等式后先后出示的五種特殊情況,這樣進(jìn)
行變式教學(xué),展示了一題多解的典型題目,同時又使學(xué)生鍛煉了仔細(xì)審題的能力。)
4、典型例題:例1.解一元一次不等式解一元一次方程一元一次不解:3 (x-1) = 6 –2(x-2)解:3 (x-1) ≤6 –2(x-2)3x –3 = 6 –2x+43x –3 ≤6 –2x+4等式和一元一次3x+2x =6+4+3方程有何共同點3x+2x ≤6+4+35x =13和不同點?5x ≤x =x≤55 (通過這種一元一次不等式和一元一次方程解法的類比,使學(xué)生明確知識間的內(nèi)在聯(lián)系,同時發(fā)現(xiàn)其中的異同,對兩者的區(qū)別更加清晰)
例2.(考查不等式的變形,解決問題的關(guān)鍵是正確理解不等式的概念和基本性質(zhì)。重點關(guān)注基本性質(zhì)的靈活掌握)
例3.(把平面直角坐標(biāo)系的象限問題轉(zhuǎn)化成不等式組問題,既體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想方法,又見識了不等式組的廣泛應(yīng)用??梢詭蛯W(xué)生回憶坐標(biāo)系的有關(guān)知識。)
4、典型例題:a例2.若a1;b1a③a+b
3、在直角坐標(biāo)系中,P(2x-6,x-5)在第四象限,則x的取值范圍是3
例4.(把不等式中的相等問題出示,體現(xiàn)了相等和不等可以互相轉(zhuǎn)化的數(shù)學(xué)思想。并與數(shù)與式中的乘方問題相聯(lián)系,具有一定的綜合性。)
例5.(借助數(shù)軸確定不等式組的解集,對于解這類題非常有效,學(xué)生容易做錯,特別是是否包括界點問題,有一定難度,讓學(xué)生小組合作探究,共同尋找問題的答案。教師巡視,給有困難小組點撥,指導(dǎo)。)
4、典型例題:x?a?2例
4、(2009涼山)若不等式組集是-1
例題分析:問題5問題分析:本題存在兩個不等關(guān)系,一是購買B品牌化妝品不超過40套;二是兩種化妝品的獲利不少于1200元。根據(jù)這兩個不等關(guān)系,可列不等式組求解。 (學(xué)生寫出解題過程后,教師可出示規(guī)范的解題過程,體現(xiàn)數(shù)學(xué)學(xué)科的嚴(yán)謹(jǐn)性。)
4例題講解:、典型例題:解:設(shè)A品牌化妝品購進(jìn)m套,則B品牌化妝品購進(jìn)(2m+4)套。根據(jù)題意得:解得:16≤m≤18.因為m為正整數(shù),所以m=16,17,18,所以2m+4=
36、
38、40.所以有三種進(jìn)貨方案:(1)A種品牌的化妝品的購進(jìn)16套,B種品牌的化妝品購進(jìn)36套;(1)A種品牌的化妝品的購進(jìn)16套,B種品牌的化妝品購進(jìn)36套;(1)A種品牌的化妝品的購進(jìn)16套,B種品牌的化妝品購進(jìn)36套; (通過方案設(shè)計題的解決,使學(xué)生能夠由實際問題建立數(shù)學(xué)模型,從而增強(qiáng)解決實際問題的能力。)
五、
歸納小結(jié)(先由學(xué)生自己歸納總結(jié)本節(jié)課的收獲,從而把課堂傳授的知識盡快化為學(xué)生的素質(zhì),以培養(yǎng)和增強(qiáng)學(xué)生的歸納總結(jié)能力;然后老師予以補(bǔ)充和歸納,為學(xué)生良好學(xué)習(xí)習(xí)慣的養(yǎng)成繼續(xù)進(jìn)行指導(dǎo)。)
5、歸納小結(jié)你會了嗎?這節(jié)課你學(xué)到了什么?你有什么收獲?你還有什么問題?
六、達(dá)標(biāo)檢測:(在這一環(huán)節(jié),我設(shè)計了幾個有梯度的題目,這樣可使不同層次的學(xué)生都能有所收獲,都能感受到成功的喜悅,使他們“在數(shù)學(xué)上都能有不同的發(fā)展”。)
6.達(dá)標(biāo)檢測(1)若2x=3+k的解集是負(fù)數(shù),那么k的取值范圍是______.K
3、不等式組數(shù)解為(A的最小整)A,-1 B,0 C,2 D,3 9
6.達(dá)標(biāo)檢測
4、躍壯五金商店準(zhǔn)備從寧云機(jī)械廠購進(jìn)甲、乙兩種零件進(jìn)行銷售。若每個甲種零件的進(jìn)價比每個乙種零件的進(jìn)價少2元,且用80元購進(jìn)甲種零件的數(shù)量與用100元購進(jìn)乙種零件的數(shù)量相同。(1)求每個甲種零件、每個乙種零件的進(jìn)價分別為多少元?(2)若該五金商店本次購進(jìn)甲種零件的數(shù)量比購進(jìn)乙種零件的數(shù)量的3倍還少5個,購進(jìn)兩種零件的總數(shù)量不超過95個,該五金商店每個甲種零件的銷售價格為12元,每個乙種零件的銷售價格為15元,則將本次購進(jìn)的甲、乙兩種零件全部售出后,可使銷售兩種零件的總利潤(利潤=售價-進(jìn)價超過371元,通過計算求出躍壯五金商店本次從寧云機(jī)械廠購進(jìn)甲、乙兩種零件有幾種方案?請你設(shè)計出來。 6.達(dá)標(biāo)檢測選做題?若不等式組x?a?01?2x?x?2有解,則a的取?值范圍是(A)。?>-1 ≥-1 ≤1 <1
七、教學(xué)設(shè)計的理論依據(jù)
1.“理論聯(lián)系實際”的原則,聯(lián)系學(xué)生身邊的生活,引導(dǎo)學(xué)生學(xué)習(xí)運(yùn)用理論知識分析、解決實際問題。
2.新課程標(biāo)準(zhǔn)中的“學(xué)生是學(xué)習(xí)的主人”的主體教育思想。
本節(jié)課努力構(gòu)建師生互動、生生互動的新的教學(xué)模式,創(chuàng)設(shè)情境引領(lǐng)教學(xué),引導(dǎo)學(xué)生的合作學(xué)習(xí),讓其在思考討論中自主學(xué)習(xí),真正落實以學(xué)生為中心、以學(xué)生發(fā)展為根本,注重學(xué)生道德和能力的培養(yǎng)。
不等式的課件 篇7
《基本不等式》教學(xué)設(shè)計
基本不等式
開江中學(xué) 魏江蘭
目標(biāo)分析
依據(jù)《新課程標(biāo)準(zhǔn)》對《不等式》學(xué)段的目標(biāo)要求和學(xué)生的實際情況,特確定如下目標(biāo):
1、知識與能力目標(biāo):理解掌握基本不等式,并能運(yùn)用基本不等式解決一些簡單的求最值問題;理解算數(shù)平均數(shù)與幾何平均數(shù)的概念,學(xué)會構(gòu)造條件使用基本不等式;培養(yǎng)學(xué)生探究能力以及分析問題解決問題的能力。
2、過程與方法目標(biāo):按照創(chuàng)設(shè)情景,提出問題→ 剖析歸納證明→ 幾何解釋→ 應(yīng)用(最值的求法、實際問題的解決)的過程呈現(xiàn)。啟動觀察、分析、歸納、總結(jié)、抽象概括等思維活動,培養(yǎng)學(xué)生的思維能力,體會數(shù)學(xué)概念的學(xué)習(xí)方法,通過運(yùn)用多媒體的教學(xué)手段,引領(lǐng)學(xué)生主動探索基本不等式性質(zhì),體會學(xué)習(xí)數(shù)學(xué)規(guī)律的方法,體驗成功的樂趣。
3、情感與態(tài)度目標(biāo):通過問題情境的設(shè)置,使學(xué)生認(rèn)識到數(shù)學(xué)是從實際中來,培養(yǎng)學(xué)生用數(shù)學(xué)的眼光看世界,通過數(shù)學(xué)思維認(rèn)知世界,從而培養(yǎng)學(xué)生善于思考、勤于動手的良好品質(zhì)。
教學(xué)重、難點分析
重點:應(yīng)用數(shù)形結(jié)合的思想理解基本不等式,并從不同角度探索基本不等式ab?a?b的證明過程及應(yīng)用。 2難點:
1、基本不等式成立時的三個限制條件(簡稱一正、二定、三相等);
2、利用基本不等式求解實際問題中的最大值和最小值。
教法分析
本節(jié)課采用觀察——感知——抽象——歸納——探究;啟發(fā)誘導(dǎo)、講練結(jié)合的教學(xué)方法,以學(xué)生為主體,以基本不等式為主線,從實際問題出發(fā),放手讓學(xué)生探究思索。以現(xiàn)代信息技術(shù)多媒體課件作為教學(xué)輔助手段,加深學(xué)生對基本不等式的理解。
《基本不等式》教學(xué)設(shè)計
教學(xué)準(zhǔn)備
多媒體課件、板書
教學(xué)過程
教學(xué)過程設(shè)計以問題為中心,以探究解決問題的方法為主線展開。這種安排強(qiáng)調(diào)過程,符合學(xué)生的認(rèn)知規(guī)律,使數(shù)學(xué)教學(xué)過程成為學(xué)生對知識的再創(chuàng)造、再發(fā)現(xiàn)的過程,從而培養(yǎng)學(xué)生的創(chuàng)新意識。 具體過程安排如下:
一、創(chuàng)設(shè)情景,提出問題;
設(shè)計意圖:數(shù)學(xué)教育必須基于學(xué)生的“數(shù)學(xué)現(xiàn)實”,現(xiàn)實情境問題是數(shù)學(xué)教學(xué)的平臺,數(shù)學(xué)教師的任務(wù)之一就是幫助學(xué)生構(gòu)造數(shù)學(xué)現(xiàn)實,并在此基礎(chǔ)上發(fā)展他們的數(shù)學(xué)現(xiàn)實.基于此,設(shè)置如下情境: 上圖是在北京召開的第24屆國際數(shù)學(xué)家大會的會標(biāo),會標(biāo)是根據(jù)中國古代數(shù)學(xué)家趙爽的弦圖設(shè)計的,顏色的明暗使它看上去像一個風(fēng)車,代表中國人民熱情好客。
[問]你能在這個圖中找出一些相等關(guān)系或不等關(guān)系嗎?
本背景意圖在于利用圖中相關(guān)面積間存在的數(shù)量關(guān)系,抽象出不等式a2?b2?2ab。在此基礎(chǔ)上,引導(dǎo)學(xué)生認(rèn)識基本不等式。
二、抽象歸納:
一般地,對于任意實數(shù)a,b,有a2?b2?2ab,當(dāng)且僅當(dāng)a=b時,等號成立。 [問] 你能給出它的證明嗎?
證明:因為a2?b2?2ab?(a?b)2?0,即a2?b2?2ab.(當(dāng)a?b時取等號)
特別地,當(dāng)a>0,b>0時,在不等式a2?b2?2ab中,以a、b分別代替a、b,得到什么?
設(shè)計依據(jù):類比是學(xué)習(xí)數(shù)學(xué)的一種重要方法,此環(huán)節(jié)不僅讓學(xué)生理解了基本不等式不等式的來源,突破了重點和難點,而且感受了其中的函數(shù)思想,為今后學(xué)習(xí)奠定基礎(chǔ).
《基本不等式》教學(xué)設(shè)計
答案: ab?a?b(a,b?0)。 2你能用不等式的性質(zhì)直接推導(dǎo)這個不等式嗎? 證明:(分析法):由于a,b?R?,于是要證明 a?b?2ab,
只要證明 a?b?2即證
2ab,
a?b?2ab?0,即 (a?b)2?0,
所以a?b?ab,(當(dāng)a?b時取等號)
【歸納總結(jié)】
如果a,b都是正數(shù),那么ab?a?b,當(dāng)且僅當(dāng)a=b時,等號成立。 2a?b稱為a,b的算術(shù)平均數(shù),ab稱2我們稱此不等式為基本不等式。 其中為a,b的幾何平均數(shù)。
文字語言敘述:兩個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)。
探究基本不等式的幾何意義:借助初中階段學(xué)生熟知的幾何圖形,引導(dǎo)學(xué)生探究ab?a?b(a,b?0)2的幾何解釋,通過數(shù)形結(jié)合,賦予不等式不等式ab?a?b(a,b?0)2幾何直觀。進(jìn)一步領(lǐng)悟不等式中等號成立的條件。
如圖:AB是圓的直徑,點C是AB上一點,CD⊥AB,AC=a,CB=b,CD
D?ab
aba?b2abOCAB幾何解釋實質(zhì)可認(rèn)為是:在同一半圓中,半徑不小于半弦(直徑是最長的弦);或者認(rèn)為是,直角三角形斜邊的一半不小于斜邊上的高。
《基本不等式》教學(xué)設(shè)計
4.應(yīng)用舉例,鞏固提高
我們可以用兩個重要不等式來解決什么樣的問題呢?
例1(1)用籬笆圍一個面積為100平方米的矩形菜園,問這個矩形的長、寬各為多少時,所用籬笆最短,最短的籬笆是多少? (2)一段長為36米的籬笆圍成一個矩形菜園,問這個矩形的長、寬為多少時,菜園的面積最大,最大面積是多少?
(通過例1的講解,總結(jié)歸納利用基本不等式求最值問題的特征,實現(xiàn)積與和的轉(zhuǎn)化) 對于(1)若(2)若,
(定值),則當(dāng)且僅當(dāng)(定值),則當(dāng)且僅當(dāng)
時,時,
有最小值有最大值
; .
(鼓勵學(xué)生自己探索推導(dǎo),不但可使他們加深基本不等式的理解,還鍛煉了他們的思維,培養(yǎng)了勇于探索的精神.)
1例 2:當(dāng)x?0時,求y?x?的最小值?x1變式1:當(dāng)x?0時,y?x?有最值嗎?
x1變式2:當(dāng)x?1時,y?x?有最值嗎?
x通過例2及其變式引導(dǎo)學(xué)生領(lǐng)會運(yùn)用基本不等式的三個限制條件(一正二定三相等)在解決最值問題中的作用,提升解決問題的能力,體會方法與策略.
練一練(自主練習(xí)):課本練習(xí) 5.歸納小結(jié),反思提高
《基本不等式》教學(xué)設(shè)計
基本不等式:若若
,則,則
(當(dāng)且僅當(dāng)(當(dāng)且僅當(dāng)
時,等號成立) 時,等號成立)
(1)基本不等式的幾何解釋(數(shù)形結(jié)合思想);(2)運(yùn)用基本不等式解決簡單最值問題的基本方法(一正二定三相等). 6.布置作業(yè),課后延拓
(1)基本作業(yè):課本P100習(xí)題組
1、
2、3題
(2)拓展作業(yè):請同學(xué)們課外到閱覽室或網(wǎng)上查找基本不等式的其他幾何解釋,整理并相互交流.
基本不等式教學(xué)設(shè)計
《等式的性質(zhì)》教學(xué)設(shè)計
《等式的性質(zhì)》教學(xué)設(shè)計
等式性質(zhì)教學(xué)設(shè)計(共8篇)
等式的基本性質(zhì)的課后教學(xué)反思
不等式的課件 篇8
一、教學(xué)目標(biāo):
(一)知識與能力目標(biāo):(課件第2張)
1.體會解不等式的步驟,體會比較、轉(zhuǎn)化的作用。
2.學(xué)生理解、鞏固一元一次不等式的解法.
3.用數(shù)軸表示解集,加深對數(shù)形結(jié)合思想的進(jìn)一步理解和掌握。
4.在解決實際問題中能夠體會將文字語言轉(zhuǎn)化成數(shù)學(xué)語言,學(xué)會用數(shù)學(xué)語言表示實際的數(shù)量關(guān)系。
(二)過程與方法目標(biāo):
1.介紹一元一次不等式的概念。
2.通過對一元一次方程的解法的復(fù)習(xí)和對不等式性質(zhì)的利用,導(dǎo)入對解不等式的討論。
3.學(xué)生體會通過綜合利用不等式的概念和基本性質(zhì)解不等式的方法。
4.學(xué)生將文字表達(dá)轉(zhuǎn)化為數(shù)學(xué)語言,從而解決實際問題。
5.練習(xí)鞏固,將本節(jié)和上節(jié)內(nèi)容聯(lián)系起來。
(三)情感、態(tài)度與價值目標(biāo):(課件第3張)
1.在教學(xué)過程中,學(xué)生體會數(shù)學(xué)中的比較和轉(zhuǎn)化思想。
2.通過類比一元一次方程的解法,從而更好的掌握一元一次不等式的解法,樹立辯證統(tǒng)一思想。
3.通過學(xué)生的討論,學(xué)生進(jìn)一步體會集體的作用,培養(yǎng)其集體合作的精神。
4.通過本節(jié)的學(xué)習(xí),學(xué)生體會不等式解集的奇異的數(shù)學(xué)美。
二、教學(xué)重、難點:
1.掌握一元一次不等式的解法。
2.掌握解一元一次不等式的階梯步驟,并能準(zhǔn)確求出解集。
3.能將文字?jǐn)⑹鲛D(zhuǎn)化為數(shù)學(xué)語言,從而完成對應(yīng)用問題的解決。
三、教學(xué)突破:
教材中沒有給出解法的一般步驟,所以在教學(xué)中要注意讓學(xué)生經(jīng)歷將所給的不等式轉(zhuǎn)化為簡單不等式的過程,并通過學(xué)生的討論交流使學(xué)生經(jīng)歷知識的形成和鞏固過程。在解不等式的過程中,與上節(jié)課聯(lián)系起來,重視將解集表示在數(shù)軸上,從而指導(dǎo)學(xué)生體會用數(shù)形結(jié)合的方法解決問題。在研究中,鼓勵學(xué)生用多種方法求解,從而鍛煉他們活躍的思維。
四、教 具:計算機(jī)輔助教學(xué).
五、教學(xué)流程:
(一)、復(fù)習(xí):
教學(xué)環(huán)節(jié)
教 師 活 動
學(xué) 生 活 動
設(shè) 計 意 圖
2023一元二次不等式課件
今天筆者為大家?guī)砹艘黄P(guān)于一元二次不等式課件的精彩文章,歡迎保存本網(wǎng)站,并時刻關(guān)注我們的最新動態(tài)。每位教師都應(yīng)該在授課前準(zhǔn)備充分的教案課件,只要在課前認(rèn)真編寫好教案,便可以有效地促進(jìn)學(xué)校的不斷發(fā)展。教案是推進(jìn)教育教學(xué)創(chuàng)新的有力工具。
一元二次不等式課件 篇1
《一元二次不等式及其解法》
教 學(xué) 設(shè) 計 說 明
《一元二次不等式及其解法》教學(xué)設(shè)計說明
一.教學(xué)內(nèi)容分析:
1.本節(jié)課內(nèi)容在整個教材中的地位和作用.
必修五第三章不等式第二節(jié)一元二次不等式及其解法共有三個課時,本節(jié)課是第一課時,教學(xué)內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性.一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續(xù)和深化,對已學(xué)習(xí)過的集合知識的鞏固和運(yùn)用具有重要的作用.許多問題的解決都會借助一元二次不等式的解法.因此,一元二次不等式的解法在整個高中數(shù)學(xué)教學(xué)中具有很強(qiáng)的基礎(chǔ)性,體現(xiàn)出很大的工具作用. 2.教學(xué)目標(biāo)定位.
根據(jù)教學(xué)大綱要求、高考考試大綱說明、新課程標(biāo)準(zhǔn)精神、高一學(xué)生已有的知識儲備狀況和學(xué)生心理認(rèn)知特征,我確定了四個層面的教學(xué)目標(biāo).第一層面是面向全體學(xué)生的知識目標(biāo):熟練掌握一元二次不等式的解法,正確理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系.第二層面是能力目標(biāo),培養(yǎng)學(xué)生運(yùn)用數(shù)形結(jié)合與分類討論等數(shù)學(xué)思想方法解決問題的能力,提高運(yùn)算和作圖能力.第三層面是德育目標(biāo),通過對解不等式過程中等與不等對立統(tǒng)一關(guān)系的認(rèn)識,向?qū)W生逐步滲透辨證唯物主義思想.第四層面是情感目標(biāo),在教師的啟發(fā)引導(dǎo)下,學(xué)生自主探究,交流討論,培養(yǎng)學(xué)生的合作意識和創(chuàng)新精神. 3.教學(xué)重點、難點確定.
本節(jié)課是在復(fù)習(xí)了一元二次方程和二次函數(shù)之后,利用二次函數(shù)的圖象研究一元二次不等式的解法.只要學(xué)生能夠理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系,并利用其關(guān)系解不等式即可.因此,我確定本節(jié)課的教學(xué)重點為一元二次不等式的解法,關(guān)鍵是一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系. 二.教法學(xué)法分析:
數(shù)學(xué)是發(fā)展學(xué)生思維、培養(yǎng)學(xué)生良好意志品質(zhì)和美好情感的重要學(xué)科,在教學(xué)中,我們不僅要使學(xué)生獲得知識、提高解題能力,還要讓學(xué)生在教師的啟發(fā)引導(dǎo)下學(xué)會學(xué)習(xí)、樂于學(xué)習(xí),感受數(shù)學(xué)學(xué)科的人文思想,使學(xué)生在學(xué)習(xí)中培養(yǎng)堅強(qiáng)的意志品質(zhì)、形成良好的道德情感.為了更好地體現(xiàn)課堂教學(xué)中“教師為主導(dǎo),學(xué)生為主體”的教學(xué)關(guān)系和“以人為本,以學(xué)定教”的教學(xué)理念,在本節(jié)課的教學(xué)過程中,將緊緊圍繞教師組織——啟發(fā)引導(dǎo),學(xué)生探究——交流發(fā)現(xiàn),組織開展教學(xué)活動.我設(shè)計了①回憶舊知,服務(wù)新知,②創(chuàng)設(shè)情境,提出問題,③合作交流,探究新知,④數(shù)學(xué)運(yùn)用,深化認(rèn)知,⑤練習(xí)檢測,反饋新知,⑥談?wù)勈斋@,強(qiáng)化思想,⑦布置作業(yè),實踐新知,環(huán)環(huán)相扣、層層深入的教學(xué)環(huán)節(jié),在教學(xué)中注意關(guān)注整個過程和全體學(xué)生,充分調(diào)動學(xué)生積極參與教學(xué)過程的每個環(huán)節(jié). 三.教學(xué)過程分析:
(一)聯(lián)系舊知,構(gòu)建新知
設(shè)置一系列的問題喚起學(xué)生對舊知識的回憶. 問題1:一元二次方程的解法有哪些呢?
(意圖:讓學(xué)生回顧一元二次方程的解法,為解一元二次不等式做準(zhǔn)備.)
問題2:同學(xué)們還記得二次函數(shù)嗎?二次函數(shù)的形式是怎樣的?你記得二次函數(shù)的性質(zhì)嗎?
(意圖:引導(dǎo)學(xué)生從圖象的角度出發(fā),并啟發(fā)學(xué)生二次函數(shù)的圖象是一條拋物線,其開口方向由二次項系數(shù)決定,為突出重點做準(zhǔn)備)
(二)創(chuàng)設(shè)情景,提出問題
1、讓學(xué)生動手畫直角坐標(biāo)系,然后沿x軸方向上下對折這張紙,觀察它們的值有什么特點?
22、請在剛才的坐標(biāo)系中畫出y=x-7x+6的圖像 問題1:
(1)x軸上方有無圖像?若有請用紅線描出。這部分圖像對應(yīng)的y值如何?(2)x軸下方有無圖像?若有請用藍(lán)線描出。這部分圖像對應(yīng)的y值如何?(3)紅線與藍(lán)線有無交點?若有請用綠色標(biāo)出。
(4)你能找出上述各種情況的x的取值范圍嗎?請在圖中寫出。
問題2:你能說一說這兩個不等式有何共同特點么?(1)含有一個未知數(shù)x;
(2)未知數(shù)的最高次數(shù)為2。通過兩問題得出一元二次不等式的概念:一般地,只含有一個未知數(shù),且未知數(shù)的最高次數(shù)為2的不等式,叫做一元二次不等式。
問題3:判斷下列式子是不是一元二次不等式?
問題4:一元二次函數(shù)、一元二次方程之間有何聯(lián)系呢?
一元二次方程的解即一元二次函數(shù)圖象與x軸交點的橫坐標(biāo),也就是說方程的解即對應(yīng)函數(shù)的零點。
問題5:一元二次不等式如何求解呢?
(三)合作交流,探究新知
1. 探究一元二次不等式x2?x?2?0的解.
容易知道:一元二次方程x2?x?2?0的有兩個實數(shù)根:x1??1或x2?2. 二次函數(shù)y?x2?x?2與x軸有兩個交點:??1,0?和?2,0?. 思考1:觀察圖象一元二次方程的根與二次函數(shù)之間有什么關(guān)系? 思考2:觀察圖象,當(dāng)x為何值時,y?0;
當(dāng)x為何值時,y?0; 當(dāng)x為何值時,y?0.
(設(shè)計意圖 : ①體現(xiàn)學(xué)生的主體性;②有利于加強(qiáng)對圖象的認(rèn)識,從而加強(qiáng)數(shù)形結(jié)合的數(shù)學(xué)思想 ;③有利于加強(qiáng)學(xué)生理解一元二次不等式的解相關(guān)的三個因素;④為歸納解一元二次不等式做好準(zhǔn)備.根據(jù)前面探討的問題引導(dǎo)學(xué)生歸納一元二次不等式的解.)
2. 探究一元二次不等式ax2?bx?c?0或ax2?bx?c?0?a?0?的解法. 組織討論:從上面的例子出發(fā),綜合學(xué)生的意見,可以歸納出確定一元二次不等式的解集,關(guān)鍵要考慮:
2拋物線y?ax?bx?c與x軸的相關(guān)位置的情況,也就是一元二次方程2ax2?bx?c=0的根的情況,而一元二次方程根的情況是由判別式??b?4ac三 3 種取值情況(??0,??0,??0)來確定.
(設(shè)計意圖:這里我將運(yùn)用多媒體圖標(biāo)的形式來展現(xiàn)出其解法思路,學(xué)生有一個完整的邏輯思維,讓學(xué)生在探究中建立知識間的聯(lián)系,體會數(shù)形結(jié)合,強(qiáng)調(diào)突出本節(jié)的難點.)
(四)數(shù)學(xué)運(yùn)用,深化認(rèn)知.
2例1.求不等式2x?3x?2?0的解集. 2變式為:求不等式2x?3x?2?0的解集.
2例2.解不等式?x?2x?3?0.
(設(shè)計意圖:先讓學(xué)生來解答例題,若教師巡視、指導(dǎo),講評學(xué)生完成情況,尋找學(xué)生中的閃光點,給予熱情表揚(yáng).)總結(jié):
解一元二次不等式的步驟:
一化:化二次項前的系數(shù)為正(a>0).二判:判斷對應(yīng)方程的根.三求:求對應(yīng)方程的根.四畫:畫出對應(yīng)函數(shù)的圖象.五解集:根據(jù)圖象寫出不等式的解集.(五)練習(xí)檢測,鞏固收獲
(設(shè)計意圖:為了鞏固和加深一元二次不等式的解法,讓學(xué)生學(xué)以致用,接下來及時組織學(xué)生進(jìn)行課堂練習(xí).然后就學(xué)生在解題中出現(xiàn)的問題共同糾正.)
(六)歸納小結(jié),強(qiáng)化思想
設(shè)計意圖:梳理本節(jié)課的知識點,總結(jié)一元二次不等式解法的步驟:“一化,二判,三求根,四畫圖,五寫解集”的口訣來幫助學(xué)生記憶和歸納,讓學(xué)生掌握嚴(yán)謹(jǐn)?shù)淖鲱}方法,知曉本節(jié)課的重難點.
(七)布置作業(yè),拓展延伸
必做題:課本第80頁習(xí)題A組 1,2.選做題:(1)若關(guān)于m的一元二次方程x
2?(m?1)x?m?0有兩個不相 等的實數(shù)根,求m的取值范圍.2(2)已知不等式x?ax?b?0的解集為x2?x?3?,求a,b的
?值.(設(shè)計意圖:以作業(yè)的鞏固性和發(fā)展性為出發(fā)點,我設(shè)計了必做題和選做題,必做題是對本節(jié)課內(nèi)容的反饋,選做題是對本節(jié)課知識的延伸,整體的設(shè)計意圖是反饋教學(xué),鞏固提高.)四.教學(xué)總結(jié)
本節(jié)課的所有內(nèi)容以習(xí)題的形式展現(xiàn)給學(xué)生,學(xué)生始終在解題中探究,在解題中發(fā)現(xiàn),學(xué)生參與教學(xué)的全過程,成為課堂教學(xué)的主體和學(xué)習(xí)的主人,而老師只須時刻關(guān)注學(xué)生的活動過程,不時給予引導(dǎo),及時糾正.
一元二次不等式課件 篇2
高中數(shù)學(xué)《一元二次不等式的解法(2)》教案
一、教學(xué)目標(biāo)
【知識與技能】
掌握求解一元二次不等式的簡單方法,能正確求解一元二次不等式的解集。
【過程與方法】
在探究一元二次不等式的解法的過程中,提升邏輯推理能力。
【情感、態(tài)度與價值觀】
感受數(shù)學(xué)知識的前后聯(lián)系,提升學(xué)習(xí)數(shù)學(xué)的熱情。
二、教學(xué)重難點
【重點】一元二次不等式的解法。
【難點】一元二次不等式的解法的探究過程。
三、教學(xué)過程
(一)導(dǎo)入新課
回顧一元二次不等式的一般形式,組織學(xué)生舉例一些簡單的一元二次不等式。
提問:如何求解?引出課題。
(二)講解新知
結(jié)合課前回顧的一元二次不等式的一般形式,對比之前所學(xué)內(nèi)容,引導(dǎo)學(xué)生發(fā)現(xiàn)其與一元二次方程和二次函數(shù)的共同特點。
一元二次不等式課件 篇3
新課程理念下的教學(xué)更多的關(guān)注學(xué)生自主探究、關(guān)注學(xué)生的個性發(fā)展,鼓勵學(xué)生勇于提出問題,培養(yǎng)學(xué)生思維的批評性。在課堂上學(xué)生往往會提出讓老師感到“意外”的問題,我在平時的教學(xué)中重視對“課堂意外預(yù)案”的探索和思考,備課時盡量設(shè)想課堂中可能會出現(xiàn)的各種情況,做到有備無患,以免在課堂中學(xué)生提出讓自己出乎意料的問題,使自己陷入被動尷尬境地。結(jié)合以往經(jīng)驗,在本節(jié)課,我提出兩個“意外預(yù)案”。
1、學(xué)生在做課本練習(xí)1(x+2)(x-3)>0時,可能會問到轉(zhuǎn)化為不等式組{或{求解對不對。學(xué)生提出的問題,想法非常好,應(yīng)給予肯定和鼓勵,這與下節(jié)簡單分式不等式和高次不等式的解法有關(guān),是解不等式的另一種解法——等價轉(zhuǎn)化法,不在本節(jié)課之列。
2、根據(jù)以往的經(jīng)驗,在解(x-1)(x+2)>1一類的不等式的時候,由于受方程(x+1)(x+2)=0可轉(zhuǎn)化為x-1=0或x+2=0求解的影響,有可能會出現(xiàn)將不等式轉(zhuǎn)化為不等式組{來求解的錯誤做法,教師要關(guān)注學(xué)生,及時發(fā)現(xiàn)問題并給予糾正,指出上面的轉(zhuǎn)化不是等價轉(zhuǎn)化。
以上是我對本節(jié)課的一些粗淺的認(rèn)識和構(gòu)想,如有不妥之處,懇請各位專家、各位同仁批評指正。謝謝大家!
一元二次不等式課件 篇4
一、教材分析
1、地位和作用。本課是五年制高等師范教材南京大學(xué)出版社《數(shù)學(xué)》教材第一冊第二章第二節(jié)的教學(xué)內(nèi)容,從知識結(jié)構(gòu)看:它是一元一次不等式的延續(xù)和拓展,又是以后研究函數(shù)的定義域、值域等問題的重要工具,起到承前啟后的作用;
從思想層次上看:它涉及到數(shù)形結(jié)合、分類轉(zhuǎn)化等數(shù)學(xué)思想方法,在整個教材中有很強(qiáng)的基礎(chǔ)性。
2、教材內(nèi)容剖析。本節(jié)課的主要內(nèi)容是通過二次函數(shù)的圖像探究一元二次不等式的解法。教材中首先復(fù)習(xí)引入了“三個一次”的關(guān)系,然后依舊帶新,揭示“三個二次”的關(guān)系,其次通過變式例題討論了△=0和△
3、重難點剖析。重點:一元二次不等式的解法。難點:一元二次方程、一元二次不等式、二次函數(shù)的關(guān)系。難點突破:
(1)教師引導(dǎo),學(xué)生自主探究,分組討論。
(2)借助多媒體直觀展示,數(shù)形結(jié)合。
(3)采用由簡單到復(fù)雜,由特殊到一般的教學(xué)策略。
二、目的分析
知識目標(biāo):掌握一元二次不等式的解法,理解“三個二次”之間的關(guān)系
能力目標(biāo):培養(yǎng)學(xué)生“從形到數(shù)”的轉(zhuǎn)化能力,由具體到抽象再到具體,從特殊到一般的歸納概括能力。
情感目標(biāo):在自主探究與討論交流過程中,培養(yǎng)學(xué)生的合作意識。
三、教法分析
教法:“問題串”解決教學(xué)法
以“一串問題”為出發(fā)點,指導(dǎo)學(xué)生“動腦、動手、動眼、動口”,參與知識的形成過程,注重學(xué)生的內(nèi)在發(fā)展。
學(xué)法:合作學(xué)習(xí)(1)以問題為依托,分組探究,合作交流學(xué)習(xí)。(2)以現(xiàn)有認(rèn)知結(jié)構(gòu)為依托,指導(dǎo)學(xué)生用類比方法建構(gòu)新知,用化歸思想解決問題。
四、過程分析
本節(jié)課的教學(xué),設(shè)計了四個教學(xué)環(huán)節(jié):
創(chuàng)設(shè)情景、提出問題
問題1:用一根長為10m的繩子能圍成一個面積大于6m2的矩形嗎?“數(shù)學(xué)來源于生活,應(yīng)用于生活”,首先,以生活中的一個實際問題為背景切入,通過建立簡單的數(shù)學(xué)模型,抽象出一個一元二次不等式,引入課題。
設(shè)計意圖:激發(fā)學(xué)生學(xué)習(xí)興趣,體現(xiàn)數(shù)學(xué)的科學(xué)價值和使用價值。
自主探究,發(fā)現(xiàn)規(guī)律
問題2:解下列方程和不等式。①2x—4=0②2x—4>0③2x—4
歸納、類比法是我們發(fā)現(xiàn)問題、尋求規(guī)律,揭示問題本質(zhì)最常用的方法之一。尋求一元二次不等式的解法,首先從一元一次不等式的解法著手。展示問題2。學(xué)生:用等式和不等式的基本性質(zhì)解題。教師:還有其他的解決方法嗎?展示問題3。
問題3:畫出一次函數(shù)y=2x—4的圖像,觀察圖像,縱坐標(biāo)y=0、y>0、y
學(xué)生:發(fā)現(xiàn)可以借用圖像解題。此問題揭示了“三個一次”的關(guān)系。
設(shè)計意圖:為后面學(xué)習(xí)二次不等式的解法提供鋪墊。
問題4:用圖像法能不能解決一元二次不等式的解呢?已知二次函數(shù)y=x2—2x—8。
(1)求出此函數(shù)與x軸的交點坐標(biāo)。
(2)畫出這個二次函數(shù)的草圖。
(3)在拋物線上找到縱坐標(biāo)y>0的點。
(4)縱坐標(biāo)y>0(即:x2—2x—8>0)的點所對應(yīng)的橫坐標(biāo)x取哪些數(shù)呢?
(5)二次函數(shù)、二次方程、二次不等式的關(guān)系是什幺?
教師:展示問題4。此環(huán)節(jié),要注意下面幾個問題:
(1)啟發(fā)引導(dǎo)學(xué)生運(yùn)用歸納、類比的方法,組織學(xué)生分組討論,自主探究。(2)及時解決學(xué)生的疑點,實現(xiàn)師生合作。(3)先讓學(xué)生自己思考,最后教師和學(xué)生一起歸納步驟。(求根—畫圖—找解),抓住問題本質(zhì),畫圖可省去y軸。教師抓住時機(jī),展示例題1,鞏固方法(△>0的情況),規(guī)范步驟,板書做題步驟,起到示范的作用。設(shè)計意圖:運(yùn)用“解決問題”的教學(xué)方法,使每位學(xué)生參與知識的形成過程,體現(xiàn)了教師主導(dǎo)學(xué)生主體的地位。
變式提問,啟發(fā)誘導(dǎo)
方程:ax2+bx+c=0的解情況函數(shù):y=ax2+bx+c的圖象
不等式的解集
ax2+bx+c>0ax2+bx+c
⊿>0
⊿=0
⊿
教師:展示例題2(1)—x2+x+6≥0(2)x2—4x+40。
學(xué)生:嘗試通過畫圖求解。
此環(huán)節(jié)要注意:引導(dǎo)學(xué)生把不熟悉的問題轉(zhuǎn)化為熟悉的問題解決;對于△=0,△
設(shè)計意圖:通過探索、嘗試的過程,培養(yǎng)了學(xué)生大膽猜想,勇于探索的精神。
自我嘗試,反饋小結(jié)。
教師:展示練習(xí)題,把學(xué)生分成兩個小組,要求當(dāng)堂完成,看哪個組做的好做的快。教師對出現(xiàn)的問題及時反饋。同時,進(jìn)一步啟發(fā)引導(dǎo)學(xué)生將特殊、具體問題的結(jié)論推廣到一般化。展示表格。
學(xué)生:填寫內(nèi)容。
學(xué)生理解了“三個二次”的關(guān)系,得到一般結(jié)論應(yīng)該是水到渠成。最后,教師做本節(jié)課的小結(jié),布置作業(yè)。設(shè)計意圖:激發(fā)了學(xué)生的求知欲,培養(yǎng)了學(xué)生的主動參與意識。
五、評價分析
1、重視學(xué)生學(xué)習(xí)的結(jié)果評價,更重視過程評價。
2、本節(jié)課貫徹了新課程的理念,教學(xué)形式開放,體現(xiàn)了“教師主導(dǎo),學(xué)生主體”的教學(xué)關(guān)系。以上是我對本節(jié)課的粗淺認(rèn)識,如有不妥之處,懇求各位專家、各位同仁批評指正。
一元二次不等式課件 篇5
一元二次不等式及其解法教學(xué)反思
塘沽中專-----戚衛(wèi)民
我在13級電子班教室上了一節(jié)課,由此我進(jìn)行了深刻的反思:
我教的是一個普通中專的班,學(xué)生基礎(chǔ)比較差。因此,第一,課前組織很重要,給 學(xué)生 做思想 工 作,這 節(jié) 課很重要,是大家表現(xiàn) 自己 的好機(jī)會,同 學(xué) 們應(yīng)該遵守紀(jì)律,積極發(fā)言,展示 自己 班良好的素質(zhì)和班風(fēng)。這樣學(xué)生激情會高一些,自然課堂也會活躍一些。第二,把握本節(jié)課的難點,課前做好鋪墊。一元二次不等式及其解法看上去好像很簡單,但是它需要同學(xué)們有很好的基礎(chǔ),解一元二次方程的基礎(chǔ)。而學(xué)生在初中只是熟悉用求根公式解方程,對于十字相乘法分解因式只有極個別會,對于這種情形我在課前把一元二次方程的解法好好的補(bǔ)了一下。還有二次函數(shù)的圖象畫法,也好好的復(fù)習(xí)一下,加深鞏固,突破難點,使得這節(jié)課能順利進(jìn)行下去。
盡管這樣我的課堂效果也不是很好,這是為什么呢?我陷入迷茫之中可能是我的學(xué)生不適應(yīng)教學(xué)方式?可能是學(xué)生緊張?弄錯?后來想想可能我沒有好好地備學(xué)生。我覺得這節(jié)課的教案應(yīng)該這樣設(shè)計,可能會更好:課前引入去掉,應(yīng)該在復(fù)習(xí)時讓學(xué)生解一元二次方程,畫二次函數(shù)圖象,這樣學(xué)生容易進(jìn)入狀態(tài)。然后直接導(dǎo)入新課,有特殊到 一般,由具體到抽象,逐步揭開解一元二次不等式的方法。給出例題應(yīng)由淺入深,先給出形如這樣的:(x-2)(x-3)
讓他們好求方程的根,從而畫圖求不等式的解集,為后續(xù)例題做鋪墊。作為教師我應(yīng)該很規(guī)范的板書。以給學(xué)生榜樣。然后給出形如這樣的不等式:x2+3x-4≥0 由上道題的啟示他們自然會去驗證Δ,用十字相乘法求一元二次方程x2+3x-4=0 的根,畫函數(shù)的圖像,從而求出解集。從這兩道題讓他們自己歸納一下解一元二次不等式的步驟,再出課本習(xí)題,這樣他們一定可以解出來,此種做法可以提高他們的解興趣,把課堂氣氛變得濃烈一些。接著給出-x2-3x+4>0提醒他們要把二項式系數(shù)變?yōu)檎龜?shù)。用課本課后題做練習(xí)。再給出x2-3x+4>0這種Δ0Δ=0的情形。根據(jù)二次函數(shù)的圖像學(xué)生應(yīng)該可以解決。
一節(jié)課究竟要解決什么問題,怎樣解決這是課堂的首要。貼近學(xué)生實際,層層深入,各個擊破,幫學(xué)生排憂解難,同時發(fā)揮他們的主觀能動性,讓學(xué)感受到自己是課堂的主人,這是教師課堂的主旨。還有一點非常重要,老師必須要有很強(qiáng)的親和力。其實親和力的前提是要有愛心,有愛才會親。一個孩子在班上是六十分之一,但在一個家庭是百分百,所以我覺得我們應(yīng)該向愛我們自己的孩子一樣去愛他們,讓學(xué)生感受到我們的關(guān)懷,怎樣做到愛學(xué)生,我覺得自己以后可這樣努力 :記住每一個學(xué)生的名字,在路上和他們打招呼,下課和他們談?wù)勑?,說笑說笑,不 要說一些傷學(xué)生人 格的話語,適當(dāng)鼓勵他們,人心都是肉長的呀,他們會感覺得到的。成績差的學(xué)生其實是非常敏感的,也是很容易叛逆的,在任何時候老師都要想到自己是成年人,是長者,要站在一定的高度考慮我們的學(xué)生,設(shè)身處地為他們想象。這樣就不會有芥蒂,沖突,代溝。這節(jié)課我比較真實展現(xiàn)我的學(xué)生和我自己。無論從哪一方面,業(yè)務(wù)能力,管理能力,對學(xué)生的掌控能力,課堂的把握能力。我都有待學(xué)習(xí)提高。我會努力的!
一元二次不等式課件 篇6
《一元二次不等式解法》說課稿范文
一、 教材簡析
1、地位和價值
一元二次不等式解法是高中數(shù)學(xué)新教材第一冊(上)第一章第5節(jié)的內(nèi)容。在此之前,學(xué)生在初中已學(xué)習(xí)了一元一次不等式,一元一次不等式組,一元二次方程,二次函數(shù),絕對值不等式(高中),這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。一元二次不等式解法是解不等式的基礎(chǔ)和核心,它在高中代數(shù)中起著廣泛應(yīng)用的工具作用,蘊(yùn)藏著“數(shù)與形結(jié)合”的重要思想方法,它已成為代數(shù)、三角、解析幾何交匯綜合的重要部分,是高考綜合題的熱點。
2、教材結(jié)構(gòu)簡介
教材首先以一個一次函數(shù)圖象的應(yīng)用解一元一次不等式,引出圖象法,然后給出一個二次函數(shù),通過具體畫圖象,提出問題。再一般地給出了二次函數(shù)圖象解二次不等式的結(jié)論。課本精選了四個解不等式的例題,并配有相應(yīng)的練習(xí)和習(xí)題。它的后一小節(jié)為解可轉(zhuǎn)化為一元二次不等式的分式不等式。
二、 教育教學(xué)觀
1、 學(xué)生為主體,重學(xué)生參與學(xué)習(xí)活動。
2、 重過程。按照認(rèn)知規(guī)律及學(xué)生認(rèn)知特點,由淺入深,由表及里,設(shè)計一系列教學(xué)活動過程。體現(xiàn)由“實踐……觀察……歸納 ……猜想…… 結(jié)論…… 驗證應(yīng)用”的循環(huán)往復(fù)的認(rèn)知過程。
3、 重能力與態(tài)度的培養(yǎng),在活動中培養(yǎng)學(xué)生自主、交流合作、探究、發(fā)現(xiàn)的能力。重科學(xué)嚴(yán)謹(jǐn)?shù)膫€性品質(zhì)。重參與學(xué)習(xí)的興趣和體驗。
4、 重指導(dǎo)點撥。在學(xué)生自主探究、實踐的基礎(chǔ)上,相機(jī)啟發(fā),恰當(dāng)點撥,促進(jìn)學(xué)生知識由感性向理性提升,由具體到概括抽象,形成師生間的有效互動。
三、 教學(xué)目標(biāo)
基于上述認(rèn)識,及不等式的基本知識,同時學(xué)生在初中已學(xué)過二次函數(shù),考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征,制訂如下教學(xué)目標(biāo):
1、 知識目標(biāo):一元二次方程,一元二次不等式及二次函數(shù)間的聯(lián)系,及利用二次函數(shù)的圖象求解一元二次不等式。
2、 能力目標(biāo):數(shù)形結(jié)合的思想(應(yīng)用二次函數(shù)圖象解不等式)
3、 情感態(tài)度目標(biāo):通過問題解決,培養(yǎng)學(xué)生自主參與學(xué)習(xí),以及嚴(yán)謹(jǐn)求實的.態(tài)度。
四、 教與學(xué)重點、難點
1、重點:用圖象解一元二次不等式。
2、難點:圍繞二次函數(shù)圖象、性質(zhì)這一主線,解決三個“二次”的聯(lián)系和應(yīng)用。
五、 教法與學(xué)法
1、學(xué)情分析及學(xué)法:函數(shù)與圖象應(yīng)用是初中生數(shù)學(xué)的薄弱之處,同時剛進(jìn)入高中的學(xué)生,對高中學(xué)習(xí)還很不適應(yīng),需要加強(qiáng)主動學(xué)習(xí)的指導(dǎo)?;诖?,在學(xué)生初中知識經(jīng)驗的基礎(chǔ)上,以舊探新;以一系列問題,促進(jìn)主體的學(xué)習(xí)活動(如畫圖象、讀圖等),建構(gòu)知識;以問題情景激勵學(xué)生參與,在恰當(dāng)時機(jī)進(jìn)行點撥啟發(fā),練、導(dǎo)結(jié)合,講練結(jié)合;通過學(xué)生自己做數(shù)學(xué),教師啟發(fā)指導(dǎo),以及學(xué)生領(lǐng)悟,實現(xiàn)學(xué)生對知識的再創(chuàng)造和主動建構(gòu);具體通過教材中的問題及設(shè)計的問題情景,給予學(xué)生活動的空間,通過這些問題(“腳手架”)的解決,使學(xué)生逐步攀升,達(dá)到知識與能力的目標(biāo)。
2、教法:數(shù)學(xué)教學(xué)是數(shù)學(xué)教與學(xué)活動過程的教學(xué),學(xué)生是在探究與發(fā)現(xiàn)中建構(gòu)知識,發(fā)展能力的,因而確定以“問題解決”為教法。實現(xiàn)學(xué)生在教師指導(dǎo)下的發(fā)現(xiàn)探索。同時所學(xué)內(nèi)容適宜用“計算機(jī)高中數(shù)學(xué)問題處理系統(tǒng)”輔助教學(xué)。
六、教學(xué)手段及工具:
多媒體教學(xué)手段,高中數(shù)學(xué)問題處理系統(tǒng)。
七、教學(xué)設(shè)計及教學(xué)過程
1、復(fù)習(xí)設(shè)問,引入新課
高中數(shù)學(xué)新教材第一冊(上)《一元二次不等式解法》(第一課時)說課稿.rar
一元二次不等式課件 篇7
解一元二次不等式化為標(biāo)準(zhǔn)型。判斷△的符號。若△<0,則不等式是在R上恒成立或恒不成立。
若△>0,則求出兩根,在數(shù)軸上標(biāo)出,每個根上畫一條豎線,再從右到左相間標(biāo)正負(fù)號,不等式大于0則取標(biāo)正的范圍,小于0則取標(biāo)負(fù)的范圍。
2.解簡單一元高次不等式
a.化為標(biāo)準(zhǔn)型。
b.將不等式分解成若干個因式的積。
c.求出各個根,在數(shù)軸上標(biāo)出,每個根上畫一條豎線,再從右到左相間標(biāo)正負(fù)號,不等式大于0則取標(biāo)正的范圍,小于0則取標(biāo)負(fù)的范圍。
3.解分式不等式的解
a.化為標(biāo)準(zhǔn)型。
b.可將分式化為整式,將整式分解成若干個因式的積。
c.求出各個根,在數(shù)軸上標(biāo)出,每個根上畫一條豎線,再從右到左相間標(biāo)正負(fù)號,不等式大于0則取標(biāo)正的范圍,小于0則取標(biāo)負(fù)的范圍。(如果不等式是非嚴(yán)格不等式,則要注意分式分母不等于0。)
4.解含參數(shù)的一元二次不等式
a.對二次項系數(shù)a的討論。
若二次項系數(shù)a中含有參數(shù),則須對a的符號進(jìn)行分類討論。分為a>0,a=0,a<0。
b.對判別式△的討論
若判別式△中含有參數(shù),則須對△的符號進(jìn)行分類討論。分為△>0,△=0,△<0。
c.對根大小的討論
若不等式對應(yīng)的方程的根x1、x2中含有參數(shù),則須對x1、x2的大小進(jìn)行分類討論。分為x1>x2,x1=x2,x1<x2。
5.一元二次方程的根的分布問題
a.將方程化為標(biāo)準(zhǔn)型。(a的符號)
b.畫圖觀察,若有區(qū)間端點對應(yīng)的函數(shù)值小于0,則只須討論區(qū)間端點的函數(shù)值。
若沒有區(qū)間端點對應(yīng)的函數(shù)值小于0,則須討論區(qū)間端點的函數(shù)值、△、軸。
6.一元二次不等式的應(yīng)用
⑴在R上恒成立問題(恒不成立問題相反,在某區(qū)間恒成立可轉(zhuǎn)化為實根分布問題)
a.對二次項系數(shù)a的符號進(jìn)行討論,分為a=0與a≠0。
b.a(chǎn)=0時,把a(bǔ)=0帶入,檢驗不等式是否成立,判斷a=0是否屬于不等式解集。
a≠0時,則轉(zhuǎn)化為二次函數(shù)圖像全在x軸上方或下方。
若f(x)>0,則要求a>0,△<0。
若f(x)<0,則要求a<0,△<0。
⑵特殊題型:已知一不等式的解集(含有字母),求另一不等式的解集(與原不等式系數(shù)大小相同,位置不同)。a.寫出原不等式對應(yīng)的方程,由韋達(dá)定理得出解集字母與方程系數(shù)間的關(guān)系。
b.寫出變換后不等式對應(yīng)的方程,由由韋達(dá)定理得出解集字母與方程系數(shù)間的關(guān)系。
c.將a中得到的關(guān)系變化后帶入b的關(guān)系中,得到變換后方程的兩根。
d.判斷兩根的大小,變換后不等式二次項的系數(shù),從而寫出所求解集。
一元二次不等式課件 篇8
一、教材分析
(一)教材的地位和作用
“一元二次不等式解法”既是初中一元一次不等式解法在知識上的延伸和發(fā)展,又是本章集合知識的運(yùn)用與鞏固,也為下一章函數(shù)的定義域和值域教學(xué)作鋪墊,起著鏈條的作用。同時,這部分內(nèi)容較好地反映了方程、不等式、函數(shù)知識的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊(yùn)含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學(xué)思想方法,能較好地培養(yǎng)學(xué)生的觀察能力、概括能力、探究能力及創(chuàng)新意識。
(二)教學(xué)內(nèi)容
本節(jié)內(nèi)容分2課時學(xué)習(xí)。本課時通過二次函數(shù)的圖象探索一元二次不等式的解集。通過復(fù)習(xí)“三個一次”的關(guān)系,即一次函數(shù)與一元一次方程、一元一次不等式的關(guān)系;以舊帶新尋找“三個二次”的關(guān)系,即二次函數(shù)與一元二次方程、一元二次不等式的關(guān)系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數(shù)學(xué)中的和諧美,體驗成功的樂趣。
二、教學(xué)目標(biāo)分析
根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點和高一學(xué)生的認(rèn)知規(guī)律,本節(jié)課的教學(xué)目標(biāo)確定為:
知識目標(biāo)——理解“三個二次”的關(guān)系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。
能力目標(biāo)——通過看圖象找解集,培養(yǎng)學(xué)生“從形到數(shù)”的轉(zhuǎn)化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。
情感目標(biāo)——創(chuàng)設(shè)問題情景,激發(fā)學(xué)生觀察、分析、探求的學(xué)習(xí)激情、強(qiáng)化學(xué)生參與意識及主體作用。
三、重難點分析
一元二次不等式是高中數(shù)學(xué)中最基本的不等式之一,是解決許多數(shù)學(xué)問題的重要工具。本節(jié)課的重點確定為:一元二次不等式的解法。
要把握這個重點。關(guān)鍵在于理解并掌握利用二次函數(shù)的圖象確定一元二次不等式解集的方法——圖象法,其本質(zhì)就是要能利用數(shù)形結(jié)合的思想方法認(rèn)識方程的解,不等式的解集與函數(shù)圖象上對應(yīng)點的橫坐標(biāo)的內(nèi)在聯(lián)系。由于初中沒有專門研究過這類問題,高一學(xué)生比較陌生,要真正掌握有一定的難度。因此,本節(jié)課的難點確定為:“三個二次”的關(guān)系。要突破這個難點,讓學(xué)生歸納“三個一次”的關(guān)系作鋪墊。
四、教法與學(xué)法分析
(一)學(xué)法指導(dǎo)
教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會學(xué)是目的。因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會學(xué)習(xí)。本節(jié)課主要是教給學(xué)生“動手畫、動眼看、動腦想、動口說、善提煉、勤鉆研”的研討式學(xué)習(xí)方法,這樣做增加了學(xué)生自主參與,合作交流的機(jī)會,教給了學(xué)生獲取知識的途徑、思考問題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會逐步感受到數(shù)學(xué)的美,會產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時代特色,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。
(二)教法分析
本節(jié)課設(shè)計的指導(dǎo)思想是:現(xiàn)代認(rèn)知心理學(xué)——建構(gòu)主義學(xué)習(xí)理論。
建構(gòu)主義學(xué)習(xí)理論認(rèn)為:應(yīng)把學(xué)習(xí)看成是學(xué)生主動的建構(gòu)活動,學(xué)生應(yīng)與一定的知識背景即情景相聯(lián)系,在實際情景下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識與經(jīng)驗同化和索引出當(dāng)前要學(xué)習(xí)的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。
本節(jié)課采用“誘思引探教學(xué)法”。把問題作為出發(fā)點,指導(dǎo)學(xué)生“畫、看、說、用”。較好地探求一元二次不等式的解法。
五、課堂設(shè)計
本節(jié)課的教學(xué)設(shè)計充分體現(xiàn)以學(xué)生發(fā)展為本,培養(yǎng)學(xué)生的觀察、概括和探究能力,遵循學(xué)生的認(rèn)知規(guī)律,體現(xiàn)理論聯(lián)系實際、循序漸進(jìn)和因材施教的教學(xué)原則,通過問題情境的創(chuàng)設(shè),激發(fā)興趣,使學(xué)生在問題解決的探索過程中,由學(xué)會走向會學(xué),由被動答題走向主動探究。
(一)創(chuàng)設(shè)情景,引出“三個一次”的關(guān)系
本節(jié)課開始,先讓學(xué)生解一元二次方程x2—x—6=0,如果我把“=”改成“>”則變成一元二次不等式x2—x—6>0讓學(xué)生解,學(xué)生肯定感到很突然。但是“思維往往是從驚奇和疑問開始”,這樣直奔主題,目的在于構(gòu)造懸念,激活學(xué)生的思維興趣。
為此,我設(shè)計了以下幾個問題:
1、請同學(xué)們解以下方程和不等式:
①2x—7=0;②2x—7>0;③2x—7
一元二次不等式課件 篇9
1.創(chuàng)設(shè)情景——引入新課。我們常說“興趣是最好的老師”,長期以來,學(xué)生對學(xué)習(xí)數(shù)學(xué)缺乏興趣,甚至失去信心,一個重要的原因,是老師在教學(xué)中不重視學(xué)生對學(xué)習(xí)的情感體驗,教學(xué)應(yīng)該充分考慮學(xué)生的情感和需要,想方設(shè)法讓學(xué)生在學(xué)習(xí)中樹立信心,感受學(xué)習(xí)的樂趣。根據(jù)教材內(nèi)容的安排,我以學(xué)生熟悉的畫一次函數(shù)圖象、求一次方程和一次不等式的解為背景知識切入,設(shè)置一個練習(xí)題組,一方面讓學(xué)生總結(jié)復(fù)習(xí)已有知識,為后面學(xué)習(xí)二次不等式的解法打下基礎(chǔ),做好鋪墊,另一方面,使學(xué)生在自己熟悉的問題中首先獲得解題成功的快樂體驗,然后以20xx年江蘇省的一道高考試題為引子,引入本節(jié)課的新授內(nèi)容。對于本題,引導(dǎo)學(xué)生,利用上面解練習(xí)題組1的方法,畫出二次函數(shù)圖象來解答。二次函數(shù)是初中數(shù)學(xué)的重要內(nèi)容,本題又給出了函數(shù)圖象上許多點,相信學(xué)生畫出圖象應(yīng)該不成問題,只要教師適當(dāng)點撥,學(xué)生不難得到正確答案。以高考試題為背景引入新課,可以提高學(xué)生興趣,抓住學(xué)生眼球,吸引學(xué)生注意力,還可以讓學(xué)生實實在在感受到,高考題就在我們的課本中,就在我們平常的練習(xí)中。
2.探究交流——發(fā)現(xiàn)規(guī)律。從特殊到一般是我們發(fā)現(xiàn)問題、尋求規(guī)律、揭示問題本質(zhì)最常用的方法之一。我把課本例題1、2編為練習(xí)題組(一),交由學(xué)生用上面解高考題的方法——圖象法去解,學(xué)生由于熟知二次函數(shù)圖象,求解應(yīng)該不會有太大的問題。在這個過程中,教師要啟發(fā)引導(dǎo)學(xué)生注意對比兩題的異同,組織引導(dǎo)學(xué)生展開交流討論,探討第(2)題能不能先把二次項系數(shù)化正以后再構(gòu)造函數(shù)畫圖求解。然后達(dá)成共識,如果二次項系數(shù)為負(fù)數(shù)時,先做等價轉(zhuǎn)化,把二次項系數(shù)化為正數(shù)再解,課本19頁例3、例4作為題組(二),繼續(xù)讓學(xué)生用上面的圖象法,由學(xué)生自己求解,這時我及時提示學(xué)生注意這兩題與題組(一)中兩題的不同(例1、例2對應(yīng)方程都有兩個不等實根,例3對應(yīng)方程有兩相等實根,例4對應(yīng)方程無實根)。兩個題組的練習(xí)之后,可以尋求解二次不等式的一般規(guī)律。
3.啟發(fā)引導(dǎo)——形成結(jié)論。前面兩個題組的四個小題,基本涵蓋了一般一元二次不等式解的各種情況,進(jìn)一步啟發(fā)引導(dǎo)學(xué)生將特殊、具體題目的結(jié)論做一般化總結(jié),與學(xué)生一起就△>0,△<0,△=0的三種情況,總結(jié)二次不等式ax2+bx+c>0或ax2+bx+c<0(a>0)的解的情況應(yīng)該水到渠成。至此,學(xué)生可以感受到,解二次不等式只須①將二次項系數(shù)化為正數(shù),②求解二次方程ax2+bx+c=0的.根。③根據(jù)①后的二次不等式的符號寫出解集即可,必要時也可以結(jié)合圖象寫解集。這樣我們就得到了二次不等式的另外一種解法(可稱為“三步曲”法)。
4.訓(xùn)練小結(jié)——鞏固深化。為了鞏固和加深二次不等式的兩種解法,接下來及時組織學(xué)生進(jìn)行課堂練習(xí),完成課本21頁練習(xí)1—4題。本環(huán)節(jié)請不同層次的學(xué)生在黑板上書寫解題過程,之后師生共同糾正問題,規(guī)范解題過程的書寫。
5.延伸拓寬——提高能力。課堂教學(xué)既要面向全體學(xué)生,又應(yīng)關(guān)注學(xué)生的個體差異。體現(xiàn)分類推進(jìn),分層教學(xué)的原則。為此,我又設(shè)計了一個提高練習(xí)題組,共有三道備選題目,以供程度較好學(xué)有余力的學(xué)生能夠更好的展示自己的解題能力,取得更進(jìn)一步的提高。
一元二次不等式課件 篇10
展過程一元二次不等式教學(xué)設(shè)計
一、教學(xué)內(nèi)容分析:
1、教材地位和作用
本節(jié)課是數(shù)學(xué)(基礎(chǔ)模塊)上冊第二章第三節(jié)《一元二次不等式》。從內(nèi)容上看它是我們初中學(xué)過的一元一次不等式的延伸,同時它也與一元二次方程、二次函數(shù)之間聯(lián)系緊密,涉及的知識面較多。從思想層面看,本節(jié)課突出本現(xiàn)了數(shù)形結(jié)合思想。同時一元二次不等式是解決函數(shù)定義域、值域等問題的重要工具,因此本節(jié)課在整個中學(xué)數(shù)學(xué)中具有較重要的地位和作用。
2、教學(xué)目標(biāo)
知識目標(biāo):正確理解一元二次不等式、一元二次方程、二次函數(shù)的關(guān)系。熟練掌握一元二次不等式的解法。
能力目標(biāo):培養(yǎng)數(shù)形結(jié)合思想、抽象思維能力和形象思維能力。
思想目標(biāo):在教學(xué)中滲透由具體到抽象,由特殊到一般,類比猜想、等價轉(zhuǎn)化的數(shù)學(xué)思想方法。
情感目標(biāo):通過具體情境,使學(xué)生體驗數(shù)學(xué)與實踐的緊密聯(lián)系,感受數(shù)學(xué)魅力,激發(fā)學(xué)生求知欲望。
3、重難點
重點:一元二次不等式的解法。
難點:一元二次方程,一元二次不等式與二次函數(shù)的關(guān)系。
二、學(xué)生情況分析:
我們的學(xué)生是在學(xué)習(xí)了一元一次不等式,一元一次方程、一元一次函數(shù),一元二次方程的基礎(chǔ)上學(xué)習(xí)一元二次不等式。但大都數(shù)學(xué)生的基礎(chǔ)都不是很好,解一元二次方程有一定的困難。
三、教學(xué)環(huán)境分析:教學(xué)環(huán)境應(yīng)包括和諧的師生關(guān)系、多媒體的合理應(yīng)用、良好的課堂組織、合理的問題情境。創(chuàng)設(shè)和諧的師生關(guān)系有利于提高學(xué)習(xí)效率,我們學(xué)校要建立和諧的師生關(guān)系是需要花很多心思的,特別是就業(yè)班的同學(xué),且要有一個相當(dāng)長的適應(yīng)時間。我們學(xué)校的每位老師都有手提電腦,每間教室都有寬屏電子顯示器,老師都能熟練掌握多媒體設(shè)備的運(yùn)用。運(yùn)用多媒體教學(xué)效果好、學(xué)生容易理解、學(xué)習(xí)的積極性高。上課時比較注意創(chuàng)設(shè)合適的問題情境,效果會不錯,學(xué)生從生活實際出發(fā),回答所提的問題,不知不覺學(xué)習(xí)了新的知識,他們不會感覺到學(xué)習(xí)疲勞,反而能積極主動地學(xué)習(xí)。
四、教學(xué)目標(biāo)分析:
知識與技能:正確理解一元二次不等式、一元二次方程、二次函數(shù)的關(guān)系。熟練掌握一元二次不等式的解法。
過程與方法:通過看圖象找解集,培養(yǎng)學(xué)生從從形到數(shù)的轉(zhuǎn)化能力,從具體到抽象、從特殊到一般的歸納概括能力;通過對問題的思考、探究、交流,培養(yǎng)學(xué)生良好的數(shù)學(xué)交流能力,增強(qiáng)其數(shù)形結(jié)合的思維意識。在教學(xué)中滲透由具體到抽象,由特殊到一般,類比猜想、等價轉(zhuǎn)化的數(shù)學(xué)思想方法。
情感態(tài)度與價值觀:通過具體情境,使學(xué)生體驗數(shù)學(xué)與實踐的緊密聯(lián)系,激發(fā)學(xué)生學(xué)習(xí)研究一元二次不等式的積極性和對數(shù)學(xué)的情感,使學(xué)生充分體驗獲取知識的成功感受;在探究、討論、交流過程中培養(yǎng)學(xué)生的合作意識和團(tuán)隊精神,使其養(yǎng)成嚴(yán)謹(jǐn)?shù)闹螌W(xué)態(tài)度和良好的思維習(xí)慣。
一元二次不等式課件 篇11
《一元二次不等式及其解法(第1課時)》教學(xué)設(shè)計
Eric 一 內(nèi)容分析
本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續(xù)和深化,對已學(xué)習(xí)過的集合知識的鞏固和運(yùn)用具有重要的作用,也與后面的函數(shù)、數(shù)列、三角函數(shù)、線形規(guī)劃、直線與圓錐曲線以及導(dǎo)數(shù)等內(nèi)容密切相關(guān)。許多問題的解決都會借助一元二次不等式的解法。因此,一元二次不等式的解法在整個高中數(shù)學(xué)教學(xué)中具有很強(qiáng)的基礎(chǔ)性,體現(xiàn)出很大的工具作用。
二 學(xué)情分析
學(xué)生已經(jīng)掌握了高中所學(xué)的基本初等函數(shù)的圖象及其性質(zhì), 能利用函數(shù)的圖象及其性質(zhì)解決一些問題。學(xué)生知道不等關(guān)系, 掌握了不等式的性質(zhì), 通過這部分內(nèi)容的學(xué)習(xí), 學(xué)生將學(xué)會利用二次函數(shù)的圖象, 通過數(shù)形結(jié)合的思想, 掌握一元二次不等式的解法。
三 教學(xué)目標(biāo)
1.知識與技能目標(biāo):(1)熟練應(yīng)用二次函數(shù)圖象解一元二次不等式的方法(2)了解一元二次不等式與相應(yīng)函數(shù), 方程的聯(lián)系 2.過程與方法:(1)通過學(xué)生已學(xué)過的一元一次不等式為例引入一元二次不等式的有關(guān)概及解法(2)讓學(xué)生觀察二次函數(shù),在此基礎(chǔ)上, 找到一元二次不等式的解法并掌握此解法(3)在學(xué)生尋找一元二次不等式的過中程中培養(yǎng)學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想 3.情感與價值目標(biāo):(1)通過新舊知識的聯(lián)系獲取新知,使學(xué)生體會溫故而知新的道理
(2)通過對解不等式過程中等與不等對立統(tǒng)一關(guān)系的認(rèn)識,向?qū)W生逐步滲透辨證唯物主義思想。
(3)在教師的啟發(fā)引導(dǎo)下,學(xué)生自主探究,交流討論,培養(yǎng)學(xué)生的合作意識和創(chuàng)新精神。
四 教學(xué)重點、難點 1.重點
一元二次不等式的解法 2.難點
理解元二次方程與一元二次不等式解集的關(guān)系
五 教學(xué)方法
啟發(fā)式教學(xué)法,討論法,講授法
六 教學(xué)過程
1.創(chuàng)設(shè)情景,提出問題(約10分鐘)
師:在初中,我們解過一元一次不等式,如解不等式x – 1 > 0,現(xiàn)在請同學(xué)們先畫出函數(shù)y = x – 1 的圖象,并通過觀察圖象回答以下問題: 1)x 為何值時,y = 0;2)x 為何值時,y > 0;3)x 為何值時,y 0的解集能從函數(shù)y = x – 1上看出來嗎?
學(xué)生畫圖,思考。先把問題交給學(xué)生自主探究,過一段時間,再小組交流,此間教師巡視并指導(dǎo)。提問學(xué)生代表。
通過對上述問題的探究,學(xué)生得出以下結(jié)論:
因為上述方程x – 1 = 0以及不等式x – 1 > 0的左邊恰好是上述函數(shù)y = x3x – 2 > 0;2)4x23x – 2 = 0的解是x1 =-1/2, x2 = 2.所以2x24x + 1 = 0 的解是x1 = x2 = 1/2, 所以不等式4x22x + 3
練習(xí):課本80頁練習(xí)第1題(1)-(3)【靈活掌握】.師:今天我們這節(jié)課的內(nèi)容有兩個: 1)會一元二次不等式的解法 2)理解三個“二次”的關(guān)系
作業(yè):課本第80頁 習(xí)題 A
4.板書設(shè)計
§ 一元二次不等式及其解法
解不等式x2 – x – 6 > 0, 請先畫出二次函數(shù) y = x2 – x – 6的圖像,并回答以下問題: 1)x 為何值時,y = 0;y > 0;y 0的解集呢?
七 教學(xué)反思
組1、2題 例,解不等式:
1)2x24x + 1 > 0;3)-x2 + 2x – 3
解:1)因為Δ =(-3)2 – 4×2×(-2)= 25 > 0, 方程的2x23x – 2 > 0的解集是{x| x1 2}.2)因為Δ = 0,方程4x24x + 1 > 0的解集是{x|x ≠ 1/2}.
一元二次不等式課件 篇12
各位評委、各位老師:
大家好!
我叫,來自。今天我說課的課題是《一元二次不等式的解法》(第一課時)。下面我將圍繞本節(jié)課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個問題,從教材內(nèi)容分析、教法學(xué)法分析、教學(xué)過程分析和課堂意外預(yù)案等幾個方面逐一加以分析和說明。
一、教材內(nèi)容分析:
1、本節(jié)課內(nèi)容在整個教材中的地位和作用。
概括地講,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續(xù)和深化,對已學(xué)習(xí)過的集合知識的鞏固和運(yùn)用具有重要的作用,也與后面的函數(shù)、數(shù)列、三角函數(shù)、線形規(guī)劃、直線與圓錐曲線以及導(dǎo)數(shù)等內(nèi)容密切相關(guān)。許多問題的解決都會借助一元二次不等式的解法。因此,一元二次不等式的解法在整個高中數(shù)學(xué)教學(xué)中具有很強(qiáng)的基礎(chǔ)性,體現(xiàn)出很大的工具作用。
2、教學(xué)目標(biāo)定位。
根據(jù)教學(xué)大綱要求、高考考試大綱說明、新課程標(biāo)準(zhǔn)精神、高一學(xué)生已有的知識儲備狀況和學(xué)生心理認(rèn)知特征,我確定了四個層面的教學(xué)目標(biāo)。第一層面是面向全體學(xué)生的知識目標(biāo):熟練掌握一元二次不等式的兩種解法,正確理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系。第二層面是能力目標(biāo),培養(yǎng)學(xué)生運(yùn)用數(shù)形結(jié)合與等價轉(zhuǎn)化等數(shù)學(xué)思想方法解決問題的能力,提高運(yùn)算和作圖能力。第三層面是德育目標(biāo),通過對解不等式過程中等與不等對立統(tǒng)一關(guān)系的認(rèn)識,向?qū)W生逐步滲透辨證唯物主義思想。第四層面是情感目標(biāo),在教師的啟發(fā)引導(dǎo)下,學(xué)生自主探究,交流討論,培養(yǎng)學(xué)生的合作意識和創(chuàng)新精神。
3、教學(xué)重點、難點確定。
本節(jié)課是在復(fù)習(xí)了一次不等式的解法之后,利用二次函數(shù)的圖象研究一元二次不等式的解法。只要學(xué)生能夠理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系,并利用其關(guān)系解不等式即可。因此,我確定本節(jié)課的教學(xué)重點為一元二次不等式的解法,關(guān)鍵是一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系。
二、教法學(xué)法分析:
數(shù)學(xué)是發(fā)展學(xué)生思維、培養(yǎng)學(xué)生良好意志品質(zhì)和美好情感的重要學(xué)科,在教學(xué)中,我們不僅要使學(xué)生獲得知識、提高解題能力,還要讓學(xué)生在教師的啟發(fā)引導(dǎo)下學(xué)會學(xué)習(xí)、樂于學(xué)習(xí),感受數(shù)學(xué)學(xué)科的人文思想,使學(xué)生在學(xué)習(xí)中培養(yǎng)堅強(qiáng)的意志品質(zhì)、形成良好的道德情感。為了更好地體現(xiàn)課堂教學(xué)中“教師為主導(dǎo),學(xué)生為主體”的教學(xué)關(guān)系和“以人為本,以學(xué)定教”的教學(xué)理念,在本節(jié)課的教學(xué)過程中,我將緊緊圍繞教師組織——啟發(fā)引導(dǎo),學(xué)生探究——交流發(fā)現(xiàn),組織開展教學(xué)活動。我設(shè)計了①創(chuàng)設(shè)情景——引入新課,②交流探究——發(fā)現(xiàn)規(guī)律,③啟發(fā)引導(dǎo)——形成結(jié)論,④練習(xí)小結(jié)——深化鞏固,⑤思維拓展——提高能力,五個環(huán)環(huán)相扣、層層深入的教學(xué)環(huán)節(jié),在教學(xué)中注意關(guān)注整個過程和全體學(xué)生,充分調(diào)動學(xué)生積極參與教學(xué)過程的每個環(huán)節(jié)。
不等式課件精選九篇
為了促進(jìn)學(xué)生掌握上課知識點,老師需要提前準(zhǔn)備教案,老師在寫教案課件時還需要花點心思去寫。?教案和課件優(yōu)化可使教學(xué)任務(wù)的完成更加精細(xì)化。幼兒教師教育網(wǎng)小編特意為大家收集整理了“不等式課件”,歡迎參考愿您成為更好的自己!
不等式課件 篇1
不等式的性質(zhì) 教學(xué)設(shè)計
十六中 尚進(jìn)軍
【教學(xué)重點與難點】
教學(xué)重點:掌握不等式的三條基本性質(zhì),尤其是不等式的基本性質(zhì)3 教學(xué)難點:正確應(yīng)用不等式的三條基本性質(zhì)進(jìn)行不等式變形 【教學(xué)目標(biāo)】
1、探索并掌握不等式的基本性質(zhì)
2、會用不等式的基本性質(zhì)進(jìn)行化簡 【教學(xué)方法】
通過觀察、分析、討論,引導(dǎo)學(xué)生歸納總結(jié)出不等式的三條基本性質(zhì),從具體上升到理論,再由理論指導(dǎo)具體的練習(xí),從而強(qiáng)化學(xué)生對知識的理解與掌握.
【教學(xué)過程】
一、創(chuàng)設(shè)情境 復(fù)習(xí)引入
(設(shè)計說明:設(shè)置以下習(xí)題是為了溫故而知新,為學(xué)習(xí)本節(jié)內(nèi)容提供必要的知識準(zhǔn)備.)問題:
1、什么是等式?等式的基本性質(zhì)是什么?
2、什么是不等式?
3、用“>”或“<”填空.(1)3
2×5 3×5
2×(-1)3×(-1)3-5 7-5 2÷2 3÷2 2×(-5)3×(-5)3+a 7+a
2÷(-2)3÷(-2)(教學(xué)說明: 復(fù)習(xí)等式的基本性質(zhì)后學(xué)生自然會聯(lián)想到,不等式是否有與等式相類似的性質(zhì),從而引起學(xué)生的探究欲望.接著問題3為學(xué)生探究不等式的性質(zhì)提供了載體,通過觀察,尋找規(guī)律,得出不等式的性質(zhì).)
二、師生互動,探索新知
1、不等式的基本性質(zhì)
問題1:觀察思考問題3,猜想出不等式的性質(zhì)
先讓學(xué)生獨立思考,后合作交流,通過充分討論,類比等式性質(zhì)得出不等式的性質(zhì).觀察時,引導(dǎo)學(xué)生注意不等號的方向,通過(1)題學(xué)生容易得出不等式性質(zhì)1: 不等式基本性質(zhì)1 不等式兩邊加(或減)同一個數(shù)(或式子),不等號的方向不變. 比較(2)、(3)題,注意觀察不等號方向,并思考不等號方向的改變與什么有關(guān)?由學(xué)生概括總結(jié),教師補(bǔ)充完善得出: 不等式基本性質(zhì)2 不等式兩邊乘(或除以)同一個正數(shù),不等號的方向不變. 不等式基本性質(zhì)3 不等式兩邊乘(或除以)同一個負(fù)數(shù),不等號的方向改變.
問題2:將不等式-2<6兩邊都加上7,-9,兩邊都乘3,-3試一試,進(jìn)一步驗證上面得出的三條結(jié)論. 教師 強(qiáng)調(diào)指出:不等式的三條基本性質(zhì)實質(zhì)上是對不等式兩邊進(jìn)行“+”、“-”、“×”、“÷”四則運(yùn)算,當(dāng)進(jìn)行“+”、“-”法時,不等號方向不變;當(dāng)乘(或除以)同一個正數(shù)時,不等號方向不變;只有當(dāng)乘(或除以)同一個負(fù)數(shù)時,不等號的方向才改變.
問題3:嘗試用數(shù)學(xué)式子表示不等式的三條基本性質(zhì). 學(xué)生思考出答案,教師訂正,最后得出:(1)如果a>b,那么a±c>b±c(2)如果a>b,c>0那么ac>bc(或>)(3)如果a>b,ca” 或“x26;(2)3x50;(4)-4x>3.解:(l)根據(jù)不等式基本性質(zhì)1,不等式的兩邊都加上7,不等號的方向不變. 得 x-7+7>26 +>33(2)根據(jù)不等式基本性質(zhì)1,兩邊都減去2x,不等號的方向不變,得3x-2x75,不等號的方向不變,得(4)根據(jù)不等式基本性質(zhì)3,兩邊都除以-4,不等號的方向改變,得x(教學(xué)說明:這些不等式比較簡單,可以利用不等式的性質(zhì)直接求解,從而加深對這些性質(zhì)的認(rèn)識.教師板書(1)題解題過程.(2)(3)(4)題由學(xué)生在練習(xí)本上完成,指定三個學(xué)生板演,然后師生共同判斷板演是否正確.解題時要引導(dǎo)學(xué)生與解一元一次方程的思路進(jìn)行對比,有助于加強(qiáng)知識之間的前后聯(lián)系,突出新知識的特點,并將原題與“x>a” 或“xc, a+c>b, b+c>a 我們現(xiàn)在求的是兩邊之差與第三邊的關(guān)系,所以由不等式的性質(zhì)1將上式變形為: 由a +b>c得a>c-b, b>c-a.同理,由a+c>b, b+c>a可得c>b-a, b>a-c,c>a-b, a>b-c.這就是說,三角形中任意兩邊之差小于第三邊.(教學(xué)說明:此問題應(yīng)用不等式的性質(zhì)由“三角形的任意兩邊之和大于第三邊”得出“三角形中任意兩邊之差小于第三邊”這個與已有結(jié)論等價的新結(jié)論.“三角形的任意兩邊之和大于第三邊”對應(yīng)的是三個形式一樣的不等式,而不是一個不等式.由這三個不等式再推出“三角形中任意兩邊之差小于第三邊”.為了加深學(xué)生的感性認(rèn)識,可以通過測量的方法驗證這個結(jié)論.)三、鞏固訓(xùn)練,熟練技能:1、如果a>b,那么(1)a-3 b-3,(2)2a 2b(3)-3a-3b,(4)a-b 0(5)(6)-b_____-、在下列各題橫線上填入不等號,并說明是根據(jù)不等式的哪一條基本性質(zhì).(1)若a–3<9,則a_____12;(2)若-a<10,則a_____–10;(3)若a>–1,則a_____–4;(4)若-a>0,則a_____0.3、利用不等式的性質(zhì)解下列不等式,并在數(shù)軸上表示解集(解未知數(shù)為x的不等式,就是要使不等式逐步化為“x>a”或“x<a”的形式)(1)x-1<0;(2)x>-x+6;(3)3x>7;(4)-x<-3.(教學(xué)說明:這些練習(xí)進(jìn)一步加深了學(xué)生對不等式性質(zhì)的理解,做此練習(xí)題時,應(yīng)讓學(xué)生注意觀察它們是應(yīng)用不等式的哪條性質(zhì),是怎樣由已知變形得到的.注意應(yīng)用不等式性質(zhì)3時,不等號要改變方向.做第3題時要引導(dǎo)學(xué)生與解一元一次方程的思路進(jìn)行對比,讓學(xué)生認(rèn)識到應(yīng)用不等式的性質(zhì)1變形,相當(dāng)于移項.)四、總結(jié)反思,課堂小結(jié)1、不等式的基本性質(zhì)是什么?如何用數(shù)學(xué)式子表示?2、在本節(jié)課的學(xué)習(xí)中,你還有什么疑惑? 3.主要用到的思想方法是類比思想.4.注意的問題: 當(dāng)不等式兩邊同乘(或除以)同一個數(shù)時,一定要看清是正數(shù)還是負(fù)數(shù),若是負(fù)數(shù),要變兩個號,一個性質(zhì)符號,另一個是不等號,對于未給定范圍的字母,應(yīng)分情況討論.六、布置課后作業(yè):1、課本127頁練習(xí)2、課本128習(xí)題的5、6、7題 【評價與反思】通過具體的事例觀察并歸納出不等式的三條基本性質(zhì),引導(dǎo)學(xué)生用數(shù)學(xué)式子表示三條基本性質(zhì),同時注意將不等式的三條基本性質(zhì)與等式的基本性質(zhì)進(jìn)行比較,以加深學(xué)生的理解.在教學(xué)過程中,注重培養(yǎng)學(xué)生運(yùn)用類比方法觀察、分析、解決問題的能力及歸納總結(jié)概括的能力.同時培養(yǎng)了學(xué)生積極主動的參與意識和勇敢嘗試、探索的精神.
不等式課件 篇2
本節(jié)教學(xué)的重點是不等式的解集的概念及在數(shù)軸上表示不等式的解集的方法.難點為不等式的解集的概念.
相同點:定義方式相同(使方程成立的未知數(shù)的值,叫做方程的解);解的表示方法也相同.
不同點:解的個數(shù)不同,一般地,一個不等式有無數(shù)多個解,而一個方程只有一個或幾個解,例如, 能使不等式 成立,那么 是不等式的一個解,類似地 等也能使不等式 成立,它們都是不等式 的解,事實上,當(dāng) 取大于 的數(shù)時,不等式 都成立,所以不等式 有無數(shù)多個解.
不等式的解與不等式的解集是兩個不同的概念,不等式的解是指滿足這個不等式的未知數(shù)的某個值,而不等式的解集,是指滿足這個不等式的未知數(shù)的所有的值,不等式的所有解組成了解集,解集中包括了每一個解.
注意:不等式的解集必須滿足兩個條件:第一,解集中的任何一個數(shù)值,都能使不等式成立;第二,解集外的任何一個數(shù)值,都不能使不等式成立.
一般地,一個含未知數(shù)的不等式有無數(shù)多個解,其解集是某個范圍,這個范圍可用一個最簡單的不等式表示出來,例如,不等式 的解集是 .
如不等式 的解集 ,可以用數(shù)軸上表示4的點的左邊部分表示,因為 包含 ,所以在表示4的點上畫實心圓.
如不等式 的解集 ,可以用數(shù)軸上表示4的點的左邊部分表示,因為 包含 ,所以在表示4的點上畫實心圈.
注意:在數(shù)軸上,右邊的點表示的數(shù)總比左邊的點表示的數(shù)大,所以在數(shù)軸上表示不等式的解集時應(yīng)牢記:大于向右畫,小于向左畫;有等號的畫實心圓點,無等號的畫空心圓圈.
1.使學(xué)生了解不等式的解集、解不等式的概念,會在數(shù)軸上表示出不等式的解集.
2.知道不等式的“解集”與方程“解”的不同點.
通過教學(xué),使學(xué)生能夠正確地在數(shù)軸上表示出不等式的解集,并且能把數(shù)軸上的某部分?jǐn)?shù)集用相應(yīng)的不等式表示.
通過講解不等式的“解集”與方程“解”的關(guān)系,向?qū)W生滲透對立統(tǒng)一的辯證觀點.
通過本節(jié)課的學(xué)習(xí),讓學(xué)生了解不等式的解集可利用圖形來表達(dá),滲透數(shù)形結(jié)合的數(shù)學(xué)美.
2.學(xué)生學(xué)法:明確不等式的解與解集的區(qū)別和聯(lián)系,并能熟練地用數(shù)軸表示不等式的解集,在數(shù)軸上表示不等式的解集時,要特別注意:大于向右畫,小于向左畫;有等號的畫實心圓點,無等號的畫空心圓圈.
不等式課件 篇3
基本不等式是數(shù)學(xué)中一個重要的基礎(chǔ)公式,也是高中數(shù)學(xué)學(xué)習(xí)的重點之一。此公式廣泛應(yīng)用于各種求證、排列、組合、概率等數(shù)學(xué)問題中,具有廣泛的實際應(yīng)用價值。本文將圍繞基本不等式的定義、推導(dǎo)、應(yīng)用和解題技巧進(jìn)行講解。
一、基本不等式的定義
基本不等式又稱柯西-施瓦茨不等式,其一般形式為:
∣∣∣∣∑iaibi∣∣∣∣∣≤∣∣∣∣∑iai∣∣∣∣∣∣∣∣∣∑ibi∣∣∣∣∣
其中a1,a2,…,an和b1,b2,…,bn為任意實數(shù)。該不等式的本質(zhì)含義是,在平面直角坐標(biāo)系中,向量間的內(nèi)積不大于它們模的乘積之積,并且當(dāng)且僅當(dāng)向量線性相關(guān)時取等號。
二、基本不等式的推導(dǎo)
基本不等式的推導(dǎo)涉及到向量的概念。假設(shè)有兩個n維向量a和b,它們的內(nèi)積為∑iaibi,則它們的長度分別為:|a|=√∑iai2和|b|=√∑ibi2。
將a和b定義為Rn中的兩個向量,則它們的夾角為θ,則有:
cosθ=∑iaibi/|a||b|
通過分析cosθ的大小關(guān)系,顯然有:
?1≤cosθ≤1
進(jìn)一步得到基本不等式:
|∑iaibi|≤∣∣∣∣∑iai∣∣∣∣∣∣∣∣∑ibi∣∣∣∣∣
三、基本不等式的應(yīng)用
基本不等式廣泛應(yīng)用于各種求證、排列、組合、概率等數(shù)學(xué)問題中,下面將分別介紹它們的應(yīng)用。
1. 求證
基本不等式可以用于求證數(shù)學(xué)中的一些定理,比如互余等比數(shù)列的和定理。具體應(yīng)用時,我們可以將等比數(shù)列拆成兩個向量,然后應(yīng)用基本不等式即可得到所證定理。
2. 排列組合
在排列組合問題中,基本不等式可以幫助我們確定最優(yōu)解,以最小或最大值為目標(biāo)得到所需的數(shù)字。例如,在n個數(shù)字中有幾對數(shù)對,他們之間的差值恰好為k,可以通過將原問題轉(zhuǎn)換為求兩個向量之間的夾角,然后應(yīng)用基本不等式進(jìn)行求解。
3. 概率
在概率問題中,基本不等式可以用于推算隨機(jī)事件中不等的概率值,例如玩牌游戲中的胡牌概率等。我們可以將每個事件看作向量,然后使用基本不等式計算它們的夾角,從而得到相應(yīng)的概率值。
四、基本不等式的解題技巧
基本不等式的應(yīng)用需要掌握一些解題技巧。下面列舉一些常用的技巧:
1. 將數(shù)列表示成向量
在排列組合問題中,將數(shù)列表示成向量,有利于方便運(yùn)用基本不等式進(jìn)行計算。
2. 極小化或極大化
當(dāng)問題中要求最小或最大值時,我們可以使用極小化或極大化的思路,以求解最優(yōu)解。
3. 利用對稱性
當(dāng)有對稱條件時,可以運(yùn)用基本不等式中的對稱性質(zhì),簡化數(shù)學(xué)推理。
4. 運(yùn)用方法的差異性
在某些情況下,我們可以發(fā)現(xiàn)數(shù)列的算術(shù)平均數(shù)和幾何平均數(shù)在大小方面的差異,從而確定使用哪個方法進(jìn)行計算。
綜上所述,基本不等式是高中數(shù)學(xué)學(xué)習(xí)的重點之一,應(yīng)用范圍廣泛。掌握了基本不等式的定義、推導(dǎo)、應(yīng)用和解題技巧,能夠在數(shù)學(xué)競賽中取得更好的成績,也有利于我們理解、應(yīng)用其它數(shù)學(xué)定理。
不等式課件 篇4
《不等式的性質(zhì)(1)》教學(xué)設(shè)計
一、引入
展示任務(wù)單的數(shù)據(jù)分析,向?qū)W生明確本堂課的教學(xué)內(nèi)容。
二、預(yù)習(xí)檢測
學(xué)生回答“什么是不等式的性質(zhì)” 不等式的性質(zhì)1 不等式兩邊加(或減)同一個數(shù)(或式子),不等號的方向不變 不等式的性質(zhì)2 不等式兩邊乘(或除以)同一個正數(shù),不等號的方向不變 不等式的性質(zhì)3 不等式兩邊乘(或除以)同一個負(fù)數(shù),不等號的方向改變
三、應(yīng)用1:利用不等式的性質(zhì)比較大小
【例1】若a?b,判斷3?2a與3?2b的大小關(guān)系.小結(jié):利用不等式的性質(zhì)比較大小的一般思路: 利用不等式的性質(zhì)將“已知”逐步化成“目標(biāo)
(1)教師對任務(wù)單中錯誤率較高的題目進(jìn)行講解;
(2)設(shè)置類似的問題作為例題,并進(jìn)行鞏固訓(xùn)練和變式訓(xùn)練。
【鞏固】(1)若3a?4?3b?4,則a___b;(2)若?5a?7??5b?7,則a___?b,則: 【變式一】若 ①(k2?1)a___(k2?1)b ②1?k2a___1?k2b
【變式二】若a?b,試比較ka與kb的大小.【鞏固】(1)若a?b,且(k?1)a?(k?1)b,則k的取值范圍是______.1(2)由kx?1變形可得x?,則k的取值范圍是________.k
四、應(yīng)用2:利用不等式的性質(zhì)解不等式
(1)針對任務(wù)單中學(xué)生解不等式時在步驟中出現(xiàn)的問題,教師規(guī)范解題步驟;
(2)教師分享某位同學(xué)任務(wù)單中對“不等式的性質(zhì)與等式性質(zhì)的異同?”的回答,小組討論利用不等式的性質(zhì)解不等式步驟中需要注意的問題;(3)學(xué)生綜合范例和討論結(jié)果,進(jìn)行鞏固訓(xùn)練和變式訓(xùn)練。【例2】利用不等式的性質(zhì)解不等式:4y?12??2?3y.【鞏固】13用不等式的性質(zhì)解不等式:y?2?y?522 【變式】13已知y?2?y?5,化簡y?3?(6?2y)
五、課堂小結(jié)
小組討論分享:通過本節(jié)課的學(xué)習(xí),“我知道了??”“我掌握了??”。
六、課堂檢測
學(xué)生獨立完成課堂檢測,由數(shù)據(jù)反饋出本堂課的達(dá)成度
七、課后思考 布置課后思考題
利用不等式性質(zhì)1,比較2a與a的大小(a?0).2,比較2a與a的大小(a?0).利用不等式性質(zhì)
不等式課件 篇5
基本不等式是中學(xué)數(shù)學(xué)中比較重要的知識點,它是一條數(shù)學(xué)公式,可以用來證明數(shù)學(xué)上的不等式問題。在中學(xué)階段,我們通常會學(xué)習(xí)到關(guān)于基本不等式的概念、性質(zhì)以及應(yīng)用等方面的知識。接下來,本篇文章將圍繞這一主題展開,詳細(xì)說明基本不等式的相關(guān)知識點和應(yīng)用場景。
一、基本不等式的概念和性質(zhì)
基本不等式實際上是針對于a、b兩個正實數(shù)而言的,它的數(shù)學(xué)表述為:(a+b)2≥4ab 。 這個公式被稱為基本不等式的“基本式”。同時,在這個式子中,等號成立的條件是a=b時。接下來,讓我們來看看基本不等式的一些性質(zhì)。
1.基本不等式的證明:
(a+b)2=a2+2ab+b2≥4ab (由于a2+b2≥2ab)
化簡得:a2+b2≥2ab,即(a-b)2≥0,結(jié)合等式左側(cè)兩邊同時加上4ab,則得到公式(a+b)2≥4ab,也就是基本不等式。
2. 基本不等式的解釋:
從式子來看,基本不等式的左邊是一個完全平方數(shù),即(a+b)2。右邊是4ab。又因為基本不等式中的變量a和b都是正實數(shù),所以無論a和b的大小關(guān)系如何,四倍的乘積4ab一定是大于等于a2+b2、即2ab的。因此,我們可以得到基本不等式的結(jié)論:(a+b)2≥4ab。
3. 基本不等式的應(yīng)用:
基本不等式有非常廣泛的應(yīng)用,其中一些典型的應(yīng)用場景包括以下幾種:
a. 使用基本不等式證明其他不等式:
比如,對于x、y兩個正實數(shù),我們可以將不等式(x-y)2≥0 化簡為x2+y2≥2xy 的形式,然后用上基本不等式,即可快速證明(x-y)2≥0 成立。
b. 使用基本不等式解決實際問題:
比如,用4米長的繩子圍成一個矩形獸欄,求獸欄能夠圍住的最大面積是多少? 我們可以將這個問題轉(zhuǎn)換為求:4m邊長的正方形對面提醒獸欄的最大面積問題。此時,我們可以利用基本不等式,推導(dǎo)出正方形的對角線最大長度即為4√2米,由此可以得出此時正方形的面積即為16平方米,也就是獸欄的最大面積。
c. 使用基本不等式驗證一些數(shù)學(xué)結(jié)論:
比如,我們可以利用基本不等式來驗證任意兩個正實數(shù)的平均數(shù)一定大于等于它們的幾何平均數(shù)。 具體的,對于兩個正實數(shù)a和b,我們可以推導(dǎo)得到:
(a+b)2≥4ab
(a+b)2/4≥ab
(√ab+√ab)2/4≥ab
(?ab) ≥ (a+b)/2
由此可得,兩個正實數(shù)的平均數(shù)一定大于等于它們的幾何平均數(shù),即( a+b)/2≥?ab。
二、基本不等式的應(yīng)用實例
1.題目描述:
小峰有若干元錢,他能夠涵蓋八天的生活物資開銷?,F(xiàn)在,他去買菜了,花掉了R元錢,求他能不能仍然用這筆錢過完余下的那幾天。
2.解題思路:
我們可以設(shè)小峰剩下的錢數(shù)為x,應(yīng)該取得一個不等式來表示這個問題。具體地,設(shè)日均消費為m(m 一定是小于R/x 和x/8之間較小數(shù)),則從第9天開始,小峰所存的錢應(yīng)數(shù)學(xué)表達(dá)式為:
x-R≥m*(8),
x≥m*(8)+R
這是一個關(guān)于x的不等式,為驗證其是否成立,我們需要對它進(jìn)行推導(dǎo)。為了推導(dǎo)方便,我們將不等式變形如下:
m*(8)+R≤x
然后,我們可以利用基本不等式將其化簡為如下形式:
(mx/?8)^2+(Rx/?8)^2≥2mRx/4
由于 x>0,所以令 t = x/?8,則上式化簡為:
(m/2)t^2+(R/2)^2≥tmR
或者
(t-R/m)^2+(m/2)^2≥R^2/ 4m^2
根據(jù)上面的式子,我們可以得出,只要 t≥R/m,即x≥m*(8)+R,則小峰就有足夠的錢過余下的幾天生活了。
3.綜述
基本不等式是非常重要的中學(xué)數(shù)學(xué)知識點,它不僅有較為實際的應(yīng)用場景,還能用于證明和推導(dǎo)其他數(shù)學(xué)結(jié)論。在學(xué)習(xí)基本不等式的時候,我們需要注意,對于不等式的變量,要理解它們所表示的實際含義和邏輯關(guān)系,從而更好地應(yīng)用基本不等式來解決實際問題。
不等式課件 篇6
本節(jié)課的研究是對初中不等式學(xué)習(xí)的延續(xù)和拓展,也是實數(shù)理論的進(jìn)一步發(fā)展.在本節(jié)課的學(xué)習(xí)過程中,將讓學(xué)生回憶實數(shù)的基本理論,并能用實數(shù)的基本理論來比較兩個代數(shù)式的大小.
通過本節(jié)課的學(xué)習(xí),讓學(xué)生從一系列的具體問題情境中,感受到在現(xiàn)實世界和日常生活中存在著大量的不等關(guān)系,并充分認(rèn)識不等關(guān)系的存在與應(yīng)用.對不等關(guān)系的相關(guān)素材,用數(shù)學(xué)觀點進(jìn)行觀察、歸納、抽象,完成量與量的比較過程.即能用不等式或不等式組把這些不等關(guān)系表示出來.
在本節(jié)課的學(xué)習(xí)過程中還安排了一些簡單的、學(xué)生易于處理的問題,其用意在于讓學(xué)生注意對數(shù)學(xué)知識和方法的應(yīng)用,同時也能激發(fā)學(xué)生的學(xué)習(xí)興趣,并由衷地產(chǎn)生用數(shù)學(xué)工具研究不等關(guān)系的愿望.根據(jù)本節(jié)課的教學(xué)內(nèi)容,應(yīng)用再現(xiàn)、回憶得出實數(shù)的基本理論,并能用實數(shù)的基本理論來比較兩個代數(shù)式的大小.
在本節(jié)教學(xué)中,教師可讓學(xué)生閱讀書中實例,充分利用數(shù)軸這一簡單的數(shù)形結(jié)合工具,直接用實數(shù)與數(shù)軸上點的一一對應(yīng)關(guān)系,從數(shù)與形兩方面建立實數(shù)的順序關(guān)系.要在溫故知新的基礎(chǔ)上提高學(xué)生對不等式的認(rèn)識.
1.在學(xué)生了解不等式產(chǎn)生的實際背景下,利用數(shù)軸回憶實數(shù)的基本理論,理解實數(shù)的大小關(guān)系,理解實數(shù)大小與數(shù)軸上對應(yīng)點位置間的關(guān)系.
2.會用作差法判斷實數(shù)與代數(shù)式的大小,會用配方法判斷二次式的大小和范圍.
3.通過溫故知新,提高學(xué)生對不等式的認(rèn)識,激發(fā)學(xué)生的學(xué)習(xí)興趣,體會數(shù)學(xué)的奧秘與數(shù)學(xué)的結(jié)構(gòu)美.
教學(xué)重點:比較實數(shù)與代數(shù)式的大小關(guān)系,判斷二次式的大小和范圍.
思路1.(章頭圖導(dǎo)入)通過多媒體展示衛(wèi)星、飛船和一幅山巒重疊起伏的壯觀畫面,它將學(xué)生帶入“橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同”的大自然和浩瀚的宇宙中,使學(xué)生在具體情境中感受到不等關(guān)系在現(xiàn)實世界和日常生活中是大量存在的,由此產(chǎn)生用數(shù)學(xué)研究不等關(guān)系的強(qiáng)烈愿望,自然地引入新課.
思路2.(情境導(dǎo)入)列舉出學(xué)生身體的高矮、身體的輕重、距離學(xué)校路程的遠(yuǎn)近、百米賽跑的時間、數(shù)學(xué)成績的多少等現(xiàn)實生活中學(xué)生身邊熟悉的事例,描述出某種客觀事物在數(shù)量上存在的不等關(guān)系.這些不等關(guān)系怎樣在數(shù)學(xué)上表示出來呢?讓學(xué)生自由地展開聯(lián)想,教師組織不等關(guān)系的相關(guān)素材,讓學(xué)生用數(shù)學(xué)的觀點進(jìn)行觀察、歸納,使學(xué)生在具體情境中感受到不等關(guān)系與相等關(guān)系一樣,在現(xiàn)實世界和日常生活中大量存在著.這樣學(xué)生會由衷地產(chǎn)生用數(shù)學(xué)工具研究不等關(guān)系的愿望,從而進(jìn)入進(jìn)一步的探究學(xué)習(xí),由此引入新課.
1回憶初中學(xué)過的不等式,讓學(xué)生說出“不等關(guān)系”與“不等式”的異同.怎樣利用不等式研究及表示不等關(guān)系?
2在現(xiàn)實世界和日常生活中,既有相等關(guān)系,又存在著大量的不等關(guān)系.你能舉出一些實際例子嗎?
3數(shù)軸上的任意兩點與對應(yīng)的兩實數(shù)具有怎樣的關(guān)系?
4任意兩個實數(shù)具有怎樣的關(guān)系?用邏輯用語怎樣表達(dá)這個關(guān)系?
活動:教師引導(dǎo)學(xué)生回憶初中學(xué)過的不等式概念,使學(xué)生明確“不等關(guān)系”與“不等式”的異同.不等關(guān)系強(qiáng)調(diào)的是關(guān)系,可用符號“>”“b”“a
教師與學(xué)生一起舉出我們?nèi)粘I钪胁坏汝P(guān)系的例子,可讓學(xué)生充分合作討論,使學(xué)生感受到現(xiàn)實世界中存在著大量的不等關(guān)系.在學(xué)生了解了一些不等式產(chǎn)生的實際背景的前提下,進(jìn)一步學(xué)習(xí)不等式的有關(guān)內(nèi)容.
實例1:某天的天氣預(yù)報報道,最高氣溫32 ℃,最低氣溫26 ℃.
實例2:對于數(shù)軸上任意不同的兩點A、B,若點A在點B的左邊,則xA
實例5:三角形兩邊之和大于第三邊,兩邊之差小于第三邊.
實例6:限速40 km/h的路標(biāo)指示司機(jī)在前方路段行駛時,應(yīng)使汽車的速度v不超過40 km/h.
實例7:某品牌酸奶的質(zhì)量檢查規(guī)定,酸奶中脂肪的含量f應(yīng)不少于2.5%,蛋白質(zhì)的含量p應(yīng)不少于2.3%.
教師進(jìn)一步點撥:能夠發(fā)現(xiàn)身邊的數(shù)學(xué)當(dāng)然很好,這說明同學(xué)們已經(jīng)走進(jìn)了數(shù)學(xué)這門學(xué)科,但作為我們研究數(shù)學(xué)的人來說,能用數(shù)學(xué)的眼光、數(shù)學(xué)的觀點進(jìn)行觀察、歸納、抽象,完成這些量與量的比較過程,這是我們每個研究數(shù)學(xué)的人必須要做的,那么,我們可以用我們所研究過的什么知識來表示這些不等關(guān)系呢?學(xué)生很容易想到,用不等式或不等式組來表示這些不等關(guān)系.那么不等式就是用不等號將兩個代數(shù)式連結(jié)起來所成的式子.如-71+4,2x≤6,a+2≥0,3≠4,0≤5等.
教師引導(dǎo)學(xué)生將上述的7個實例用不等式表示出來.實例1,若用t表示某天的氣溫,則26 ℃≤t≤32 ℃.實例3,若用x表示一個非負(fù)數(shù),則x≥0.實例5,|AC|+|BC|>|AB|,如下圖.
|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.
|AB|-|BC|
實例6,若用v表示速度,則v≤40 km/h.實例7,f≥2.5%,p≥2.3%.對于實例7,教師應(yīng)點撥學(xué)生注意酸奶中的脂肪含量與蛋白質(zhì)含量需同時滿足,避免寫成f≥2.5%或p≥2.3%,這是不對的.但可表示為f≥2.5%且p≥2.3%.
對以上問題,教師讓學(xué)生輪流回答,再用投影儀給出課本上的兩個結(jié)論.
討論結(jié)果:
(1)(2)略;(3)數(shù)軸上任意兩點中,右邊點對應(yīng)的實數(shù)比左邊點對應(yīng)的實數(shù)大.
(4)對于任意兩個實數(shù)a和b,在a=b,a>b,a0a>b;a-b=0a=b;a-b
活動:通過兩例讓學(xué)生熟悉兩個代數(shù)式的大小比較的基本方法:作差,配方法.
點評:本節(jié)兩例的求解,是借助因式分解和應(yīng)用配方法完成的,這兩種方法是代數(shù)式變形時經(jīng)常使用的方法,應(yīng)讓學(xué)生熟練掌握.
1.若f(x)=3x2-x+1,g(x)=2x2+x-1,則f(x)與g(x)的大小關(guān)系是( )
解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).
2.已知x≠0,比較(x2+1)2與x4+x2+1的大小.
解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.
∵x≠0,得x2>0.從而(x2+1)2>x4+x2+1.
例2比較下列各組數(shù)的大小(a≠b).
(1)a+b2與21a+1b(a>0,b>0);
(2)a4-b4與4a3(a-b).
活動:比較兩個實數(shù)的大小,常根據(jù)實數(shù)的運(yùn)算性質(zhì)與大小順序的關(guān)系,歸結(jié)為判斷它們的差的符號來確定.本例可由學(xué)生獨立完成,但要點撥學(xué)生在最后的符號判斷說理中,要理由充分,不可忽略這點.
解:(1)a+b2-21a+1b=a+b2-2aba+b=a+b2-4ab2a+b=a-b22a+b.
∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴a-b22a+b>0,即a+b2>21a+1b.
(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)
=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]
=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].
∵2a2+(a+b)2≥0(當(dāng)且僅當(dāng)a=b=0時取等號),
又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2]
∴a4-b4
點評:比較大小常用作差法,一般步驟是作差——變形——判斷符號.變形常用的手段是分解因式和配方,前者將“差”變?yōu)椤胺e”,后者將“差”化為一個或幾個完全平方式的“和”,也可兩者并用.
已知x>y,且y≠0,比較xy與1的大小.
活動:要比較任意兩個數(shù)或式的大小關(guān)系,只需確定它們的差與0的大小關(guān)系.
∵x>y,∴x-y>0.
當(dāng)y
當(dāng)y>0時,x-yy>0,即xy-1>0.∴xy>1.
點評:當(dāng)字母y取不同范圍的值時,差xy-1的正負(fù)情況不同,所以需對y分類討論.
例3建筑設(shè)計規(guī)定,民用住宅的窗戶面積必須小于地板面積.但按采光標(biāo)準(zhǔn),窗戶面積與地板面積的比值應(yīng)不小于10%,且這個比值越大,住宅的采光條件越好.試問:同時增加相等的窗戶面積和地板面積,住宅的采光條件是變好了,還是變壞了?請說明理由.
活動:解題關(guān)鍵首先是把文字語言轉(zhuǎn)換成數(shù)學(xué)語言,然后比較前后比值的大小,采用作差法.
解:設(shè)住宅窗戶面積和地板面積分別為a、b,同時增加的面積為m,根據(jù)問題的要求a
由于a+mb+m-ab=mb-abb+m>0,于是a+mb+m>ab.又ab≥10%,
因此a+mb+m>ab≥10%.
所以同時增加相等的窗戶面積和地板面積后,住宅的采光條件變好了.
點評:一般地,設(shè)a、b為正實數(shù),且a0,則a+mb+m>ab.
已知a1,a2,…為各項都大于零的等比數(shù)列,公比q≠1,則( )
C.a1+a8=a4+a5 D.a1+a8與a4+a5大小不確定
解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4
=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).
∵{an}各項都大于零,∴q>0,即1+q>0.
又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.
1.下列不等式:①a2+3>2a;②a2+b2>2(a-b-1);③x2+y2>2xy.其中恒成立的不等式的個數(shù)為( )
2.比較2x2+5x+9與x2+5x+6的大小.
答案:
1.C解析:∵②a2+b2-2(a-b-1)=(a-1)2+(b+1)2≥0,
③x2+y2-2xy=(x-y)2≥0.
∴只有①恒成立.
2.解:因為2x2+5x+9-(x2+5x+6)=x2+3>0,
所以2x2+5x+9>x2+5x+6.
1.教師與學(xué)生共同完成本節(jié)課的小結(jié),從實數(shù)的基本性質(zhì)的回顧,到兩個實數(shù)大小的比較方法;從例題的活動探究點評,到緊跟著的變式訓(xùn)練,讓學(xué)生去繁就簡,聯(lián)系舊知,將本節(jié)課所學(xué)納入已有的知識體系中.
2.教師畫龍點睛,點撥利用實數(shù)的基本性質(zhì)對兩個實數(shù)大小比較時易錯的地方.鼓勵學(xué)有余力的學(xué)生對節(jié)末的思考與討論在課后作進(jìn)一步的探究.
1.本節(jié)設(shè)計關(guān)注了教學(xué)方法的優(yōu)化.經(jīng)驗告訴我們:課堂上應(yīng)根據(jù)具體情況,選擇、設(shè)計最能體現(xiàn)教學(xué)規(guī)律的教學(xué)過程,不宜長期使用一種固定的教學(xué)方法,或原封不動地照搬一種實驗?zāi)J?各種教學(xué)方法中,沒有一種能很好地適應(yīng)一切教學(xué)活動.也就是說,世上沒有萬能的教學(xué)方法.針對個性,靈活變化,因材施教才是成功的施教靈藥.
2.本節(jié)設(shè)計注重了難度控制.不等式內(nèi)容應(yīng)用面廣,可以說與其他所有內(nèi)容都有交匯,歷來是高考的重點與熱點.作為本章開始,可以適當(dāng)開闊一些,算作拋磚引玉,讓學(xué)生有個自由探究聯(lián)想的平臺,但不宜過多向外拓展,以免對學(xué)生產(chǎn)生負(fù)面影響.
3.本節(jié)設(shè)計關(guān)注了學(xué)生思維能力的訓(xùn)練.訓(xùn)練學(xué)生的思維能力,提升思維的品質(zhì),是數(shù)學(xué)教師直面的重要課題,也是中學(xué)數(shù)學(xué)教育的主線.采用一題多解有助于思維的發(fā)散性及靈活性,克服思維的僵化.變式訓(xùn)練教學(xué)又可以拓展學(xué)生思維視野的廣度,解題后的點撥反思有助于學(xué)生思維批判性品質(zhì)的提升.
1.比較(x-3)2與(x-2)(x-4)的大小.
2.試判斷下列各對整式的大?。?1)m2-2m+5和-2m+5;(2)a2-4a+3和-4a+1.
5.設(shè)a>0,b>0,且a≠b,試比較aabb與abba的大小.
∴(x-3)2>(x-2)(x-4).
=m2.
∵m2≥0,∴(m2-2m+5)-(-2m+5)≥0.
∴m2-2m+5≥-2m+5.
=a2+2.
∵a2≥0,∴a2+2≥2>0.
∴a2-4a+3>-4a+1.
=x24,
又∵x>0,∴x24>0.
∴(1+x2)2>(1+x)2.
由x>0,得1+x2>1+x.
=(x-y)[(x2+y2)-(x+y)2]
=-2xy(x-y).
∵x0,x-y
∴-2xy(x-y)>0.
∴(x2+y2)(x-y)>(x2-y2)(x+y).
5.解:∵aabbabba=aa-bbb-a=(ab)a-b,且a≠b,
當(dāng)a>b>0時,ab>1,a-b>0,
則(ab)a-b>1,于是aabb>abba.
則(ab)a-b>1.
于是aabb>abb a.
綜上所述,對于不相等的正數(shù)a、b,都有aabb>abba.
不等式課件 篇7
《課題:實際問題與一元一次不等式》教學(xué)設(shè)計
【教學(xué)目標(biāo)】:
1.通過列一元一次不等式解決具有不等關(guān)系的實際問題,進(jìn)一步熟練掌握一元一次不等式的解法,體會不等式是解決實際問題的有效的數(shù)學(xué)模型。
2.通過應(yīng)用一元一次不等式解決實際問題,進(jìn)一步強(qiáng)化應(yīng)用數(shù)學(xué)的意識,從而使學(xué)生樂于接觸社會環(huán)境中的數(shù)學(xué)信息,談?wù)摂?shù)學(xué)話題,能夠在數(shù)學(xué)活動中發(fā)揮積極作用。
3.通過探究,增進(jìn)學(xué)生之間的配合,培養(yǎng)學(xué)生敢于面對困難和克服困難的勇氣,樹立學(xué)好數(shù)學(xué)的自信心。
【重點難點】:
重點:由實際問題中的不等關(guān)系列出不等式。
難點:列一元一次不等式描述實際問題中的不等關(guān)系
【教學(xué)過程】:
回顧舊知、引入新課
師:之前我們學(xué)習(xí)過利用一元一次方程解決生活中的銷售問題,現(xiàn)在李老師就來考考大家,請看第一題:
出示幻燈片1
1.一種商品標(biāo)價100元,按標(biāo)價的8折出售,若想單件商品獲利10元,設(shè)進(jìn)價為x元,則可列等式。
(學(xué)生解決并給出合理解釋)
師:那我們一起來回顧一下利用一元一次方程解決實際問題的基本步驟是什么?
學(xué)生回答后,教師總結(jié):
利用一元一次方程解決實際問題的一般步驟:
審、設(shè)、列、解、答
師:好!請看第二題:
2.一種商品標(biāo)價100元,按標(biāo)價的8折出售,若想單件商品獲利不低于10元,設(shè)進(jìn)價為x元,則。
師:相較于第一題,題目發(fā)生了什么變化?
學(xué)生抓住關(guān)鍵詞“不低于”,列出不等式。
師:找到不等關(guān)系,列一元一次不等式也是解決實際問題的常用方法。今天,我們就來學(xué)習(xí)實際問題與一元一次不等式。
出示幻燈片
2小組討論、探究新知
師:馬上就要過春節(jié)了,想要給自己準(zhǔn)備什么禮物?
師:老師也想給可愛的兒子買禮物,通過考察,已經(jīng)知道有兩家超市正在舉行優(yōu)惠活動,咱們一起去逛一逛,好不好?
出示幻燈片3
甲超市說:凡在本超市累計購買100元商品后,再購買的商品按原價的90%收費。
乙超市:凡在本超市累計購買50元商品后,再購買的商品按原價的95%收費
師:李老師覺得甲超市優(yōu)惠,因為打9折?你的意見呢?
(學(xué)生發(fā)表自己的意見)
師:剛才幾位同學(xué)表達(dá)了自己的觀點,可是這僅僅是我們的猜想,解決問題不能只靠猜想,運(yùn)用數(shù)學(xué)知識該如何解決這個問題呢?
出示幻燈片
4下面老師就把時間交給大家,4人一小組展開討論,到底該選擇哪家超市購買才能獲得更大優(yōu)惠?
(學(xué)生討論的過程中,教師主要巡視并和學(xué)生共同探究。)
經(jīng)過探討,小組形成初步想法,小組派代表分享討論結(jié)果,逐一解決列表達(dá)式、分類、建模列不等式、解不等式等題目中難點,教師以板書形式將結(jié)果呈現(xiàn)在黑板上,并引導(dǎo)學(xué)生補(bǔ)充,完善解題過程,并利用多媒體進(jìn)行展示。
學(xué)以致用 挑戰(zhàn)自我?guī)煟和瑢W(xué)們理解得非常到位!那么再碰到類似的問題你能解決了嗎?
出示幻燈片
5我校計劃在暑假期間組織學(xué)生到某地旅游,參加旅游的人數(shù)估計為10~25人,甲、乙兩家旅行社的服務(wù)質(zhì)量相同,且報價都是每人200元.經(jīng)過協(xié)商:甲旅行社表示可給予每位學(xué)生七五折優(yōu)惠;乙旅行社表示可先免去一位學(xué)生的旅游費用,其余學(xué)生八折優(yōu)惠.我校選擇哪一家旅行社支付的旅游費用較少?
學(xué)生獨立思考后進(jìn)行小組討論,選代表上黑板展示。
梳理過程 總結(jié)提高
教師引導(dǎo)學(xué)生回顧兩道題的解題過程,談?wù)劔@得的感悟,學(xué)生獨立思考片刻后進(jìn)行小組交流討論。
出示幻燈片6
回顧這個問題的解題過程,你有哪些感悟呢?
例如:我感受最深的是??
我感到最困難的是??
我發(fā)現(xiàn)生活中??
我學(xué)會了??
布置作業(yè) 測評反饋
出示幻燈片7
作業(yè):
一、在市場上收集兩種手機(jī)收費方式,幫爸爸(媽媽)選擇一種合適的消費方式.二、習(xí)題(134頁)1.(1)(2)5.
不等式課件 篇8
1.使學(xué)生感受到生活中存在著大量的不等關(guān)系,了解不等式和一元一次不等式的意義;
2.讓學(xué)生自發(fā)地尋找不等式的解,會在數(shù)軸上正確地表示出不等式的解集;
3.能夠根據(jù)題意準(zhǔn)確迅速地列出相應(yīng)的不等式。
1.通過汽車行駛過a地這一實例的研究,使學(xué)生體會到數(shù)學(xué)來源于生活,又服務(wù)于生活,培養(yǎng)學(xué)生“學(xué)數(shù)學(xué)、用數(shù)學(xué)”的意識;
2.經(jīng)歷由具體實例建立不等模型的過程,探究不等式的解與解集的不同意義的過程,滲透數(shù)形結(jié)合的思想。
㈢情感、態(tài)度、價值觀:
1.通過對不等式、不等式的解與解集的探究,引導(dǎo)學(xué)生在獨立思考的基礎(chǔ)上積極參與對數(shù)學(xué)問題的討論,培養(yǎng)他們的合作交流意識;
2.讓學(xué)生充分體會到生活中處處有數(shù)學(xué),并能將它們應(yīng)用到生活的各個領(lǐng)域中去。
3.培養(yǎng)學(xué)生類比的思想方法、數(shù)形結(jié)合的思想。
1.教學(xué)重點:不等式、一元一次不等式、不等式解與解集的意義;在數(shù)軸上正確地表示出不等式的解集;
2.教學(xué)難點:不等式解集的意義,根據(jù)題意列出相應(yīng)的不等式。
計算機(jī)、自制cai課件、實物投影儀、三角板等。
教師創(chuàng)設(shè)情境引入,學(xué)生交流探討;師生共同歸納;教師示范畫圖,課件交互式練習(xí)。
〖創(chuàng)設(shè)情境——從生活走向數(shù)學(xué)〗
[多媒體展示]“五·一黃金周”快要到了,蕪湖市某兩個商場為了促銷商品,推行以下促銷方案:①甲商場:購物不超過50元者,不優(yōu)惠;超過50元的,超過部分折優(yōu)惠。②乙商場:購物不超過100元者,不優(yōu)惠;超過100元的,超過部分九折優(yōu)惠。親愛的同學(xué),如果五·一期間,你去購物,選擇到哪個商場,才比較合算呢?
(以上教學(xué)內(nèi)容是向?qū)W生設(shè)疑,激發(fā)學(xué)生探索問題、研究問題的積極性,可以讓學(xué)生討論一會兒)
教師:要想正確地解決這個問題,我們大家就要學(xué)習(xí)第九章《不等式和不等式組》,學(xué)完本章的內(nèi)容后,我相信,聰明的你們一定都會作出正確的選擇,真正地做到既經(jīng)濟(jì)又實惠。
首先,我們來共同學(xué)習(xí)本章的第一節(jié)課——9.1.1節(jié)《不等式及其解集》
〖新課學(xué)習(xí)〗
學(xué)習(xí)目標(biāo):
1.能感受到生活中存在著大量的不等關(guān)系,了解不等式和一元一次不等式和意義;
2.會尋找不等式的解,會在數(shù)軸上正確地表示出不等式的解集;
3.能夠根據(jù)題意準(zhǔn)確迅速地列出相應(yīng)的不等式。
[多媒體展示一段動畫]:引例:一輛勻速行駛的汽車在11:20距離a地50千米,要在12:00之前駛過a地,車速應(yīng)滿足什么條件?
設(shè)車速是x千米/小時,
(1)從時間上看,汽車要在12:00之前駛過a地,則以這個速度行駛50千米所用的時間不到 小時,即
(2)從路程上看,汽車要在12:00之前駛過a地,則以這個速度行駛 小時的路程要超過50千米,即
請同學(xué)們觀察上面的兩個式子,式子左右兩邊的大小關(guān)系是怎樣的? 左右兩邊相等嗎?
在學(xué)生充分發(fā)表自己意見的基礎(chǔ)上,師生共同歸納得出:
用“>”或“<”號表示大小關(guān)系的式子叫做不等式;
用“≠”表示不等關(guān)系的式子也是不等式。
判斷下列式子中哪些是不等式,是不等式的請在題后的括號內(nèi)劃“√”,不是的請劃“×”
(1)3> 2????? (???? ) (2)2a+1> 0?? (???? )?? (3)a+b=b+a? (???? )
(4)x< 2x+1?? (???? )???? (5)x=2x-5??? (???? ) (6)2x+4x< 3x+1 (???? )????????? (7)15≠7+9? (???? )
上面的不等式中,有些不含未知數(shù),有些含有未知數(shù),大家把(2)、(4)、(6)式與(5)式類比,(5)式是一個一元一次方程,能不能給(2)、(4)、(6)式也起個名字呢?
含有一個未知數(shù), 未知數(shù)的次數(shù)是1的不等式,叫做一元一次不等式.
問題2:車速可以是78千米/小時嗎?75千米/小時呢? 72千米/小時呢?
問題3:我們曾經(jīng)學(xué)過“使方程兩邊相等的未知數(shù)的值就是方程的解”,那么我們可以把使不等式成立的未知數(shù)的值叫做什么呢?
(師生共同歸納)使不等式成立的未知數(shù)的值叫做不等式的解。
2.課堂練習(xí)二——動一動腦,動一動手,你一定能算得對。
76, 73, 79, 80, 74.9, 75.1, 90, 60
(學(xué)生做完后,師問):你還能找出這個不等式的其他的解嗎?這個不等式有多少個解?你從中發(fā)現(xiàn)了什么規(guī)律?
(學(xué)生討論后,師生共同總結(jié)):當(dāng)x>75時,不等式 x>50總成立;而當(dāng)x<75或x=75時,不等式 x>50不成立,這就是說,任何一個大于75的數(shù)都是不等式 x>50的解,這樣的解有無數(shù)個。因此,x>75表示了能使不等式 x>50成立的x的取值范圍,叫做不等式 x>50的解的集合,簡稱解集。
我們再回到前面的問題,經(jīng)過剛才的分析,可以知道,要使汽車在12:00之前駛過a地,車速必須大于75千米/小時。
一個含有未知數(shù)的不等式的所有的解,組成了這個不等式的解集。
4.在數(shù)軸上表示不等式的解集;
注意:在表示75的點上畫空心圓圈,表示不包括這一點.
5.課堂練習(xí)三——動一動腦,動一動手,你一定能算得對。
判斷下列數(shù)中哪些是不等式x+3>6的解? 哪些不是?
-4, -2.5,? 0,? 1,? 2.5,? 3,? 3.2,? 4.8,? 8,? 12
求不等式的解集的過程叫做解不等式。
7.課堂練習(xí)四——看誰算得最快最準(zhǔn)。
直接想出不等式的解集,并在數(shù)軸上表示出不等式的解集:
(1) x+3>6;??????? (2)2x<8;?? ?(3)x-2>0
解:(1)x>3;???????? (2)x<4;??? (3)x>2。
1.例用不等式表示:
(1)x與1的和是正數(shù);??????(2)的與的的差是負(fù)數(shù);
(3)的2倍與1的和大于3;(4)的一半與4的差小于的3倍.
解:(1)x+1>0;???????? (2)+b<0;
(3)2+1>3;????? (4)-4<3;
2.課堂練習(xí)五——看誰最列得又快又準(zhǔn)。
用不等式表示:
(1)是正數(shù);??????????(2)是負(fù)數(shù);
(3)與5的和小于7;??(4)與2的差大于-1;
(5)的4倍大于8;??????(6)的一半小于3.
答案;(1)>0;??????? (2)<0;?? (3)+5>0;
學(xué)生小結(jié),師生共同完善:
2.會尋找不等式的解,會在數(shù)軸上正確地表示出不等式的解集;
3.能夠根據(jù)題意準(zhǔn)確迅速地列出相應(yīng)的不等式。
不等式課件 篇9
不等式的性質(zhì)(2)教學(xué)目標(biāo)
1.知識與技能:理解不等式的性質(zhì),會解簡單的一元一次不等式,并能在數(shù)軸上表示出解集。
2.過程與方法:通過經(jīng)歷不等式性質(zhì)的簡單應(yīng)用,積累數(shù)學(xué)活動。通過獨立解題,進(jìn)一步理解不等式的性質(zhì),體會不等式性質(zhì)的價值。
3.情感態(tài)度和價值觀:認(rèn)識到通過觀察、實驗、類比可以獲得數(shù)學(xué)結(jié)論,體驗數(shù)學(xué)活動充滿著探索性和創(chuàng)造性。在獨立思考的基礎(chǔ)上,積極參與對數(shù)學(xué)問題的討論,敢于發(fā)表自己的觀點,學(xué)會分享別人的想法和結(jié)果,并重新審視自己的想法,能從交流中獲益。重點難點
1.重點:不等式的性質(zhì)及其解法. 2.難點:不等式性質(zhì)的探索及運(yùn)用.方法策略
啟發(fā)式教學(xué)法——以設(shè)問和疑問層層引導(dǎo),激發(fā)學(xué)生,啟發(fā)學(xué)生積極思考,培養(yǎng)和發(fā)展學(xué)生的抽象思維能力。
探究教學(xué)法——引導(dǎo)學(xué)生去疑;鼓勵學(xué)生去探; 激勵學(xué)生去思,培養(yǎng)學(xué)生的創(chuàng)造性思維和批判精神。教學(xué)過程:
一、梳理舊知,引出新課
問題1: 在前面的學(xué)習(xí)中,你學(xué)到了不等式的哪些性質(zhì)?(用文字語言敘述)(鼓勵學(xué)生回答問題,用電子白版顯示三條性質(zhì)的符號語言)問題2: 解一元一次方程最終的目的是把方程轉(zhuǎn)化成哪種形式?其主要的理論依據(jù)是什么?
(為問題3做鋪墊)
二、合作交流,探究新知
問題3: 利用不等式的性質(zhì)解下列不等式:
(1)x?7?26(2)3x?2x?1 2(3)x?50(4)?4x?3 3(類比著解一元一次方程的方法教師先解(1),并用數(shù)軸表示其解集,然后讓學(xué)生試解(2)(3)(4)并和同學(xué)交流,最后教師點評。)
思考1:(3)(4)的求解過程,類似于解方程的哪一步變形? 思考2:依據(jù)不等式性質(zhì)3解不等式時應(yīng)注意什么? 隨堂練習(xí):1.完成課本P119練習(xí)1 問題4: 2011年北京的最低氣溫是19℃,最高氣溫是28℃,你能把北京的氣溫用不等式表示出來嗎?
(符號“≥”讀作“大于或等于”,也可以說是“不小于”;符號“≤”讀作“小于或等于”,也可以說是“不大于”.形如a≥b或a≤b的式子也是不等式,它們具有類似前面所說的不等式的性質(zhì)).隨堂練習(xí):完成課本119頁練習(xí)2.問題5: 某長方體形狀的容器長5 cm,寬3 cm,高10 cm.容器內(nèi)原有水的高度為3cm,現(xiàn)準(zhǔn)備向它繼續(xù)注水.用V(單位:cm3)表示新注入水的體積,寫出V的取值范圍.(學(xué)生先合作探究,然后讓學(xué)生交流探究結(jié)果,最后老師講評并強(qiáng)調(diào)在解決實際問題的時候,要考慮取值的現(xiàn)實意義。)
三、歸納完善,豐富新知
1:如何利用不等式的性質(zhì)解簡單不等式? 2:依據(jù)不等式性質(zhì)3解不等式時應(yīng)注意什么? 3:請說明符號“≥”和“≤”的含義?
四、布置作業(yè)
必做題:P120第5,7,8題.選做題:P120第9題
不等式的課件收藏
經(jīng)驗時常告訴我們,做事要提前做好準(zhǔn)備。在幼兒教育工作中,我們都有會準(zhǔn)備一寫需要用到資料。資料包含著人類在社會實踐,科學(xué)實驗和研究過程中所匯集的經(jīng)驗。有了資料的協(xié)助我們的工作會變得更加順利!所以,關(guān)于幼師資料你究竟了解多少呢?小編現(xiàn)在推薦你閱讀一下不等式的課件收藏,相信能對大家有所幫助。
不等式的課件 篇1
基本不等式是初中數(shù)學(xué)比較重要的一個概念,對于求解不等式問題有非常大的作用。在教學(xué)中,老師可以通過多學(xué)示例,呈現(xiàn)形式多樣,讓學(xué)生深刻理解基本不等式的本質(zhì)和應(yīng)用,使學(xué)生在解決實際問題中靈活掌握相關(guān)知識。本文將結(jié)合基本不等式的定義、性質(zhì)和應(yīng)用,探討其相關(guān)主題。
一、基本不等式的定義和性質(zhì)
基本不等式是在解決實際問題時常用到的一種數(shù)學(xué)方法,它可以有效地幫助我們解決很多實際問題。在數(shù)學(xué)中,一般把基本不等式定義為,對于任何正整數(shù)a和b,有下列不等關(guān)系:
(a+b)^2>=4ab
這個不等式在初中數(shù)學(xué)中非常重要,我們還可以把它解釋成下面的形式:對于任何兩個正數(shù)a和b,有下列不等式:
a/b+b/a>=2
這個式子實際上就是基本不等式的一個特例,也說明了基本不等式中的a和b可以指任何兩個正數(shù)。
基本不等式的一些性質(zhì):
1、兩邊同時乘以正數(shù)或是開根號(即不改變不等關(guān)系的實質(zhì))是允許的。
2、當(dāng)a=b時等號成立。
3、當(dāng)a不等于b時,不等號成立。
這些性質(zhì)是我們用基本不等式時需要注意的幾個關(guān)鍵點。如果我們了解了這些基本的性質(zhì),就可以更加靈活地運(yùn)用基本不等式解決實際問題。
二、基本不等式的應(yīng)用
基本不等式的應(yīng)用非常廣泛,例如可以用它來解決以下問題:
1、證明
√(a^2+b^2)>=a/√2+b/√2
這個問題就可以使用基本不等式來證明,首先得到(a+b)^2>=2(a^2+b^2),將式子化簡可得√(a^2+b^2)>=a/√2+b/√2,這就是想要證明的結(jié)論。
2、解決一些最值問題。例如:如何使a+b的值最小?這個問題可以用基本不等式來解決,我們設(shè)a+b=k,那么a+b的平方就是k^2,代入基本不等式中可得出:
k^2>=4ab,即(a+b)^2>=4ab
這個不等式右邊是4ab,左邊則是(a+b)^2,因此a+b的值取得最小值時,應(yīng)當(dāng)使(a+b)^2=4ab,所以a=b,因此a+b的最小值就是2a或是2b。
3、證明一些平方和不等式的結(jié)論。例如:
(a/b)^2+(b/a)^2>=2
這個問題可以通過基本不等式進(jìn)行證明,首先我們設(shè)x=a/b,y=b/a,很顯然有x+y>=2,然后通過簡單的運(yùn)算可得:x^2+y^2>=2,也即(a/b)^2+(b/a)^2>=2。
綜上所述,基本不等式作為初中數(shù)學(xué)比較重要的一部分,其定義、性質(zhì)和應(yīng)用都與實際問題密切相關(guān)。在解決實際問題時,我們可以通過多學(xué)示例,靈活運(yùn)用基本不等式的性質(zhì)和應(yīng)用,進(jìn)而更好地理解其本質(zhì)和應(yīng)用,從而使初中數(shù)學(xué)知識更加牢固。
不等式的課件 篇2
(1)運(yùn)用問題的形式幫助學(xué)生整理全章的內(nèi)容,建立知識體系。
(2)在獨立思考的基礎(chǔ)上,鼓勵學(xué)生開展小組和全班的交流,使學(xué)生通過交流和反思加強(qiáng)對所學(xué)知識的理解和掌握,并逐步建立知識體系。
通過問題情境的設(shè)立,使學(xué)生再現(xiàn)已學(xué)知識,鍛煉抽象、概括的能力。解決問題
通過具體問題來體會知識間的聯(lián)系和學(xué)習(xí)本章所采用的主要思想方法。
通過獨立思考獲取學(xué)習(xí)的成功體驗,通過小組交流培養(yǎng)合作交流意識,通過大膽發(fā)表自己的觀點,增強(qiáng)自信心。
重點:對一元一次不等式基本性質(zhì)的掌握;理解不等式(組)解及解集的含義,會解簡單的一元一不等式(組),并會在數(shù)軸上表示其解集;會解相關(guān)的問題,建立起相關(guān)的知識體系。
不等式有哪些基本性質(zhì)?它與等式的性質(zhì)有什么相同和不同之處?
解一元一次不等式和解一元一次方程有什么異同?引導(dǎo)學(xué)生回憶解一元一次方程的步驟.比較兩者之間的不同學(xué)生舉例回答.
舉例說明在數(shù)軸上如何表示一元一不等式(組)的解集分組競賽.看哪一組出的題型好,全班一起解答.
舉例說明不等式、函數(shù)、方程的聯(lián)系.引導(dǎo)學(xué)生回憶函數(shù)的有關(guān)內(nèi)容.舉例說明三者之間的關(guān)系.小組討論,合作回答.函數(shù)性質(zhì)、圖象
小組交流、討論不等式和函數(shù)、函數(shù)和方程等之間的關(guān)系,分別舉例說明.
布置作業(yè)開動腦筋,勇于表達(dá)自己的'想法.
(1)在運(yùn)用所學(xué)知識解決具體問題的同時,加深對全章知識體系理解。
(2)發(fā)展學(xué)生抽象能力、推理能力和有條理表達(dá)自己想法的能力.
教學(xué)思考:
體會數(shù)學(xué)的應(yīng)用價值,并學(xué)會在解決問題過程中與他人合作.解決問題。在獨立思考的基礎(chǔ)上,積極參與問題的討論,從交流中學(xué)習(xí),并敢于發(fā)表自己的觀點和主張,同時尊重與理解別人的觀點。
情感態(tài)度與價值觀:
進(jìn)一步嘗試學(xué)習(xí)數(shù)學(xué)的成功體驗,認(rèn)識到不等式是解決實際問題的重要工具,逐漸形成對數(shù)學(xué)活動積極參與的意識。
重點:
對一元一次不等式基本性質(zhì)的掌握;理解不等式(組)解及解集的含義,會解簡單的一元一次不等式(組),并會在數(shù)軸上表示其解集;會解相關(guān)的問題,建立起相關(guān)的知識體系。
↓ ↓
安排一組練習(xí)讓學(xué)生充分充分討論解決.
(1)當(dāng)X取何值時,Y>0(2)當(dāng)X取何值時,Y=0(3)當(dāng)X取何值時,Y
3.某工人制造機(jī)器零件,如果每天比預(yù)定多做一件,那么8天所做零件超過100件;如果每天比預(yù)定少做一件,那么8天所做零件不到90件,這個工人預(yù)定每天做幾個零件?
不等式的課件 篇3
一元二次不等式是高中數(shù)學(xué)中的一個重要概念,是指一個帶有二次項的不等式。在數(shù)學(xué)學(xué)習(xí)中,我們經(jīng)常需要利用二次不等式來解決問題,掌握這個概念對于深入了解高中數(shù)學(xué)知識是至關(guān)重要的。因此,學(xué)習(xí)一元二次不等式是高中數(shù)學(xué)學(xué)習(xí)中的一大難點,需要認(rèn)真對待。
一元二次不等式的概念和性質(zhì)
一元二次不等式可以寫成如下形式:
ax2 + bx + c > 0
或
ax2 + bx + c
其中a、b、c都是實數(shù),a ≠ 0。
我們可以通過一些方法求出不等式的根,比如將其轉(zhuǎn)化為標(biāo)準(zhǔn)形式。將不等式變形,我們可以得到如下形式:
ax2 + bx
或
ax2 + bx > – c
然后,我們再用求一元二次方程根的方法求出不等式的解,就能夠得到它的解集。
對于不等式ax2 + bx + c > 0,其圖像為二次函數(shù)的上凸形,即開口向上的拋物線,而對于不等式ax2 + bx + c
一元二次不等式的解法
解一元二次不等式的方法有很多,下面我們介紹其中的兩種:
方法一:化為標(biāo)準(zhǔn)形式,再利用求一元二次方程根的方法求解。
方法二:利用符號法將不等式中的式子化簡,得到一系列不等式,然后將這些不等式求解即可。
實際上,解一元二次不等式還有很多其他的方法,比如絕對值法、圖形法等等。在解題時,我們要根據(jù)具體的情況選擇最合適的方法來求解。
一元二次不等式的應(yīng)用
一元二次不等式廣泛應(yīng)用于數(shù)學(xué)學(xué)習(xí)以及生活中的各個領(lǐng)域,比如物理學(xué)、經(jīng)濟(jì)學(xué)、社會學(xué)等。下面我們以生活中的一個例子來說明一元二次不等式的應(yīng)用。
假設(shè)你要購買一臺電視機(jī),商家提供了兩種方案供你選擇。方案一:首付1500元,每月還款100元;方案二:首付3500元,每月還款80元。那么,你需要比較兩個方案的總花費,來決定哪個方案更加劃算。
我們假設(shè)電視機(jī)的總價格為x元。那么,方案一的總花費為:
C1 = 1500 + 100×n
而方案二的總花費為:
C2 = 3500 + 80×n
這里n為分期的期數(shù),即你需要還款的總期數(shù)。為了比較兩種方案的劃算程度,我們可以列出一個一元二次不等式:
1500 + 100×n
經(jīng)過化簡,我們可以得到:
20n > 2000
n > 100
因此,當(dāng)還款期數(shù)大于100期時,方案一比方案二更加劃算。這個例子很好地展示了一元二次不等式的應(yīng)用,它能夠幫助我們在日常生活中做出明智的選擇,也能夠更加深入地理解數(shù)學(xué)知識。
總結(jié)
一元二次不等式是高中數(shù)學(xué)學(xué)習(xí)中的重要概念,它在數(shù)學(xué)中和生活中都有廣泛的應(yīng)用。學(xué)習(xí)一元二次不等式需要我們認(rèn)真對待,掌握其概念、性質(zhì)和解法,同時也需要我們理解其實際應(yīng)用,這樣才能夠更好地掌握高中數(shù)學(xué)的知識。
不等式的課件 篇4
本節(jié)課的研究是對初中不等式學(xué)習(xí)的延續(xù)和拓展,也是實數(shù)理論的進(jìn)一步發(fā)展.在本節(jié)課的學(xué)習(xí)過程中,將讓學(xué)生回憶實數(shù)的基本理論,并能用實數(shù)的基本理論來比較兩個代數(shù)式的大小.
通過本節(jié)課的學(xué)習(xí),讓學(xué)生從一系列的具體問題情境中,感受到在現(xiàn)實世界和日常生活中存在著大量的不等關(guān)系,并充分認(rèn)識不等關(guān)系的存在與應(yīng)用.對不等關(guān)系的相關(guān)素材,用數(shù)學(xué)觀點進(jìn)行觀察、歸納、抽象,完成量與量的比較過程.即能用不等式或不等式組把這些不等關(guān)系表示出來.
在本節(jié)課的學(xué)習(xí)過程中還安排了一些簡單的、學(xué)生易于處理的問題,其用意在于讓學(xué)生注意對數(shù)學(xué)知識和方法的應(yīng)用,同時也能激發(fā)學(xué)生的學(xué)習(xí)興趣,并由衷地產(chǎn)生用數(shù)學(xué)工具研究不等關(guān)系的愿望.根據(jù)本節(jié)課的教學(xué)內(nèi)容,應(yīng)用再現(xiàn)、回憶得出實數(shù)的基本理論,并能用實數(shù)的基本理論來比較兩個代數(shù)式的大小.
在本節(jié)教學(xué)中,教師可讓學(xué)生閱讀書中實例,充分利用數(shù)軸這一簡單的數(shù)形結(jié)合工具,直接用實數(shù)與數(shù)軸上點的一一對應(yīng)關(guān)系,從數(shù)與形兩方面建立實數(shù)的順序關(guān)系.要在溫故知新的基礎(chǔ)上提高學(xué)生對不等式的認(rèn)識.
1.在學(xué)生了解不等式產(chǎn)生的實際背景下,利用數(shù)軸回憶實數(shù)的基本理論,理解實數(shù)的大小關(guān)系,理解實數(shù)大小與數(shù)軸上對應(yīng)點位置間的關(guān)系.
2.會用作差法判斷實數(shù)與代數(shù)式的大小,會用配方法判斷二次式的大小和范圍.
3.通過溫故知新,提高學(xué)生對不等式的認(rèn)識,激發(fā)學(xué)生的學(xué)習(xí)興趣,體會數(shù)學(xué)的奧秘與數(shù)學(xué)的結(jié)構(gòu)美.
教學(xué)重點:比較實數(shù)與代數(shù)式的大小關(guān)系,判斷二次式的大小和范圍.
思路1.(章頭圖導(dǎo)入)通過多媒體展示衛(wèi)星、飛船和一幅山巒重疊起伏的壯觀畫面,它將學(xué)生帶入“橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同”的大自然和浩瀚的宇宙中,使學(xué)生在具體情境中感受到不等關(guān)系在現(xiàn)實世界和日常生活中是大量存在的,由此產(chǎn)生用數(shù)學(xué)研究不等關(guān)系的強(qiáng)烈愿望,自然地引入新課.
思路2.(情境導(dǎo)入)列舉出學(xué)生身體的高矮、身體的輕重、距離學(xué)校路程的遠(yuǎn)近、百米賽跑的時間、數(shù)學(xué)成績的多少等現(xiàn)實生活中學(xué)生身邊熟悉的事例,描述出某種客觀事物在數(shù)量上存在的不等關(guān)系.這些不等關(guān)系怎樣在數(shù)學(xué)上表示出來呢?讓學(xué)生自由地展開聯(lián)想,教師組織不等關(guān)系的相關(guān)素材,讓學(xué)生用數(shù)學(xué)的觀點進(jìn)行觀察、歸納,使學(xué)生在具體情境中感受到不等關(guān)系與相等關(guān)系一樣,在現(xiàn)實世界和日常生活中大量存在著.這樣學(xué)生會由衷地產(chǎn)生用數(shù)學(xué)工具研究不等關(guān)系的愿望,從而進(jìn)入進(jìn)一步的探究學(xué)習(xí),由此引入新課.
1回憶初中學(xué)過的不等式,讓學(xué)生說出“不等關(guān)系”與“不等式”的異同.怎樣利用不等式研究及表示不等關(guān)系?
2在現(xiàn)實世界和日常生活中,既有相等關(guān)系,又存在著大量的不等關(guān)系.你能舉出一些實際例子嗎?
3數(shù)軸上的任意兩點與對應(yīng)的兩實數(shù)具有怎樣的關(guān)系?
4任意兩個實數(shù)具有怎樣的關(guān)系?用邏輯用語怎樣表達(dá)這個關(guān)系?
活動:教師引導(dǎo)學(xué)生回憶初中學(xué)過的不等式概念,使學(xué)生明確“不等關(guān)系”與“不等式”的異同.不等關(guān)系強(qiáng)調(diào)的是關(guān)系,可用符號“>”“b”“a
教師與學(xué)生一起舉出我們?nèi)粘I钪胁坏汝P(guān)系的例子,可讓學(xué)生充分合作討論,使學(xué)生感受到現(xiàn)實世界中存在著大量的不等關(guān)系.在學(xué)生了解了一些不等式產(chǎn)生的實際背景的前提下,進(jìn)一步學(xué)習(xí)不等式的有關(guān)內(nèi)容.
實例1:某天的天氣預(yù)報報道,最高氣溫32 ℃,最低氣溫26 ℃.
實例2:對于數(shù)軸上任意不同的兩點A、B,若點A在點B的左邊,則xA
實例5:三角形兩邊之和大于第三邊,兩邊之差小于第三邊.
實例6:限速40 km/h的路標(biāo)指示司機(jī)在前方路段行駛時,應(yīng)使汽車的速度v不超過40 km/h.
實例7:某品牌酸奶的質(zhì)量檢查規(guī)定,酸奶中脂肪的含量f應(yīng)不少于2.5%,蛋白質(zhì)的含量p應(yīng)不少于2.3%.
教師進(jìn)一步點撥:能夠發(fā)現(xiàn)身邊的數(shù)學(xué)當(dāng)然很好,這說明同學(xué)們已經(jīng)走進(jìn)了數(shù)學(xué)這門學(xué)科,但作為我們研究數(shù)學(xué)的人來說,能用數(shù)學(xué)的眼光、數(shù)學(xué)的觀點進(jìn)行觀察、歸納、抽象,完成這些量與量的比較過程,這是我們每個研究數(shù)學(xué)的人必須要做的,那么,我們可以用我們所研究過的什么知識來表示這些不等關(guān)系呢?學(xué)生很容易想到,用不等式或不等式組來表示這些不等關(guān)系.那么不等式就是用不等號將兩個代數(shù)式連結(jié)起來所成的式子.如-71+4,2x≤6,a+2≥0,3≠4,0≤5等.
教師引導(dǎo)學(xué)生將上述的7個實例用不等式表示出來.實例1,若用t表示某天的氣溫,則26 ℃≤t≤32 ℃.實例3,若用x表示一個非負(fù)數(shù),則x≥0.實例5,|AC|+|BC|>|AB|,如下圖.
|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.
|AB|-|BC|
實例6,若用v表示速度,則v≤40 km/h.實例7,f≥2.5%,p≥2.3%.對于實例7,教師應(yīng)點撥學(xué)生注意酸奶中的脂肪含量與蛋白質(zhì)含量需同時滿足,避免寫成f≥2.5%或p≥2.3%,這是不對的.但可表示為f≥2.5%且p≥2.3%.
對以上問題,教師讓學(xué)生輪流回答,再用投影儀給出課本上的兩個結(jié)論.
討論結(jié)果:
(1)(2)略;(3)數(shù)軸上任意兩點中,右邊點對應(yīng)的實數(shù)比左邊點對應(yīng)的實數(shù)大.
(4)對于任意兩個實數(shù)a和b,在a=b,a>b,a0a>b;a-b=0a=b;a-b
活動:通過兩例讓學(xué)生熟悉兩個代數(shù)式的大小比較的基本方法:作差,配方法.
點評:本節(jié)兩例的求解,是借助因式分解和應(yīng)用配方法完成的,這兩種方法是代數(shù)式變形時經(jīng)常使用的方法,應(yīng)讓學(xué)生熟練掌握.
1.若f(x)=3x2-x+1,g(x)=2x2+x-1,則f(x)與g(x)的大小關(guān)系是( )
解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).
2.已知x≠0,比較(x2+1)2與x4+x2+1的大小.
解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.
∵x≠0,得x2>0.從而(x2+1)2>x4+x2+1.
例2比較下列各組數(shù)的大小(a≠b).
(1)a+b2與21a+1b(a>0,b>0);
(2)a4-b4與4a3(a-b).
活動:比較兩個實數(shù)的大小,常根據(jù)實數(shù)的運(yùn)算性質(zhì)與大小順序的關(guān)系,歸結(jié)為判斷它們的差的符號來確定.本例可由學(xué)生獨立完成,但要點撥學(xué)生在最后的符號判斷說理中,要理由充分,不可忽略這點.
解:(1)a+b2-21a+1b=a+b2-2aba+b=a+b2-4ab2a+b=a-b22a+b.
∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴a-b22a+b>0,即a+b2>21a+1b.
(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)
=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]
=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].
∵2a2+(a+b)2≥0(當(dāng)且僅當(dāng)a=b=0時取等號),
又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2]
∴a4-b4
點評:比較大小常用作差法,一般步驟是作差——變形——判斷符號.變形常用的手段是分解因式和配方,前者將“差”變?yōu)椤胺e”,后者將“差”化為一個或幾個完全平方式的“和”,也可兩者并用.
已知x>y,且y≠0,比較xy與1的大小.
活動:要比較任意兩個數(shù)或式的大小關(guān)系,只需確定它們的差與0的大小關(guān)系.
∵x>y,∴x-y>0.
當(dāng)y
當(dāng)y>0時,x-yy>0,即xy-1>0.∴xy>1.
點評:當(dāng)字母y取不同范圍的值時,差xy-1的正負(fù)情況不同,所以需對y分類討論.
例3建筑設(shè)計規(guī)定,民用住宅的窗戶面積必須小于地板面積.但按采光標(biāo)準(zhǔn),窗戶面積與地板面積的比值應(yīng)不小于10%,且這個比值越大,住宅的采光條件越好.試問:同時增加相等的窗戶面積和地板面積,住宅的采光條件是變好了,還是變壞了?請說明理由.
活動:解題關(guān)鍵首先是把文字語言轉(zhuǎn)換成數(shù)學(xué)語言,然后比較前后比值的大小,采用作差法.
解:設(shè)住宅窗戶面積和地板面積分別為a、b,同時增加的面積為m,根據(jù)問題的要求a
由于a+mb+m-ab=mb-abb+m>0,于是a+mb+m>ab.又ab≥10%,
因此a+mb+m>ab≥10%.
所以同時增加相等的窗戶面積和地板面積后,住宅的采光條件變好了.
點評:一般地,設(shè)a、b為正實數(shù),且a0,則a+mb+m>ab.
已知a1,a2,…為各項都大于零的等比數(shù)列,公比q≠1,則( )
C.a1+a8=a4+a5 D.a1+a8與a4+a5大小不確定
解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4
=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).
∵{an}各項都大于零,∴q>0,即1+q>0.
又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.
1.下列不等式:①a2+3>2a;②a2+b2>2(a-b-1);③x2+y2>2xy.其中恒成立的不等式的個數(shù)為( )
2.比較2x2+5x+9與x2+5x+6的大小.
答案:
1.C解析:∵②a2+b2-2(a-b-1)=(a-1)2+(b+1)2≥0,
③x2+y2-2xy=(x-y)2≥0.
∴只有①恒成立.
2.解:因為2x2+5x+9-(x2+5x+6)=x2+3>0,
所以2x2+5x+9>x2+5x+6.
1.教師與學(xué)生共同完成本節(jié)課的小結(jié),從實數(shù)的基本性質(zhì)的回顧,到兩個實數(shù)大小的比較方法;從例題的活動探究點評,到緊跟著的變式訓(xùn)練,讓學(xué)生去繁就簡,聯(lián)系舊知,將本節(jié)課所學(xué)納入已有的知識體系中.
2.教師畫龍點睛,點撥利用實數(shù)的基本性質(zhì)對兩個實數(shù)大小比較時易錯的地方.鼓勵學(xué)有余力的學(xué)生對節(jié)末的思考與討論在課后作進(jìn)一步的探究.
1.本節(jié)設(shè)計關(guān)注了教學(xué)方法的優(yōu)化.經(jīng)驗告訴我們:課堂上應(yīng)根據(jù)具體情況,選擇、設(shè)計最能體現(xiàn)教學(xué)規(guī)律的教學(xué)過程,不宜長期使用一種固定的教學(xué)方法,或原封不動地照搬一種實驗?zāi)J?各種教學(xué)方法中,沒有一種能很好地適應(yīng)一切教學(xué)活動.也就是說,世上沒有萬能的教學(xué)方法.針對個性,靈活變化,因材施教才是成功的施教靈藥.
2.本節(jié)設(shè)計注重了難度控制.不等式內(nèi)容應(yīng)用面廣,可以說與其他所有內(nèi)容都有交匯,歷來是高考的重點與熱點.作為本章開始,可以適當(dāng)開闊一些,算作拋磚引玉,讓學(xué)生有個自由探究聯(lián)想的平臺,但不宜過多向外拓展,以免對學(xué)生產(chǎn)生負(fù)面影響.
3.本節(jié)設(shè)計關(guān)注了學(xué)生思維能力的訓(xùn)練.訓(xùn)練學(xué)生的思維能力,提升思維的品質(zhì),是數(shù)學(xué)教師直面的重要課題,也是中學(xué)數(shù)學(xué)教育的主線.采用一題多解有助于思維的發(fā)散性及靈活性,克服思維的僵化.變式訓(xùn)練教學(xué)又可以拓展學(xué)生思維視野的廣度,解題后的點撥反思有助于學(xué)生思維批判性品質(zhì)的提升.
1.比較(x-3)2與(x-2)(x-4)的大小.
2.試判斷下列各對整式的大?。?1)m2-2m+5和-2m+5;(2)a2-4a+3和-4a+1.
5.設(shè)a>0,b>0,且a≠b,試比較aabb與abba的大小.
∴(x-3)2>(x-2)(x-4).
=m2.
∵m2≥0,∴(m2-2m+5)-(-2m+5)≥0.
∴m2-2m+5≥-2m+5.
=a2+2.
∵a2≥0,∴a2+2≥2>0.
∴a2-4a+3>-4a+1.
=x24,
又∵x>0,∴x24>0.
∴(1+x2)2>(1+x)2.
由x>0,得1+x2>1+x.
=(x-y)[(x2+y2)-(x+y)2]
=-2xy(x-y).
∵x0,x-y
∴-2xy(x-y)>0.
∴(x2+y2)(x-y)>(x2-y2)(x+y).
5.解:∵aabbabba=aa-bbb-a=(ab)a-b,且a≠b,
當(dāng)a>b>0時,ab>1,a-b>0,
則(ab)a-b>1,于是aabb>abba.
則(ab)a-b>1.
于是aabb>abb a.
綜上所述,對于不相等的正數(shù)a、b,都有aabb>abba.
不等式的課件 篇5
基本不等式是初中數(shù)學(xué)中重要的一章內(nèi)容,也是高中數(shù)學(xué)和競賽數(shù)學(xué)的基礎(chǔ)?;静坏仁降膶W(xué)習(xí)不僅有助于提高學(xué)生的數(shù)學(xué)素養(yǎng)和解題能力,同時也能幫助他們提高邏輯思維能力。本文旨在探討“基本不等式”這一主題。
一、基本不等式的定義與性質(zhì)
基本不等式是說:對于正實數(shù)x1,x2,…,xn,有
(x1+x2+…+xn)/n≥√(x1x2…xn),當(dāng)且僅當(dāng)x1=x2=…=xn時等號成立。
基本不等式的性質(zhì)有以下幾條:
(1)當(dāng)n為偶數(shù)時,等號成立;
(2)當(dāng)n為奇數(shù)時,當(dāng)且僅當(dāng)所有數(shù)相等時等號成立;
(3)兩個數(shù)的平均數(shù)不小于它們的幾何平均數(shù),即(a+b)/2≥√(ab),其中a,b均為正實數(shù)且a≠b;
(4)當(dāng)n≥3時,三個數(shù)的平均數(shù)不小于它們的幾何平均數(shù),即(a+b+c)/3≥√(abc),其中a,b,c均為正實數(shù)且a≠b≠c。
二、基本不等式的應(yīng)用
基本不等式作為一種重要的數(shù)學(xué)工具,可以應(yīng)用于眾多問題之中。以下是基本不等式的一些常見應(yīng)用。
1. 求和式的最小值
例題1:已知-x1+x2+x3+x4+x5=-18,其中x1,x2,x3,x4,x5均為正數(shù),并且x1+x2+x3+x4+x5≥5,則x1x2x3x4x5的最小值為多少?
解法:根據(jù)已知條件,設(shè)x1+x2+x3+x4+x5=5+m(其中m≥0),則有x1+x2+x3+x4+x5+m=5+2m。代入到基本不等式中可得:
(x1+x2+x3+x4+x5+m)/5≥√(x1x2x3x4x5)m/5≥√(x1x2x3x4x5)/5
移項得到x1x2x3x4x5≥1,則x1x2x3x4x5的最小值為1。
2. 比較函數(shù)大小
例題2:比較函數(shù)f(x)=√(a2+x2)+√(b2+(c-x)2)(a,b,c>0)在[0,c]上的最小和最大值。
解法:根據(jù)已知條件和基本不等式,將f(x)分解成兩個正數(shù)的平均數(shù)不小于它們的幾何平均數(shù)的形式,即
f(x)=[√(a2+x2)+√(b2+(c-x)2)]/2+1/2[√(a2+x2)+√(b2+(c-x)2)]
≥√[(√(a2+x2)×√(b2+(c-x)2)]+1/2(2c)
=√(a2+b2+c2+ab-ac-bc)+c
當(dāng)x=c/3時等號成立,即f(x)的最小值為√(a2+b2+c2+ab-ac-bc)+c,最大值為√(a2+b2+c2+ab+ac+bc)+c。
3. 求極限
例題3:已知數(shù)列{a_n}(n≥1)的通項公式為a_n=(√n+1)/(n+1),則求∑(n從1到∞)a_n的極限。
解法:根據(jù)基本不等式,有
a_1+a_2+…+a_n≥n(√(a_1a_2…a_n))^1/n
代入已知條件,可得:
a_1+a_2+…+a_n≥n[(√(1+1)×√(2+1)×…×√(n+1))/((1+1)×(2+1)×…×(n+1))]^(1/n)
= n[√(n+1)/2×1/3×…×1/(n+1)]^(1/n) =n[(n+1)/[2(n+1)]]^(1/n)
極限為1/2。
4. 求證不等式
例題4:已知a,b,c為正實數(shù),且a+b+c=1,證明∑(a/(1-a))≥3(a2+b2+c2)/(ab+bc+ca)。
解法:將不等式化簡,得:
∑(a/(1-a))≥3(a2+b2+c2)/(ab+bc+ca)
?(a/(1-a))+(b/(1-b))+(c/(1-c))≥3(a2+b2+c2)/(ab+bc+ca)
?(a/(1-a))+(b/(1-b))+(c/(1-c))≥3[(a+b+c)2-(ab+bc+ca)]/(ab+bc+ca)
由于a+b+c=1,有
(ab+bc+ca)≤a2+b2+c2,
(a/(1-a))+(b/(1-b))+(c/(1-c))≥(a+b+c)2/(a(1-a)+b(1-b)+c(1-c))≥3(a2+b2+c2)/(ab+bc+ca)
其中第一個不等式成立是因為當(dāng)a=b=c=1/3時,等號成立;第二個不等式用到了基本不等式的形式。
綜上所述,基本不等式是數(shù)學(xué)中的重要概念,掌握了基本不等式的定義、性質(zhì)和應(yīng)用方法,將有助于提高人們的數(shù)學(xué)素養(yǎng)和解題能力。在日常生活和學(xué)習(xí)中,要重視基本不等式的學(xué)習(xí)和應(yīng)用,逐步提高自己的數(shù)學(xué)水平。
不等式的課件 篇6
學(xué)生初步接觸了一點代數(shù)知識(如用字母表示定律,用符號表示數(shù)),是在學(xué)生學(xué)習(xí)了用字母表示數(shù)以后基礎(chǔ)上進(jìn)行學(xué)習(xí)。應(yīng)用方程是解決問題的基礎(chǔ),有關(guān)的幾個概念,教材只作描述不下定義。在教學(xué)設(shè)計中仍然把理念作為教學(xué)的重點,理解方程的意義,判斷“等式”和“方程”知道方程是一個“含有未知數(shù)的等式”,才有可能明確所謂解方程。
學(xué)生不夠活潑,學(xué)習(xí)積極性不是很高,學(xué)生數(shù)學(xué)基礎(chǔ)不好。方程對學(xué)生來說還是比較陌生的,在他們頭腦中還沒有過方程這樣的表象,所以授新課就要從學(xué)生原有的`基礎(chǔ)開始,因為在前面學(xué)習(xí)用字母表示數(shù)的這部分內(nèi)容時,有了基礎(chǔ),我想在學(xué)習(xí)簡易方程應(yīng)該沒什么大的問題。
1、使學(xué)生初步理解和辨析“等式”“不等式”的意義。
2、會按要求用方程表示出數(shù)量關(guān)系,
3、培養(yǎng)學(xué)生的觀察、比較、分析能力。
教學(xué)重點: 用字母表示常見的數(shù)量關(guān)系,會用方程的意義去判斷一個式子是否是方程。
教師介紹天平各部分名稱。讓學(xué)生操作當(dāng)天平兩端托盤的物體的質(zhì)量相等時,天平就會平衡,指針指向中。根據(jù)這這個原理來稱物體的質(zhì)量。(讓學(xué)生操作,激發(fā)學(xué)生的興趣,借助實物演示的優(yōu)勢。初步感受平衡與不平衡的表象)
1、實物演示,引出方程:
(1)在天平稱出100克的左邊空杯,讓學(xué)生觀察是否平衡,感受1只空杯=100克。
(2)往空杯里倒入果汁,另一邊加100克法碼,問學(xué)生發(fā)現(xiàn)了什么? (讓學(xué)生感受天平慢慢傾斜,水是未知數(shù))引出100+X>200,往右加100克法碼, 問:哪邊重些?(學(xué)生初步感受平衡和不平衡的表象) 問:怎樣用式子表示?100+X<300
(3)教學(xué)100+X=250 問:如果是天平平衡怎么辦?(讓學(xué)生討論交流平衡的方案)把100克法碼換成50克的砝碼,這時會怎樣?(引導(dǎo)學(xué)生觀察這時天平出現(xiàn)平衡), 問:現(xiàn)在兩邊的質(zhì)量怎樣?現(xiàn)在水有多重知道嗎?如果用字母X表示怎樣用式子表示?得出:100+X=250
示題:100+X<250100+X=2504X+50>10040+40=80 X÷2=45X-12=27
請學(xué)生觀察合作交流分類:
(一)引出(1)兩邊不相等,叫做不等式。(2)兩邊相等叫做等式。
(2)含有未知數(shù)的等式100+X=250 X÷2=4 揭示:(2)這樣的含有未知數(shù)等式叫做方程(通過分類,培養(yǎng)學(xué)生對方程意義的了解) 問:方程的具備條件是什么?(感知必須是等式,而一定含有未知數(shù))你能寫出一些方程嗎?(同桌交流檢查)
(三)練習(xí)判斷那些是方程?那些不是方程?
6+2X=14103+X250÷2=1256+X>251÷A=3X+Y=180 (讓學(xué)生加深對方程的意義的認(rèn)識,培養(yǎng)學(xué)生的判斷能力。)
教師:我們能夠判斷什么是方程了,方程和等式有很密切的關(guān)系,你能畫圖來表示他們的關(guān)系嗎?(小組合作討論交流)
方程 等式 (讓學(xué)生通過觀察、思考、分析、歸類,自主發(fā)現(xiàn)獲得對方程和等式的關(guān)系理解,同時初步滲透教學(xué)中的集合思想。)
不等式的課件 篇7
基本不等式作為高中數(shù)學(xué)必修內(nèi)容之一,在學(xué)生學(xué)習(xí)中扮演著極為重要的角色。本篇文章將圍繞基本不等式,探討它的概念、性質(zhì)、證明方法及應(yīng)用,并展示基本不等式的魅力和實用性。
一、基本不等式的概念
基本不等式是指對于任意正實數(shù) $a_1,a_2,\cdots,a_n$ 和任意正整數(shù) $n$,有以下不等式成立:
$\dfrac{a_1}{n}+\dfrac{a_2}{n}+\cdots+\dfrac{a_n}{n}\geq\sqrt[n]{a_1a_2\cdots a_n}$
這個不等式也被稱為均值不等式或AM-GM不等式。其中,$\dfrac{a_1}{n}+\dfrac{a_2}{n}+\cdots+\dfrac{a_n}{n}$ 表示這些數(shù)的算術(shù)平均值,而 $\sqrt[n]{a_1a_2\cdots a_n}$ 表示這些數(shù)的幾何平均值。均值不等式的意義在于,算術(shù)平均數(shù)大于等于幾何平均數(shù)。
二、基本不等式的性質(zhì)
基本不等式有以下幾個性質(zhì):
1. 當(dāng)且僅當(dāng) $a_1=a_2=\cdots=a_n$ 時等號成立。
2. 如果 $a_1,a_2,\cdots,a_n$ 中至少有一個數(shù)為 $0$,則 $\sqrt[n]{a_1a_2\cdots a_n}=0$,這時等號成立。
3. 基本不等式可以擴(kuò)展到實數(shù)范圍內(nèi)。
4. 均值不等式不等式對于大于 $0$ 的實數(shù)都成立。
三、基本不等式的證明方法
基本不等式有多種證明方法,下面列舉其中兩種:
方法一:數(shù)學(xué)歸納法
假設(shè)基本不等式對于 $n=k$ 時成立,即對于 $k$ 個正實數(shù) $a_1,a_2,\cdots,a_k$,有以下不等式成立:
$\dfrac{a_1}{k}+\dfrac{a_2}{k}+\cdots+\dfrac{a_k}{k}\geq\sqrt[k]{a_1a_2\cdots a_k}$
現(xiàn)證明它對于 $n=k+1$ 時也成立。將 $a_{k+1}$ 插入到原來的不等式中,得到:
$\dfrac{a_1}{k+1}+\dfrac{a_2}{k+1}+\cdots+\dfrac{a_k}{k+1}+\dfrac{a_{k+1}}{k+1}\geq\sqrt[k+1]{a_1a_2\cdots a_k a_{k+1}}$
由于:
$\dfrac{a_1}{k+1}+\dfrac{a_2}{k+1}+\cdots+\dfrac{a_k}{k+1}\geq\sqrt[k]{a_1a_2\cdots a_k}$
因此,我們只需證明以下不等式:
$\dfrac{(k+1)\sqrt[k]{a_1a_2\cdots a_k}\cdot a_{k+1}}{k+1}\geq\sqrt[k+1]{a_1a_2\cdots a_k a_{k+1}}$
經(jīng)過變形化簡,可以得到:
$\sqrt[k]{a_1a_2\cdots a_k} \geq \sqrt[k+1]{a_1a_2\cdots a_k a_{k+1}}$
顯然,這是成立的。
因此,按照歸納法的證明方式,基本不等式對于所有的正整數(shù) $n$ 都成立。
方法二:對數(shù)函數(shù)的應(yīng)用
對于 $a_1,a_2,\cdots,a_n$,我們可以定義函數(shù):
$f(x)=\ln{x}$
顯然,函數(shù) $f(x)$ 是連續(xù)的、單調(diào)遞增的。根據(jù)式子:
$\dfrac{a_1}{n}+\dfrac{a_2}{n}+\cdots+\dfrac{a_n}{n}\geq\sqrt[n]{a_1a_2\cdots a_n}$
可以得到:
$\ln\left(\dfrac{a_1}{n}\right)+\ln\left(\dfrac{a_2}{n}\right)+\cdots+\ln\left(\dfrac{a_n}{n}\right)\geq\dfrac{1}{n} (\ln a_1+\ln a_2+\cdots+\ln a_n)$
即:
$\ln\left(\sqrt[n]{a_1a_2\cdots a_n}\right)\leq\dfrac{\ln a_1+\ln a_2+\cdots+\ln a_n}{n}$
對于左邊的式子,有:
$\ln\left(\sqrt[n]{a_1a_2\cdots a_n}\right)=\dfrac{1}{n}\ln(a_1a_2\cdots a_n)$
對于右邊的式子,有:
$\dfrac{\ln a_1+\ln a_2+\cdots+\ln a_n}{n}=\ln\left(\sqrt[n]{a_1a_2\cdots a_n}\right)$
因此,我們可以得到:
$\ln(a_1a_2\cdots a_n)\geq n\ln\left(\sqrt[n]{a_1a_2\cdots a_n}\right)$
即:
$a_1a_2\cdots a_n\geq\left(\sqrt[n]{a_1a_2\cdots a_n}\right)^n$
這正是均值不等式的形式。因此,基本不等式得證。
四、基本不等式的應(yīng)用
基本不等式在數(shù)學(xué)和物理學(xué)中有廣泛的應(yīng)用。下面介紹幾個常見的應(yīng)用場景:
1. 最小值求解
如果有 $n$ 個正實數(shù) $a_1,a_2,\cdots,a_n$,它們的和為 $k$,求它們的積的最大值,即:
$\max(a_1a_2\cdots a_n)$
根據(jù)基本不等式,有:
$\dfrac{a_1+a_2+\cdots+a_n}{n}\geq\sqrt[n]{a_1a_2\cdots a_n}$
因此,可以得到:
$\dfrac{k}{n}\geq\sqrt[n]{a_1a_2\cdots a_n}$
兩邊同時取冪,可以得到:
$\dfrac{k^n}{n^n}\geq a_1a_2\cdots a_n$
即:
$\max(a_1a_2\cdots a_n)=\dfrac{k^n}{n^n}$
2. 凸函數(shù)的優(yōu)化問題
如果 $f(x)$ 是一個凸函數(shù),$a_1,a_2,\cdots,a_n$ 是正實數(shù),$b_1,b_2,\cdots,b_n$ 是任意實數(shù)且 $\sum_{i=1}^n b_i=1$,則有:
$f(b_1a_1+b_2a_2+\cdots+b_na_n)\leq b_1f(a_1)+b_2f(a_2)+\cdots+b_nf(a_n)$
這是凸函數(shù)的優(yōu)化問題中常用的基本不等式形式。它可以通過Jensen不等式或基本不等式證明。
3. 三角形求證
如果我們可以用 $a,b,c$ 表示一個三角形的三邊長,則有:
$\sqrt{(a+b+c)(a+b-c)(a-b+c)(-a+b+c)}\leq\dfrac{(a+b+c)^2}{4\sqrt{3}}$
這個不等式在三角形求證中也被廣泛應(yīng)用。
五、結(jié)語
基本不等式是高中數(shù)學(xué)必修內(nèi)容之一,但其實它的應(yīng)用范圍遠(yuǎn)不止于此。在實際問題中,基本不等式常常能給我們提供有效的解決方案。通過本文的介紹,希望讀者能夠更加深入地理解基本不等式的概念、性質(zhì)、證明方法及應(yīng)用,并能在實際問題中靈活運(yùn)用。
不等式的課件 篇8
關(guān)于基本不等式的主題范文:
基本不等式是數(shù)學(xué)中非常重要的一道課題,所以我們需要從以下幾個方面來對基本不等式進(jìn)行介紹。
一、基本不等式是什么
基本不等式是指數(shù)學(xué)中的一個重要定理,它表述的是任意正整數(shù)n及n個正數(shù)a1,a2,…,an的積與它們的和之間的關(guān)系。也就是說,對于任意正整數(shù)n和n個正數(shù)a1,a2,…,an,有以下不等式成立:
(a1+a2+…+an)/n ≥ (a1×a2×…×an)1/n
其中,等式成立當(dāng)且僅當(dāng)a1 = a2 = … = an。
二、基本不等式的證明
下面我們來看一下基本不等式的證明過程。
首先,如果我們令A(yù)i = nai和G = (a1 × a2 × … × an)1/n,則我們可以將原不等式轉(zhuǎn)化為:
(a1+a2+…+an)/n ≥ G
接下來,我們來看一下如果證明G ≤ (a1+a2+…+an)/n,那么我們就可以證明基本不等式,因為不等式具有對稱性,即如果G ≤ (a1+a2+…+an)/n,則(a1+a2+…+an)/n ≥ G也成立。
接下來,我們證明G ≤ (a1+a2+…+an)/n,即:
(a1+a2+…+an)/n ≥ (a1 × a2 × … × an)1/n
將不等式右邊兩邊平方,得到:
(a1+a2+…+an)/n ≥ (a1 × a2 × … × an)2/n
這時,我們來觀察右邊的式子,將式子中的每一項都乘以(n-1),得到:
(a1 × (n-1) + a2 × (n-1) + … + an × (n-1)) / n ≥ (a1 × a2 × … × an)2/n
繼續(xù)進(jìn)行簡化,得到:
[(a1 × (n-1)) + (a2 × (n-1)) + … + (an × (n-1))] / n ≥ (n-1) × a1 × a2 × … × an / n
左邊乘以1/n,右邊除以(n-1),得到:
(a1 + a2 + … + an) / n ≥ (a1 × a2 × … × an)1/n
這樣我們就完成了基本不等式的證明。
三、基本不等式在實際中的應(yīng)用
基本不等式在實際中的應(yīng)用非常廣泛,下面我們來看一下其中的幾個例子。
1. 求平均數(shù)
如果我們已知n個正數(shù)的積,需要求它們的平均數(shù),那么根據(jù)基本不等式,我們可以得到:
(a1 + a2 + … + an) / n ≥ (a1 × a2 × … × an)1/n
等式兩邊都乘以n-1,得到:
a1 + a2 + … + an ≥ (n-1) × (a1 × a2 × … × an)1/n
這樣我們就可以求得平均數(shù):
(a1 + a2 + … + an) / n ≥ (n-1) × (a1 × a2 × … × an)1/n / n
2. 求數(shù)列中n個數(shù)的積的最大值
假設(shè)我們需要從數(shù)列{a1, a2, …, an}中選取n個數(shù),求它們的積的最大值。根據(jù)基本不等式,我們有:
(a1 + a2 + … + an) / n ≥ (a1 × a2 × … × an)1/n
因為我們需要求積的最大值,所以當(dāng)?shù)仁阶筮叺暮颓『玫扔趎個數(shù)的積時,這個積才能取到最大值。因此,我們可以得到:
a1 = a2 = … = an
這樣,我們就得到了求數(shù)列中n個數(shù)的積的最大值的方法。
三、結(jié)論
通過對基本不等式的介紹,我們可以發(fā)現(xiàn)它不僅僅是一道看似簡單的數(shù)學(xué)題目,而是一個非常重要的定理,有著廣泛的應(yīng)用價值。希望大家能夠在今后的學(xué)習(xí)中更加重視基本不等式,并能夠深刻理解它的實際應(yīng)用。
不等式的課件 篇9
基本不等式是高中數(shù)學(xué)中重要的一部分,也是初學(xué)者比較難掌握的一個概念。通過學(xué)習(xí)基本不等式,可以幫助學(xué)生理解不等式的基本概念、性質(zhì)和運(yùn)算。同時,對于高中數(shù)學(xué),基本不等式還有很多相關(guān)的題型需要掌握,比如極值問題、夾逼定理等。本文將從基本不等式的定義開始,探討其相關(guān)概念、性質(zhì)和應(yīng)用。
一、基本不等式的定義
基本不等式是指對于任意正實數(shù)a、b,有以下不等式成立:
(a + b)2 ≥ 4ab
這個不等式也可以寫成:
a2 + b2 ≥ 2ab
這個不等式的含義是:對于任意兩個正實數(shù)a、b,它們的平均數(shù)一定大于等于它們的幾何平均數(shù)。
二、基本不等式的證明
對于任意實數(shù)x,y,可以用(x-y)2≥0來證明基本不等式:
(x-y)2≥0
x2-2xy+y2≥0
x2+y2≥2xy
將x換成a、y換成b,即可得到基本不等式。
三、基本不等式的相關(guān)概念
1. 等式條件:
當(dāng)且僅當(dāng)a=b時,等式成立。
2. 平均數(shù)與幾何平均數(shù):
平均數(shù)指的是兩個數(shù)的和的一半,即(a+b)/2;幾何平均數(shù)指的是兩個數(shù)的積的二分之一,即√(ab)。由于基本不等式的成立,可以得出平均數(shù)大于等于幾何平均數(shù)的結(jié)論。
3. 關(guān)于兩個數(shù)之和與兩個數(shù)的比值的關(guān)系:
從基本不等式得到如下兩個等式:
(a+b)2=4ab+(a-b)2;ab≥(a+b)/2
以上兩個式子給出了兩個關(guān)于兩個數(shù)之和與兩個數(shù)的比值的關(guān)系。
四、基本不等式的性質(zhì)
1. 交換律和結(jié)合律:基本不等式滿足交換律和結(jié)合律。
2. 反比例函數(shù):若f(x)=1/x,x>0,則f(a)+f(b)≤2f((a+b)/2)對于a,b>0成立。
3. 帶約束的基本不等式:若a,b>0,且a+b=k,則(a+b)/2≥√(ab),即k/2≥√(ab)。
五、基本不等式的應(yīng)用
1. 求證夾逼定理:如果a1≤b1≤c1,且a2≤b2≤c2,則(a1a2+b1b2+c1c2)/3≥(a1b2+b1c2+c1a2)/3≥√(a1b1c1a2b2c2)。
2. 判斷一個二次函數(shù)的最大值或最小值:由于二次函數(shù)的導(dǎo)數(shù)為一次函數(shù),可以通過求導(dǎo)得到函數(shù)的極值。而基本不等式可以用于判斷二次函數(shù)的極值點是否合理,即是否在定義域內(nèi)。
3. 算術(shù)平均數(shù)和幾何平均數(shù)之間的關(guān)系:通過基本不等式可以證明,當(dāng)兩個數(shù)的和固定時,它們的平均數(shù)越大,它們的幾何平均數(shù)就越小。
總的來說,基本不等式是高中數(shù)學(xué)不可缺少的一部分,不僅在考試中占有重要地位,而且還具有很重要的理論意義。希望本文對初學(xué)者掌握基本不等式有所幫助。
不等式的課件 篇10
教學(xué)目標(biāo):
1.一元一次不等式與一次函數(shù)的關(guān)系.
2.會根據(jù)題意列出函數(shù)關(guān)系式,畫出函數(shù)圖象,并利用不等關(guān)系進(jìn)行比較.
1.通過一元一次不等式與一次函數(shù)的圖象之間的結(jié)合,培養(yǎng)學(xué)生的數(shù)形結(jié)合意識.
2.訓(xùn)練大家能利用數(shù)學(xué)知識去解決實際問題的能力.
體驗數(shù)、圖形是有效地描述現(xiàn)實世界的重要手段,認(rèn)識到數(shù)學(xué)是解決問題和進(jìn)行交流的重要工具,了解數(shù)學(xué)對促進(jìn)社會進(jìn)步和發(fā)展人類理性精神的作用.
自己根據(jù)題意列函數(shù)關(guān)系式,并能把函數(shù)關(guān)系式與一元一次不等式聯(lián)系起來作答.
1.張大爺買了一個手機(jī),想辦理一張電話卡,開米廣場移動通訊公司業(yè)務(wù)員對張大爺介紹說:移動通訊公司開設(shè)了兩種有關(guān)神州行的通訊業(yè)務(wù):甲類使用者先繳15元基礎(chǔ)費,然后每通話1分鐘付話費0.2元;乙類不交月基礎(chǔ)費,每通話1分鐘付話費0.3元。你能幫幫張大爺選擇一種電話卡嗎?
2.展示學(xué)習(xí)目標(biāo):
(1)、理解一次函數(shù)圖象與一元一次不等式的關(guān)系。
(2)、能夠用圖像法解一元一次不等式。
(3)、理解兩種方法的關(guān)系,會選擇適當(dāng)?shù)姆椒ń庖辉淮尾坏仁健?/p>
積極思考,嘗試回答問題,導(dǎo)出本節(jié)課題。
閱讀學(xué)習(xí)目標(biāo),明確探究方向。
問題1:結(jié)合函數(shù)y=2x-5的圖象,觀察圖象回答下列問題:
問題2:如果y=-2x-5,那么當(dāng)x取何值時,y>0?當(dāng)x取何值時,y
巡回每個小組之間,鼓勵學(xué)生用不同方法進(jìn)行嘗試,尋找最佳方案。答疑展示中存在的問題。
問題3.兄弟倆賽跑,哥哥先讓弟弟跑9m,然后自己才開始跑,已知弟弟每秒跑3m,哥哥每秒跑4m,列出函數(shù)關(guān)系式,畫出函數(shù)圖象,觀察圖象回答下列問題:
(1)何時哥哥分追上弟弟?
(2)何時弟弟跑在哥哥前面?
(3)何時哥哥跑在弟弟前面?
(4)誰先跑過20m?誰先跑過100m?
你是怎樣求解的?與同伴交流。
問題4:已知y1=-x+3,y2=3x-4,當(dāng)x取何值時,y1>y2?你是怎樣做的?與同伴交流.
讓學(xué)生體會數(shù)形結(jié)合的魅力所在。理解函數(shù)和不等式的聯(lián)系。
移動通訊公司開設(shè)了兩種長途通訊業(yè)務(wù):全球通使用者先繳50元基礎(chǔ)費,然后每通話1分鐘付話費0.4元;神州行不交月基礎(chǔ)費,每通話1分鐘付話費0.6元。若設(shè)一個月內(nèi)通話x分鐘,兩種通訊方式的費用分別為y1元和y2元,那么
(1)寫出y1、y2與x之間的函數(shù)關(guān)系式;
(2)在同一直角坐標(biāo)系中畫出兩函數(shù)的圖象;
(3)求出或?qū)で蟪鲆粋€月內(nèi)通話多少分鐘,兩種通訊方式費用相同;
(4)若某人預(yù)計一個月內(nèi)使用話費200元,應(yīng)選擇哪種通訊方式較合算?
在共同探究的過程中加強(qiáng)理解,體會數(shù)學(xué)在生活中的重大應(yīng)用,進(jìn)行能力提升。
積極完成導(dǎo)學(xué)案上的檢測內(nèi)容,相互點評。
學(xué)生回顧總結(jié)學(xué)習(xí)收獲,交流學(xué)習(xí)心得。
教材P51.習(xí)題2.6知識技能1;問題解決2,3.
一、學(xué)習(xí)與探究:
1.一元一次不等式與一次函數(shù)之間的關(guān)系;
2.做一做(根據(jù)函數(shù)圖象求不等式);
四、課后作業(yè):
例題三:
已知$a,b,c>0$,求證$\frac{(a+b)^2}{c}+\frac{(b+c)^2}{a}+\frac{(c+a)^2}\geq 12(a+b+c)$
解:由基本不等式得
$(a+b)^2\geq 4ab,(b+c)^2\geq 4bc,(c+a)^2\geq 4ac$
將以上三個式子代入原式變化得
$\frac{4ab}{c}+\frac{4bc}{a}+\frac{4ac}\geq 12(a+b+c)$
即(ab^2+bc^2+ca^2)\geq 12abc(a+b+c)$
即$(ab^2+bc^2+ca^2)\geq 3abc$
由于$a,b,c>0$,故得證。
三、基本不等式的擴(kuò)展
除了基本不等式外,還有一些基本不等式的擴(kuò)展形式,例如平均值不等式和柯西施瓦茲不等式等。這些擴(kuò)展形式大大豐富了不等式的證明和應(yīng)用,并為數(shù)學(xué)研究提供了更加廣泛的空間。下面,我們就來簡單介紹一下平均值不等式和柯西施瓦茲不等式的相關(guān)內(nèi)容。
平均值不等式:對于$n$個非負(fù)實數(shù)$x_1,x_2,\cdots,x_n$,有
$\frac{x_1+x_2+\cdots+x_n}{n}\geq\sqrt[n]{x_1x_2\cdots x_n}$
其中等號成立當(dāng)且僅當(dāng)$x_1=x_2=\cdots=x_n$時成立。
柯西施瓦茲不等式:對于任意實數(shù)$x_1,x_2,\cdots,x_n$和$y_1,y_2,\cdots,y_n$,有
$(x_1^2+x_2^2+\cdots+x_n^2)(y_1^2+y_2^2+\cdots+y_n^2)\geq(x_1y_1+x_2y_2+\cdots+x_ny_n)^2$
其中等號成立當(dāng)且僅當(dāng)$\frac{x_1}{y_1}=\frac{x_2}{y_2}=\cdots=\frac{x_n}{y_n}$時成立。
四、總結(jié)
綜上所述,基本不等式是數(shù)學(xué)中重要的一個概念,它與不等式的證明和應(yīng)用有著密切的關(guān)系。基本不等式的解法和思維方法不僅能讓我們更好地掌握不等式的性質(zhì)和應(yīng)用,同時也能讓我們更好地解決數(shù)學(xué)中的其他問題。在學(xué)習(xí)和應(yīng)用基本不等式時,我們還需掌握其相關(guān)的擴(kuò)展形式,如平均值不等式和柯西施瓦茲不等式等。只有充分掌握了這些知識點,我們才能更加深入地理解并應(yīng)用不等式的知識。
Yjs21.coM更多幼師資料延伸讀
不等式的課件
老師在開學(xué)前需要把教案課件準(zhǔn)備好,每個人都要計劃自己的教案課件了。教案是實現(xiàn)高效教學(xué)的不可或缺要素之一。如果您想深入理解這一話題不妨看看“不等式的課件”,本文的內(nèi)容必將給您帶來很多有用的收獲!
不等式的課件 篇1
【教學(xué)目標(biāo)】
1、知識與技能目標(biāo)
(1)掌握基本不等式 ,認(rèn)識其運(yùn)算結(jié)構(gòu);
(2)了解基本不等式的幾何意義及代數(shù)意義;
(3)能夠利用基本不等式求簡單的最值。
2、過程與方法目標(biāo)
(1)經(jīng)歷由幾何圖形抽象出基本不等式的過程;
(2)體驗數(shù)形結(jié)合思想。
3、情感、態(tài)度和價值觀目標(biāo)
(1)感悟數(shù)學(xué)的發(fā)展過程,學(xué)會用數(shù)學(xué)的眼光觀察、分析事物;
(2)體會多角度探索、解決問題。
【能力培養(yǎng)】
培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、規(guī)范的學(xué)習(xí)能力,辯證地分析問題的能力,學(xué)以致用的能力,分析問題、解決問題的能力。
【教學(xué)重點】
應(yīng)用數(shù)形結(jié)合的思想理解不等式,并從不同角度探索不等式 的證明過程。
【教學(xué)難點】
基本不等式 等號成立條件。
【教學(xué)方法】
教師啟發(fā)引導(dǎo)與學(xué)生自主探索相結(jié)合
【教學(xué)工具】
課件輔助教學(xué)、實物演示實驗
【教學(xué)流程】
SHAPE MERGEFORMAT
【教學(xué)過程設(shè)計】
創(chuàng)設(shè)情景,引入新課
如圖是在北京召開的第24屆國際數(shù)學(xué)家大會的會標(biāo), 這是根據(jù)趙爽弦圖而設(shè)計的。用課前折好的趙爽弦圖示范,比較 4個直角三角形的面積和與大正方形的面積,你會得到怎樣的相 等和不等關(guān)系?
趙爽弦圖
1.探究圖形中的不等關(guān)系
將圖中的“風(fēng)車”抽象成如圖,在正方形ABCD中右個全等的直角三角形。
設(shè)直角三角形的兩條直角邊長為a,b那么正方形的邊長為 。這樣,4個直角三角形的面積的和是2ab,正方形的面積為 。由于4個直角三角形的面積小于正方形的面積,我們就得到了一個不等式: 。
當(dāng)直角三角形變?yōu)榈妊苯侨切?,即a=b時,正方形EFGH縮為一個點,這時有 。
2.得到結(jié)論:一般的,如果
3.思考證明:你能給出它的證明嗎?
證明:因為
當(dāng)
所以, ,即
4.基本不等式
1)特別的,如果a>0,b>0,我們用分別代替a、b ,可得 ,通常我們把上式寫作:
2)從不等式的性質(zhì)推導(dǎo)基本不等式
用分析法證明:
要證 (1)
只要證 (2)
要證(2),只要證 a+b- 0 (3)
要證(3),只要證 ( - ) (4)
顯然,(4)是成立的。當(dāng)且僅當(dāng)a=b時,(4)中的等號成立。
3)理解基本不等式 的幾何意義
不等式的課件 篇2
基本不等式教學(xué)設(shè)計
數(shù)學(xué)與應(yīng)用數(shù)學(xué) 鐘林
課題:人教A版必修5第3章4節(jié),基本不等式
【教學(xué)目標(biāo)】
1.通過兩個探究實例,引導(dǎo)學(xué)生從幾何圖形中獲得兩個基本不等式,了解基本不等式的幾何背景,體會數(shù)形結(jié)合的思想。
2.進(jìn)一步提煉、完善基本不等式,并從代數(shù)角度給出不等式的證明,組織學(xué)生分析證明方法,加深對基本不等式的認(rèn)識,提高邏輯推理論證能力。 3.結(jié)合課本的探究圖形,引導(dǎo)學(xué)生進(jìn)一步探究基本不等式的幾何解釋,強(qiáng)化數(shù)形結(jié)合的思想。
4.借助例1嘗試用基本不等式解決簡單的最值問題,通過例2及其變式引導(dǎo)學(xué)生
a?b領(lǐng)會運(yùn)用基本不等式ab?的三個限制條件(一正二定三相等)在解決最
2值中的作用,提升解決問題的能力,體會方法與策略。
【重點難點】
重點:應(yīng)用數(shù)形結(jié)合的思想理解基本不等式,并從不同角度探索不等式a?bab?的證明過程。
2難點:在幾何背景下抽象出基本不等式,并理解基本不等式。
【教學(xué)設(shè)計】
(一)問題導(dǎo)入
欣賞2002年國際數(shù)學(xué)家大會會徽,會徽是根據(jù)中國古代數(shù)學(xué)家趙爽的弦圖設(shè)計的,顏色的明暗使它看上去象一個風(fēng)車,代表中國人民熱情好客。你能發(fā)現(xiàn)它是什么圖形構(gòu)成的嗎?請根據(jù)會徽探索一些常見相等或不等關(guān)系。
探究一:在這張“弦圖”中能找出一些相等關(guān)系和不等關(guān)系嗎? 在正方形ABCD中有4個全等的直角三角形.設(shè)直角三角形兩條直角邊長為,a,b。
22a?b那么正方形的邊長為。
于是,4個直角三角形的面積之和S1?2ab。 正方形的面積S2?a2?b2。 由圖可知S2?S1,即a2?b2?2ab。
當(dāng)直角三角形變?yōu)榈妊苯侨切?,即時,正方形EFGH縮為一個點,這時 a2?b2?2ab
所以a2?b2?2ab。
探究二:如下圖所示的梯形中,EF是梯形ABCD的中位線,梯形ABGH相似于梯 形GHDC。
梯形ABCD的上底是a,下底是b。讓同學(xué)們自主研究GH和EF的大小關(guān)系。
a?b因為EF是中位線,所以EF?,
2由相似,可以得出GH?ab, 同樣因為相似,有
AGABa, ??GDGHb又因為a?b,所以AG?GD,即AG?AE,
a?b。 2顯然,當(dāng)AB逐漸趨近CD的時候,GH也逐漸向EF靠近, 當(dāng)AB=CD的時候,即ABCD是矩形的時候,GH與EF重合。
a?b即,當(dāng)且僅當(dāng)a?b時,ab?。
2a?b所以,ab?,當(dāng)且僅當(dāng)a?b時,等號成立。
2所以GH?EF,即ab?
(二)概念深入
根據(jù)上述兩個幾何背景,初步形成不等式結(jié)論:
若a,b?R?,則a2?b2?2ab。(當(dāng)且僅當(dāng)a=b時,等號成立)
a?b。(當(dāng)且僅當(dāng)a=b時,等號成立) 2請同學(xué)們運(yùn)用代數(shù)法證明: 作法一(作差法): 若a,b?R?,則ab?a2?b2?2ab?(a?b)2?0a?b?2ab22
當(dāng)且僅當(dāng)a=b時,等號成立。且發(fā)現(xiàn)這里且a和b可以是全體實數(shù)、單項式、多項式。
作法二(分析法):
要證明a?b?ab, 2只需證明a?b?2ab, 即證a?b-2ab?0, 即為?a-b?2?0,該式顯然成立,所以,當(dāng)a?b時取等號。
于是有這樣的結(jié)論:
稱ab為a,b的幾何平均數(shù);稱基本不等式ab?a?b為a,b的算術(shù)平均數(shù), 2a?b又可敘述為: 2兩個正數(shù)的幾何平均數(shù)不大于它們的算術(shù)平均數(shù)
作法三(幾何法):
如圖,AB是圓O的直徑,點C是AB上一點,AC=a,BC=b.過點C作 垂直于AB的弦DE,連接AD,BD。 從而有CD?ab,OD?a?b。 2a?b。 2a?b當(dāng)且僅當(dāng)C點與圓心O點重合時,即a=b時,ab?
2故再次證明:
a?ba?0,b?0,ab?,當(dāng)且僅當(dāng)a=b時,等號成立。
2a?b也說明了ab?的幾何意義:半徑不小于半弦。
2由于直角三角形COD中,直角邊CD
(三)例題講解
例1.(1)用籬笆圍一個面積為100平方米的矩形菜園,問這個矩形的長、寬各為多少時,所用籬笆最短,最短的籬笆是多少?
(2)一段長為36米的籬笆圍成一個矩形菜園,問這個矩形的長、寬為多少時,菜園的面積最大,最大面積是多少?
(通過例1的講解,總結(jié)歸納利用基本不等式求最值問題的特征,實現(xiàn)積與和的轉(zhuǎn)化)
對于x,y?R?,
(1)若xy?p(定值),則當(dāng)且僅當(dāng)x?y時,x?y有最小值2p;
s2(2)若x?y?s(定值),則當(dāng)且僅當(dāng)x?y時,xy有最大值。
4(鼓勵學(xué)生自己探索推導(dǎo),不但可使他們加深基本不等式的理解,還鍛煉了他們的思維,培養(yǎng)了勇于探索的精神。)
1例2.求y?x?(x?0)的值域。
x1變式1.若x?2,求x?的最小值.
x?21在運(yùn)用基本不等式解題的基礎(chǔ)上,利用幾何畫板展示y?x?(x?0)的函數(shù)
x圖象,使學(xué)生再次感受數(shù)形結(jié)合的數(shù)學(xué)思想。
a?b并通過例2及其變式引導(dǎo)學(xué)生領(lǐng)會運(yùn)用基本不等式ab?的三個限制
2條件(一正二定三相等)在解決最值問題中的作用,提升解決問題的能力,體會方法與策略。
(四)歸納小結(jié)&課后作業(yè) 基本不等式:
若a,b?R?,則a2?b2?2ab。(當(dāng)且僅當(dāng)a=b時,等號成立)
a?b。(當(dāng)且僅當(dāng)a=b時,等號成立) 2(1)基本不等式的幾何解釋(數(shù)形結(jié)合思想); (2)運(yùn)用基本不等式解決簡單最值問題的基本方法。
作業(yè):A組第4題,B組第1題,第2題
若a,b?R?,則ab?
不等式的課件 篇3
課題:3.4.3 基本不等式 的應(yīng)用(二) 科目:數(shù)學(xué) 教學(xué)對象:高二(290)學(xué)生 課時:1課時 提供者:劉和安 單位: 姚安一中 一、教學(xué)內(nèi)容分析 本節(jié)課的研究是起到了對學(xué)生以前所學(xué)知識與方法的復(fù)習(xí)、應(yīng)用,進(jìn)而構(gòu)建他們更完善的知識網(wǎng)絡(luò)。數(shù)學(xué)建模能力的培養(yǎng)與鍛煉是數(shù)學(xué)教學(xué)的一項長期而艱苦的任務(wù),這一點,在本節(jié)課是真正得到了體現(xiàn)和落實。?
根據(jù)本節(jié)課的教學(xué)內(nèi)容,應(yīng)用觀察、閱讀、歸納、邏輯分析、思考、合作交流、探究,對基本不等式展開實際應(yīng)用,進(jìn)行啟發(fā)、探究式教學(xué)并使用投影儀輔助。? 二、教學(xué)目標(biāo) (一)知識目標(biāo):構(gòu)建基本不等式解決函數(shù)的值域、最值問題;
(二)能力目標(biāo):讓學(xué)生探究用基本不等式解決實際問題
(三)情感、態(tài)度和價值觀目標(biāo):
通過具體問題的解決,讓學(xué)生去感受、體驗現(xiàn)實世界和日常生活中存在著大量的不等量關(guān)系并需要從理性的角度去思考,鼓勵學(xué)生用數(shù)學(xué)觀點進(jìn)行類比、歸納、抽象,使學(xué)生感受數(shù) 學(xué)、走進(jìn)數(shù)學(xué)、培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)學(xué)習(xí)習(xí)慣和良好的思維習(xí)慣;? 三、學(xué)習(xí)者特征分析 在本節(jié)課的教學(xué)過程中,仍應(yīng)強(qiáng)調(diào)不等式的現(xiàn)實背景和實際應(yīng)用,真正地把不等式作為刻畫現(xiàn)實世界中不等關(guān)系的工具。通過實際問題的分析解決,讓學(xué)生去體會基本不等式所具有的廣泛的實用價值,同時,也讓學(xué)生去感受數(shù)學(xué)的應(yīng)用價值,從而激發(fā)學(xué)生去熱愛數(shù)學(xué)、研究數(shù)學(xué)。而不是覺得數(shù)學(xué)只是一門枯燥無味的推理學(xué)科。在解決實際問題的過程中,既要求學(xué)生能用數(shù)學(xué)的眼光、觀點去看待現(xiàn)實生活中的許多問題,又會涉及與函數(shù)、方程、三角等許多數(shù)學(xué)本身的知識與方法的處理 四、教學(xué)策略選擇與設(shè)計 1.采用探究法,按照觀察、閱讀、歸納、思考、交流、邏輯分析、抽象應(yīng)用的方法進(jìn)行啟發(fā)式教學(xué);?
2.教師提供問題、素材,并及時點撥,發(fā)揮老師的主導(dǎo)作用和學(xué)生的主體作用;?
3.設(shè)計較典型的具有挑戰(zhàn)性的問題,激發(fā)學(xué)生去積極思考,從而培養(yǎng)他們的數(shù)學(xué)學(xué)習(xí)興趣。?? 五、教學(xué)重點及難點 教學(xué)重點:1.構(gòu)建基本不等式解決函數(shù)的值域、最值問題。?
2.讓學(xué)生探究用基本不等式解決實際問題;?
教學(xué)難點:1.讓學(xué)生探究用基本不等式解決實際問題;?
2.基本不等式應(yīng)用時等號成立條件的考查;?
六、教學(xué)過程 教師活動 學(xué)生活動 設(shè)計意圖 (一)導(dǎo)入新課
(二)推進(jìn)新課
已知 ,若ab為常數(shù)k,那么a+b的值如何變化?
若a+b為常數(shù)s,那么ab的值如何變化?
老師用投影儀給出本節(jié)課的第一組問題
(1)求函數(shù)y=2x2+ (x>0)的最小值。?
(2)求函數(shù)y=x2+ (x>0)的最小值。?
(3)求函數(shù)y=3x2-2x3(0
(4)求函數(shù)y=x(1-x2)(0
(5)設(shè)a>0,b>0,且a2+ =1,求 的最大值。?
(三)合作探究 我們來考慮運(yùn)用正數(shù)的算術(shù)平均數(shù)與幾何平均數(shù)之間的關(guān)系來解答這些問題。根據(jù)函數(shù)最值的含義,我們不難發(fā)現(xiàn)若平均值不等式的某一端為常數(shù),則當(dāng)?shù)忍柲軌蛉〉綍r,這個常數(shù)即為另一端的一個最值。 ?
(四)例題精析?
【例】某工廠要建造一個長方體形無蓋貯水池,其容積為4 800 m3,深為 3 m.如果池底每平方米的造價為150元,池壁每平方米的造價為120元,怎樣設(shè)計水池能使總造價最低?最低總造價是多少?
當(dāng)且僅當(dāng)a=b時,a+b就有最小值為2k.?
當(dāng)且僅當(dāng)a=b時,ab就有最大值 (或ab有 最大值 ).?
學(xué)生完成
留五分鐘的時間讓學(xué)生思考,合作交流
(根據(jù)學(xué)生完成的典型情況,找五位學(xué)生到黑板板演,然后老師根據(jù)學(xué)生到黑板板演的完成情況再一次作點評)?
學(xué)生思考、回答,
不等式的課件 篇4
不等式
教材分析:本課由實際問題中的不等關(guān)系引出不等式的概念;類比方程的解,明確不等式解和解集的概念,以及不等式解集的兩種表示方法。
教學(xué)目標(biāo):了解不等式概念,理解不等式的解和解集。 教學(xué)重難點:不等式及解集概念的理解。 教學(xué)過程: 一:引出新知。
現(xiàn)實世界中存在大量的數(shù)量關(guān)系,包括相等關(guān)系和不等關(guān)系。用等式(包括方程),我們可以研究相等關(guān)系,而研究不等關(guān)系需要用本章的不等式,如引言中選擇購物商場問題.二:探索新知。
問題1 一輛勻速行駛的汽車在11:20距離A地50 km,要在12:00之前駛過A地.你能用式子表示出車速應(yīng)滿足的條件嗎?
1、汽車在12:00之前駛過A地的意思是什么? 從時間上看,汽車要在12:00之前駛過A地,則 以這個速度行駛50 km所用的時間不到。
從路程上看,汽車要在12:00之前駛過A地,則以這個速度行駛的路程要超過50 km。
2、如何用式子表示以上不等關(guān)系? 設(shè):車速為x km/h. 從時間上看: 從路程上看:
(1)對于不等式 而言,車速可以是80 km/h嗎?78 km/h呢?75 km/h呢?72 km/h呢?
(2)類比方程的解,什么叫不等式的解?
使不等式成立的未知數(shù)的值.(3)不等式還有其他解嗎?如果有,這些解應(yīng)滿足什么條件?
一般地,一個含有未知數(shù)的不等式的所有的解,組成這個不等式的解集.求不等式的解集的過程叫做解不等式. (4)除了用不等式表示取值范圍,還有其他表示方法嗎? 數(shù)軸
三、運(yùn)用新知。 例1 請用不等式表示:
(1) 是負(fù)數(shù);
(2) 與5的和小于-7;
(3) 的一半大于3.例2 直接說出不等式的解集,并在數(shù)軸上表
示出來.
四、歸納總結(jié) (1)什么叫不等式?
(2)什么叫不等式的解?不等式的解和方程的解的區(qū)別? (3)什么叫不等式的解集?不等式的解和不等式的解集的區(qū)別?
五、布置作業(yè)
教科書 習(xí)題 第
1、
2、3題。
不等式的課件 篇5
[教學(xué)目標(biāo)]
依據(jù)《新標(biāo)準(zhǔn)》對《不等式》學(xué)段的目標(biāo)要求和本班學(xué)生實際情況,特確定如下目標(biāo):
1、知識與能力目標(biāo):理解掌握基本不等式,并能運(yùn)用基本不等式解決一些簡單問題(求最值、證明不等式);培養(yǎng)學(xué)生探究能力以及分析問題解決問題的能力。
2、過程與方法目標(biāo):按照創(chuàng)設(shè)情景,提出問題→ 剖析歸納證明→ 幾何解釋→ 應(yīng)用(最值的求法、不等式的證明)的過程呈現(xiàn)。啟動觀察、分析、歸納、總結(jié)、抽象概括等思維活動,培養(yǎng)學(xué)生的思維能力,體會數(shù)學(xué)概念的學(xué)習(xí)方法,通過運(yùn)用多媒體的教學(xué)手段,引領(lǐng)學(xué)生主動探索基本不等式性質(zhì),體會學(xué)習(xí)數(shù)學(xué)規(guī)律的方法,體驗成功的樂趣。
3、情感與態(tài)度目標(biāo):通過問題情境的設(shè)置,使學(xué)生認(rèn)識到數(shù)學(xué)是從實際中來,培養(yǎng)學(xué)生用數(shù)學(xué)的眼光看世界,通過數(shù)學(xué)思維認(rèn)知世界,從而培養(yǎng)學(xué)生善于思考、勤于動手的良好品質(zhì)。
二、 [教學(xué)重點]
基本不等式 的證明過程及應(yīng)用。
三、 [教學(xué)難點]
1、基本不等式成立時的三個限制條件(簡稱一正、二定、三相等)的正確理解;
2、靈活利用基本不等式求解實際問題中的最大值和最小值。
四、 [教學(xué)方法]
本節(jié)課采啟發(fā)誘導(dǎo)、講練結(jié)合的教學(xué)方法,結(jié)合現(xiàn)代信息技術(shù)多媒體課件、幾何畫板作為教學(xué)輔助手段,加深學(xué)生對基本不等式的理解。
[教學(xué)用具]
多媒體、幾何畫板
六、 [教學(xué)過程]
教學(xué)過程設(shè)計以問題為中心,以探究解決問題的方法為主線展開。這種安排強(qiáng)調(diào)過程,符合學(xué)生的認(rèn)知規(guī)律,使數(shù)學(xué)教學(xué)過程成為學(xué)生對知識的再創(chuàng)造、再發(fā)現(xiàn)的過程,從而培養(yǎng)學(xué)生的創(chuàng)新意識。
具體過程安排如下:
(一)、創(chuàng)設(shè)情景,提出問題;
上圖是在北京召開的第24屆國際數(shù)學(xué)家大會的會標(biāo),會標(biāo)是根據(jù)中國古代數(shù)學(xué)家趙爽的弦圖設(shè)計的,顏色的明暗使它看上去像一個風(fēng)車,代表中國人民熱情好客。
[問]你能在這個圖中找出一些相等關(guān)系或不等關(guān)系嗎?
利用圖中相關(guān)面積間存在的數(shù)量關(guān)系,抽象出不等式 。在此基礎(chǔ)上,引導(dǎo)學(xué)生認(rèn)識基本不等式。
同時,(幾何畫板輔助教學(xué))通過幾何畫板演示,
讓學(xué)生更直觀的抽象、歸納出結(jié)論:
(二)、抽象歸納:
一般地,對于任意實數(shù) ,有 ,當(dāng)且僅當(dāng) 時,等號成立。
[問] 你能給出它的證明嗎?
學(xué)生在黑板上板書。
特別地,當(dāng) 時,在不等式 中,以 、 分別代替 ,得到什么?
答案: 。
【歸納總結(jié)】
如果 都是正數(shù),那么 ,當(dāng)且僅當(dāng) 時,等號成立。
我們稱此不等式為基本不等式。 其中 稱為 的算術(shù)平均數(shù), 稱為 的幾何平均數(shù)。
(三)、理解升華:
1、文字語言敘述:
兩個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)。
2、符號語言敘述:
若 ,則有 ,當(dāng)且僅當(dāng) 時, 。
[問] 怎樣理解“當(dāng)且僅當(dāng)”?
3、探究基本不等式證明方法:
[問] 如何證明基本不等式?
方法一:作差比較或由 展開證明。
方法二:分析法。
分析法,實際上是尋找結(jié)論的充分條件,執(zhí)果索因的一種思維方法。
4、探究基本不等式的幾何意義:
讀書破萬卷下筆如有神,以上就是一米范文范文為大家?guī)淼?篇《2023高中數(shù)學(xué)基本不等式教學(xué)教案》,希望對您有一些參考價值。
不等式的課件 篇6
不等式和不等式組復(fù)習(xí)課教學(xué)設(shè)計
一、設(shè)計思想:
“不等式”是初中數(shù)學(xué)核心內(nèi)容之一。就不等式的解法來說,它是一種重要的數(shù)學(xué)技能;而就不等式的廣泛作用來說,不管是與實際相關(guān)的問題,還是純粹的數(shù)學(xué)問題,不管是代數(shù)方面的問題,還是幾何圖形方面的問題,乃至更為一般化的問題,只要是求未知數(shù)的值或范圍的問題,經(jīng)常要借助于不等式,可見學(xué)好不等式具有非常重要的意義。
這節(jié)課是中考前的專題復(fù)習(xí)課,知識點不多。由于學(xué)生已經(jīng)學(xué)過本章內(nèi)容,因此在本節(jié)復(fù)習(xí)中主要以提問的形式進(jìn)行知識要點的復(fù)習(xí),以學(xué)生自主探索和合作探究的學(xué)習(xí)方法學(xué)習(xí)本節(jié)內(nèi)容。教師主要在習(xí)題的設(shè)計上選好典型例題,復(fù)習(xí)的知識盡量全面。教學(xué)效果上使不同的學(xué)生有不同的收獲。
二、教學(xué)內(nèi)容分析:
1.《課程標(biāo)準(zhǔn)》對本專題教學(xué)內(nèi)容的要求:
(1)結(jié)合具體問題,了解不等式的意義,探索不等式的基本性質(zhì)。 (2)能解簡單的一元一次不等式,并能在數(shù)軸上表示出解集;會用數(shù)軸確定由兩個一元一次不等式組成的不等式組的解集。
(3)能根據(jù)具體問題中的數(shù)量關(guān)系,列出一元一次不等式,解決簡單的問題。 2.本節(jié)內(nèi)容在中考中的地位和作用。
本部分內(nèi)容在中考中大約6~12分,約占全卷分?jǐn)?shù)的5%~8%左右。而且,近幾年考試中,經(jīng)常與方程、函數(shù)三角函數(shù)、幾何等內(nèi)容一起綜合考查,因此學(xué)好本節(jié)內(nèi)容對于解決這些綜合問題起著舉足輕重的作用。
三、教學(xué)目標(biāo):
1、知識技能:
①掌握不等式的概念和性質(zhì),能根據(jù)不等式的性質(zhì)解決有關(guān)問題;
②掌握不等式(組)的解法,會求不等式(組)的解集,特別是不等式組的整數(shù)解;
③能根據(jù)不等式組的解集確定字母系數(shù)的范圍;
④會列不等式(組)解決簡單的實際問題,特別是方案設(shè)計問題。
2、數(shù)學(xué)思考:通過列不等式或不等式組解決具有不等關(guān)系的實際問題,讓學(xué)生體會不等式是解決實際問題的有效的數(shù)學(xué)模型。
3、解決問題:通過不等式(組)描述不等關(guān)系解決實際問題,發(fā)展學(xué)生由實際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力。
4、情感態(tài)度:①通過復(fù)習(xí)教學(xué),繼續(xù)強(qiáng)化用數(shù)學(xué)的意識,從而使學(xué)生樂于接觸社會環(huán)境中的數(shù)學(xué)信息,愿意談?wù)撃承?shù)學(xué)話題,能夠在數(shù)學(xué)活動中發(fā)揮積極作用。
②.通過探索,增進(jìn)學(xué)生之間的配合,使學(xué)生敢于面對數(shù)學(xué)活動中的困難,并有克服困難和運(yùn)用知識解決問題的成功體驗,樹立學(xué)好數(shù)學(xué)的自信心。
教學(xué)重點:不等式(組)的解法的規(guī)范性及實際應(yīng)用
教學(xué)難點:不等式組有無解的問題中字母系數(shù)的確定和實際問題中不等式(組)的列出
教學(xué)方法:依托多媒體平臺,啟發(fā)、談?wù)?、互動探究法(學(xué)生討論、教師點撥)、講練結(jié)合。
教學(xué)手段:計算機(jī)多媒體輔助教學(xué)。 教學(xué)時間:1課時
教學(xué)準(zhǔn)備:1.學(xué)生準(zhǔn)備:預(yù)習(xí)教材,了解本節(jié)的知識要點。
2.教師準(zhǔn)備:將學(xué)生分組,選好組長;制作多媒體課件。
教學(xué)設(shè)計
一 情境設(shè)計
導(dǎo)入新課
出示多媒體課件
1、問題情境:問題:某化妝品店老板到廠家選購A、B兩種品牌的化妝品,若銷售1套A品牌的化妝品可獲利30元,銷售1套B品牌的化妝品可獲利20元,根據(jù)市場需求,化妝品店老板決定,購進(jìn)B品牌化妝品的數(shù)量比購進(jìn)A品牌化妝品數(shù)量的2倍還多4套,且B品牌化妝品最多可購進(jìn)40套,這樣化妝品全部售出后,可使總的獲利不少于1200元,問有幾種進(jìn)貨方案?如何進(jìn)貨? 教師:同學(xué)們,如果你是這個化妝品店的老板,你怎么解決進(jìn)貨方案問題? (學(xué)生思考):
教師:如何用數(shù)學(xué)符號表示標(biāo)有下劃線的詞語?應(yīng)該考查我們哪部分知識? 學(xué)生:最多 —— ≤;不少于—— -≥。 教師:我們學(xué)過的哪章知識與它們聯(lián)系最密切?由此我們想到了哪部分知識? 學(xué)生:不等式和不等式組
教師:下面我們就來復(fù)習(xí)有關(guān)這方面的內(nèi)容,“專題復(fù)習(xí)
(二)方程和不等式-----------不等式和不等式”。 (板書課題)
(多媒體出示教學(xué)目標(biāo)。圖略)
二、展示教學(xué)目標(biāo)、教學(xué)重點和難點:(讓學(xué)生學(xué)有目的,學(xué)有依據(jù))
三、回顧知識要點:
1.知識網(wǎng)絡(luò)出示;(使學(xué)生對本節(jié)知識的復(fù)習(xí)內(nèi)容一目了然,從總體把握知識間的內(nèi)在聯(lián)系)
實際問題
3、知識要點復(fù)習(xí)不等關(guān)系不等式不等式的性質(zhì)解不等式解集一元一次不等式一元一次不等式組解法解法數(shù)軸表示解集數(shù)軸表示實際應(yīng)用解集數(shù)軸表示 2.知識要點復(fù)習(xí):(通過提問由學(xué)生回答) ①基本概念復(fù)習(xí)
(澄清基本概念,對知識間的內(nèi)在聯(lián)系更明確。)
3、知識要點復(fù)習(xí)
一、基本概念:
1、不等式:
2、不等號:
3、不等式的解:
4、不等式的解集:
5、解不等式:
6、一元一次不等式:
7、一元一次不等式組:
8、一元一次不等式組的解集:
9、解一元一次不等式組: ②不等式性質(zhì)復(fù)習(xí):(它是解不等式和不等式組的重要依據(jù),特別注意第3條性質(zhì),不等號方向改變問題,提醒學(xué)生,此處易錯,提起注意)
3、知識要點復(fù)習(xí)
二、不等式的性質(zhì):(1)如果a>b,那么a+c>b+c,a-c>b-c不等式的兩邊都加上(或減去)同一個數(shù)或同一個整式,不等號的方向不變。ab?(2)如果a>b,并且c>0,那么ac>bc,cc不等式兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變。(3)如果a>b,并且c
3、知識要點復(fù)習(xí)三,規(guī)律與方法:1,不等式的解法:2,解不等式組的方法:3,不等式的解集在數(shù)軸上的表示:大向右,小向左,有等號是實心,無等號是空心.4,求幾個不等式的解的公共部分的方法和規(guī)律:(1)數(shù)軸法(2)口訣法同大取大同小取小一大一小中間找 ④用一元一次不等式組解決實際問題的步驟:(為解決實際問題提供依據(jù),這是本節(jié)的重點知識,學(xué)生可能會類比前邊復(fù)習(xí)的方程和方程組的知識說出。)
3、知識要點復(fù)習(xí)
5、用一元一次不等式組解決實際問題的步驟:實際問題設(shè)未知數(shù),列不等式(組)數(shù)學(xué)問題(不等式或不等式組)解不等式組實際問題的解答檢驗數(shù)學(xué)問題的解(不等式(組)的解集)
四、典型例題解析:(這一環(huán)節(jié)也是學(xué)生要達(dá)到的知識技能目標(biāo)的重要一環(huán),學(xué)生解題的順利與否,是教師關(guān)注的重點。學(xué)生能夠獨立解出的,關(guān)注其過程是否規(guī)范,思路是否清晰,方法是否得當(dāng)。不能解出的,先由小組合作探究,看是否能找到解題的思路,得出問題的答案;如果仍不能得出,教師加以點撥,引導(dǎo),幫助學(xué)生找到解題思路,得出問題的答案。)
例1.(本題是一元一次不等式的解法的考查,是本節(jié)的基本題型,估計學(xué)生都能獨立解出,可讓中游的學(xué)生板演,這樣解題步驟展現(xiàn)在大家面前,如果規(guī)范,起個示范作用;不規(guī)范,示范改正,起警示作用。把重點放在解題步驟是否規(guī)范上。)
4、典型例題:例1.解一元一次不等式解:3 (x-1) ≤6 –2(x-2)3x –3 ≤6 –2x+43x+2x ≤6+4+35x ≤13x ≤135自然數(shù)解非負(fù)整數(shù)解正整數(shù)解最大解最大整數(shù)解 (右邊的云形圖中是在學(xué)生解完不等式后先后出示的五種特殊情況,這樣進(jìn)
行變式教學(xué),展示了一題多解的典型題目,同時又使學(xué)生鍛煉了仔細(xì)審題的能力。)
4、典型例題:例1.解一元一次不等式解一元一次方程一元一次不解:3 (x-1) = 6 –2(x-2)解:3 (x-1) ≤6 –2(x-2)3x –3 = 6 –2x+43x –3 ≤6 –2x+4等式和一元一次3x+2x =6+4+3方程有何共同點3x+2x ≤6+4+35x =13和不同點?5x ≤x =x≤55 (通過這種一元一次不等式和一元一次方程解法的類比,使學(xué)生明確知識間的內(nèi)在聯(lián)系,同時發(fā)現(xiàn)其中的異同,對兩者的區(qū)別更加清晰)
例2.(考查不等式的變形,解決問題的關(guān)鍵是正確理解不等式的概念和基本性質(zhì)。重點關(guān)注基本性質(zhì)的靈活掌握)
例3.(把平面直角坐標(biāo)系的象限問題轉(zhuǎn)化成不等式組問題,既體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想方法,又見識了不等式組的廣泛應(yīng)用。可以幫學(xué)生回憶坐標(biāo)系的有關(guān)知識。)
4、典型例題:a例2.若a1;b1a③a+b
3、在直角坐標(biāo)系中,P(2x-6,x-5)在第四象限,則x的取值范圍是3
例4.(把不等式中的相等問題出示,體現(xiàn)了相等和不等可以互相轉(zhuǎn)化的數(shù)學(xué)思想。并與數(shù)與式中的乘方問題相聯(lián)系,具有一定的綜合性。)
例5.(借助數(shù)軸確定不等式組的解集,對于解這類題非常有效,學(xué)生容易做錯,特別是是否包括界點問題,有一定難度,讓學(xué)生小組合作探究,共同尋找問題的答案。教師巡視,給有困難小組點撥,指導(dǎo)。)
4、典型例題:x?a?2例
4、(2009涼山)若不等式組集是-1
例題分析:問題5問題分析:本題存在兩個不等關(guān)系,一是購買B品牌化妝品不超過40套;二是兩種化妝品的獲利不少于1200元。根據(jù)這兩個不等關(guān)系,可列不等式組求解。 (學(xué)生寫出解題過程后,教師可出示規(guī)范的解題過程,體現(xiàn)數(shù)學(xué)學(xué)科的嚴(yán)謹(jǐn)性。)
4例題講解:、典型例題:解:設(shè)A品牌化妝品購進(jìn)m套,則B品牌化妝品購進(jìn)(2m+4)套。根據(jù)題意得:解得:16≤m≤18.因為m為正整數(shù),所以m=16,17,18,所以2m+4=
36、
38、40.所以有三種進(jìn)貨方案:(1)A種品牌的化妝品的購進(jìn)16套,B種品牌的化妝品購進(jìn)36套;(1)A種品牌的化妝品的購進(jìn)16套,B種品牌的化妝品購進(jìn)36套;(1)A種品牌的化妝品的購進(jìn)16套,B種品牌的化妝品購進(jìn)36套; (通過方案設(shè)計題的解決,使學(xué)生能夠由實際問題建立數(shù)學(xué)模型,從而增強(qiáng)解決實際問題的能力。)
五、
歸納小結(jié)(先由學(xué)生自己歸納總結(jié)本節(jié)課的收獲,從而把課堂傳授的知識盡快化為學(xué)生的素質(zhì),以培養(yǎng)和增強(qiáng)學(xué)生的歸納總結(jié)能力;然后老師予以補(bǔ)充和歸納,為學(xué)生良好學(xué)習(xí)習(xí)慣的養(yǎng)成繼續(xù)進(jìn)行指導(dǎo)。)
5、歸納小結(jié)你會了嗎?這節(jié)課你學(xué)到了什么?你有什么收獲?你還有什么問題?
六、達(dá)標(biāo)檢測:(在這一環(huán)節(jié),我設(shè)計了幾個有梯度的題目,這樣可使不同層次的學(xué)生都能有所收獲,都能感受到成功的喜悅,使他們“在數(shù)學(xué)上都能有不同的發(fā)展”。)
6.達(dá)標(biāo)檢測(1)若2x=3+k的解集是負(fù)數(shù),那么k的取值范圍是______.K
3、不等式組數(shù)解為(A的最小整)A,-1 B,0 C,2 D,3 9
6.達(dá)標(biāo)檢測
4、躍壯五金商店準(zhǔn)備從寧云機(jī)械廠購進(jìn)甲、乙兩種零件進(jìn)行銷售。若每個甲種零件的進(jìn)價比每個乙種零件的進(jìn)價少2元,且用80元購進(jìn)甲種零件的數(shù)量與用100元購進(jìn)乙種零件的數(shù)量相同。(1)求每個甲種零件、每個乙種零件的進(jìn)價分別為多少元?(2)若該五金商店本次購進(jìn)甲種零件的數(shù)量比購進(jìn)乙種零件的數(shù)量的3倍還少5個,購進(jìn)兩種零件的總數(shù)量不超過95個,該五金商店每個甲種零件的銷售價格為12元,每個乙種零件的銷售價格為15元,則將本次購進(jìn)的甲、乙兩種零件全部售出后,可使銷售兩種零件的總利潤(利潤=售價-進(jìn)價超過371元,通過計算求出躍壯五金商店本次從寧云機(jī)械廠購進(jìn)甲、乙兩種零件有幾種方案?請你設(shè)計出來。 6.達(dá)標(biāo)檢測選做題?若不等式組x?a?01?2x?x?2有解,則a的取?值范圍是(A)。?>-1 ≥-1 ≤1 <1
七、教學(xué)設(shè)計的理論依據(jù)
1.“理論聯(lián)系實際”的原則,聯(lián)系學(xué)生身邊的生活,引導(dǎo)學(xué)生學(xué)習(xí)運(yùn)用理論知識分析、解決實際問題。
2.新課程標(biāo)準(zhǔn)中的“學(xué)生是學(xué)習(xí)的主人”的主體教育思想。
本節(jié)課努力構(gòu)建師生互動、生生互動的新的教學(xué)模式,創(chuàng)設(shè)情境引領(lǐng)教學(xué),引導(dǎo)學(xué)生的合作學(xué)習(xí),讓其在思考討論中自主學(xué)習(xí),真正落實以學(xué)生為中心、以學(xué)生發(fā)展為根本,注重學(xué)生道德和能力的培養(yǎng)。
不等式的課件 篇7
《基本不等式》教學(xué)設(shè)計
基本不等式
開江中學(xué) 魏江蘭
目標(biāo)分析
依據(jù)《新課程標(biāo)準(zhǔn)》對《不等式》學(xué)段的目標(biāo)要求和學(xué)生的實際情況,特確定如下目標(biāo):
1、知識與能力目標(biāo):理解掌握基本不等式,并能運(yùn)用基本不等式解決一些簡單的求最值問題;理解算數(shù)平均數(shù)與幾何平均數(shù)的概念,學(xué)會構(gòu)造條件使用基本不等式;培養(yǎng)學(xué)生探究能力以及分析問題解決問題的能力。
2、過程與方法目標(biāo):按照創(chuàng)設(shè)情景,提出問題→ 剖析歸納證明→ 幾何解釋→ 應(yīng)用(最值的求法、實際問題的解決)的過程呈現(xiàn)。啟動觀察、分析、歸納、總結(jié)、抽象概括等思維活動,培養(yǎng)學(xué)生的思維能力,體會數(shù)學(xué)概念的學(xué)習(xí)方法,通過運(yùn)用多媒體的教學(xué)手段,引領(lǐng)學(xué)生主動探索基本不等式性質(zhì),體會學(xué)習(xí)數(shù)學(xué)規(guī)律的方法,體驗成功的樂趣。
3、情感與態(tài)度目標(biāo):通過問題情境的設(shè)置,使學(xué)生認(rèn)識到數(shù)學(xué)是從實際中來,培養(yǎng)學(xué)生用數(shù)學(xué)的眼光看世界,通過數(shù)學(xué)思維認(rèn)知世界,從而培養(yǎng)學(xué)生善于思考、勤于動手的良好品質(zhì)。
教學(xué)重、難點分析
重點:應(yīng)用數(shù)形結(jié)合的思想理解基本不等式,并從不同角度探索基本不等式ab?a?b的證明過程及應(yīng)用。 2難點:
1、基本不等式成立時的三個限制條件(簡稱一正、二定、三相等);
2、利用基本不等式求解實際問題中的最大值和最小值。
教法分析
本節(jié)課采用觀察——感知——抽象——歸納——探究;啟發(fā)誘導(dǎo)、講練結(jié)合的教學(xué)方法,以學(xué)生為主體,以基本不等式為主線,從實際問題出發(fā),放手讓學(xué)生探究思索。以現(xiàn)代信息技術(shù)多媒體課件作為教學(xué)輔助手段,加深學(xué)生對基本不等式的理解。
《基本不等式》教學(xué)設(shè)計
教學(xué)準(zhǔn)備
多媒體課件、板書
教學(xué)過程
教學(xué)過程設(shè)計以問題為中心,以探究解決問題的方法為主線展開。這種安排強(qiáng)調(diào)過程,符合學(xué)生的認(rèn)知規(guī)律,使數(shù)學(xué)教學(xué)過程成為學(xué)生對知識的再創(chuàng)造、再發(fā)現(xiàn)的過程,從而培養(yǎng)學(xué)生的創(chuàng)新意識。 具體過程安排如下:
一、創(chuàng)設(shè)情景,提出問題;
設(shè)計意圖:數(shù)學(xué)教育必須基于學(xué)生的“數(shù)學(xué)現(xiàn)實”,現(xiàn)實情境問題是數(shù)學(xué)教學(xué)的平臺,數(shù)學(xué)教師的任務(wù)之一就是幫助學(xué)生構(gòu)造數(shù)學(xué)現(xiàn)實,并在此基礎(chǔ)上發(fā)展他們的數(shù)學(xué)現(xiàn)實.基于此,設(shè)置如下情境: 上圖是在北京召開的第24屆國際數(shù)學(xué)家大會的會標(biāo),會標(biāo)是根據(jù)中國古代數(shù)學(xué)家趙爽的弦圖設(shè)計的,顏色的明暗使它看上去像一個風(fēng)車,代表中國人民熱情好客。
[問]你能在這個圖中找出一些相等關(guān)系或不等關(guān)系嗎?
本背景意圖在于利用圖中相關(guān)面積間存在的數(shù)量關(guān)系,抽象出不等式a2?b2?2ab。在此基礎(chǔ)上,引導(dǎo)學(xué)生認(rèn)識基本不等式。
二、抽象歸納:
一般地,對于任意實數(shù)a,b,有a2?b2?2ab,當(dāng)且僅當(dāng)a=b時,等號成立。 [問] 你能給出它的證明嗎?
證明:因為a2?b2?2ab?(a?b)2?0,即a2?b2?2ab.(當(dāng)a?b時取等號)
特別地,當(dāng)a>0,b>0時,在不等式a2?b2?2ab中,以a、b分別代替a、b,得到什么?
設(shè)計依據(jù):類比是學(xué)習(xí)數(shù)學(xué)的一種重要方法,此環(huán)節(jié)不僅讓學(xué)生理解了基本不等式不等式的來源,突破了重點和難點,而且感受了其中的函數(shù)思想,為今后學(xué)習(xí)奠定基礎(chǔ).
《基本不等式》教學(xué)設(shè)計
答案: ab?a?b(a,b?0)。 2你能用不等式的性質(zhì)直接推導(dǎo)這個不等式嗎? 證明:(分析法):由于a,b?R?,于是要證明 a?b?2ab,
只要證明 a?b?2即證
2ab,
a?b?2ab?0,即 (a?b)2?0,
所以a?b?ab,(當(dāng)a?b時取等號)
【歸納總結(jié)】
如果a,b都是正數(shù),那么ab?a?b,當(dāng)且僅當(dāng)a=b時,等號成立。 2a?b稱為a,b的算術(shù)平均數(shù),ab稱2我們稱此不等式為基本不等式。 其中為a,b的幾何平均數(shù)。
文字語言敘述:兩個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)。
探究基本不等式的幾何意義:借助初中階段學(xué)生熟知的幾何圖形,引導(dǎo)學(xué)生探究ab?a?b(a,b?0)2的幾何解釋,通過數(shù)形結(jié)合,賦予不等式不等式ab?a?b(a,b?0)2幾何直觀。進(jìn)一步領(lǐng)悟不等式中等號成立的條件。
如圖:AB是圓的直徑,點C是AB上一點,CD⊥AB,AC=a,CB=b,CD
D?ab
aba?b2abOCAB幾何解釋實質(zhì)可認(rèn)為是:在同一半圓中,半徑不小于半弦(直徑是最長的弦);或者認(rèn)為是,直角三角形斜邊的一半不小于斜邊上的高。
《基本不等式》教學(xué)設(shè)計
4.應(yīng)用舉例,鞏固提高
我們可以用兩個重要不等式來解決什么樣的問題呢?
例1(1)用籬笆圍一個面積為100平方米的矩形菜園,問這個矩形的長、寬各為多少時,所用籬笆最短,最短的籬笆是多少? (2)一段長為36米的籬笆圍成一個矩形菜園,問這個矩形的長、寬為多少時,菜園的面積最大,最大面積是多少?
(通過例1的講解,總結(jié)歸納利用基本不等式求最值問題的特征,實現(xiàn)積與和的轉(zhuǎn)化) 對于(1)若(2)若,
(定值),則當(dāng)且僅當(dāng)(定值),則當(dāng)且僅當(dāng)
時,時,
有最小值有最大值
; .
(鼓勵學(xué)生自己探索推導(dǎo),不但可使他們加深基本不等式的理解,還鍛煉了他們的思維,培養(yǎng)了勇于探索的精神.)
1例 2:當(dāng)x?0時,求y?x?的最小值?x1變式1:當(dāng)x?0時,y?x?有最值嗎?
x1變式2:當(dāng)x?1時,y?x?有最值嗎?
x通過例2及其變式引導(dǎo)學(xué)生領(lǐng)會運(yùn)用基本不等式的三個限制條件(一正二定三相等)在解決最值問題中的作用,提升解決問題的能力,體會方法與策略.
練一練(自主練習(xí)):課本練習(xí) 5.歸納小結(jié),反思提高
《基本不等式》教學(xué)設(shè)計
基本不等式:若若
,則,則
(當(dāng)且僅當(dāng)(當(dāng)且僅當(dāng)
時,等號成立) 時,等號成立)
(1)基本不等式的幾何解釋(數(shù)形結(jié)合思想);(2)運(yùn)用基本不等式解決簡單最值問題的基本方法(一正二定三相等). 6.布置作業(yè),課后延拓
(1)基本作業(yè):課本P100習(xí)題組
1、
2、3題
(2)拓展作業(yè):請同學(xué)們課外到閱覽室或網(wǎng)上查找基本不等式的其他幾何解釋,整理并相互交流.
基本不等式教學(xué)設(shè)計
《等式的性質(zhì)》教學(xué)設(shè)計
《等式的性質(zhì)》教學(xué)設(shè)計
等式性質(zhì)教學(xué)設(shè)計(共8篇)
等式的基本性質(zhì)的課后教學(xué)反思
不等式的課件 篇8
一、教學(xué)目標(biāo):
(一)知識與能力目標(biāo):(課件第2張)
1.體會解不等式的步驟,體會比較、轉(zhuǎn)化的作用。
2.學(xué)生理解、鞏固一元一次不等式的解法.
3.用數(shù)軸表示解集,加深對數(shù)形結(jié)合思想的進(jìn)一步理解和掌握。
4.在解決實際問題中能夠體會將文字語言轉(zhuǎn)化成數(shù)學(xué)語言,學(xué)會用數(shù)學(xué)語言表示實際的數(shù)量關(guān)系。
(二)過程與方法目標(biāo):
1.介紹一元一次不等式的概念。
2.通過對一元一次方程的解法的復(fù)習(xí)和對不等式性質(zhì)的利用,導(dǎo)入對解不等式的討論。
3.學(xué)生體會通過綜合利用不等式的概念和基本性質(zhì)解不等式的方法。
4.學(xué)生將文字表達(dá)轉(zhuǎn)化為數(shù)學(xué)語言,從而解決實際問題。
5.練習(xí)鞏固,將本節(jié)和上節(jié)內(nèi)容聯(lián)系起來。
(三)情感、態(tài)度與價值目標(biāo):(課件第3張)
1.在教學(xué)過程中,學(xué)生體會數(shù)學(xué)中的比較和轉(zhuǎn)化思想。
2.通過類比一元一次方程的解法,從而更好的掌握一元一次不等式的解法,樹立辯證統(tǒng)一思想。
3.通過學(xué)生的討論,學(xué)生進(jìn)一步體會集體的作用,培養(yǎng)其集體合作的精神。
4.通過本節(jié)的學(xué)習(xí),學(xué)生體會不等式解集的奇異的數(shù)學(xué)美。
二、教學(xué)重、難點:
1.掌握一元一次不等式的解法。
2.掌握解一元一次不等式的階梯步驟,并能準(zhǔn)確求出解集。
3.能將文字?jǐn)⑹鲛D(zhuǎn)化為數(shù)學(xué)語言,從而完成對應(yīng)用問題的解決。
三、教學(xué)突破:
教材中沒有給出解法的一般步驟,所以在教學(xué)中要注意讓學(xué)生經(jīng)歷將所給的不等式轉(zhuǎn)化為簡單不等式的過程,并通過學(xué)生的討論交流使學(xué)生經(jīng)歷知識的形成和鞏固過程。在解不等式的過程中,與上節(jié)課聯(lián)系起來,重視將解集表示在數(shù)軸上,從而指導(dǎo)學(xué)生體會用數(shù)形結(jié)合的方法解決問題。在研究中,鼓勵學(xué)生用多種方法求解,從而鍛煉他們活躍的思維。
四、教 具:計算機(jī)輔助教學(xué).
五、教學(xué)流程:
(一)、復(fù)習(xí):
教學(xué)環(huán)節(jié)
教 師 活 動
學(xué) 生 活 動
設(shè) 計 意 圖
2023一元二次不等式課件
今天筆者為大家?guī)砹艘黄P(guān)于一元二次不等式課件的精彩文章,歡迎保存本網(wǎng)站,并時刻關(guān)注我們的最新動態(tài)。每位教師都應(yīng)該在授課前準(zhǔn)備充分的教案課件,只要在課前認(rèn)真編寫好教案,便可以有效地促進(jìn)學(xué)校的不斷發(fā)展。教案是推進(jìn)教育教學(xué)創(chuàng)新的有力工具。
一元二次不等式課件 篇1
《一元二次不等式及其解法》
教 學(xué) 設(shè) 計 說 明
《一元二次不等式及其解法》教學(xué)設(shè)計說明
一.教學(xué)內(nèi)容分析:
1.本節(jié)課內(nèi)容在整個教材中的地位和作用.
必修五第三章不等式第二節(jié)一元二次不等式及其解法共有三個課時,本節(jié)課是第一課時,教學(xué)內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性.一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續(xù)和深化,對已學(xué)習(xí)過的集合知識的鞏固和運(yùn)用具有重要的作用.許多問題的解決都會借助一元二次不等式的解法.因此,一元二次不等式的解法在整個高中數(shù)學(xué)教學(xué)中具有很強(qiáng)的基礎(chǔ)性,體現(xiàn)出很大的工具作用. 2.教學(xué)目標(biāo)定位.
根據(jù)教學(xué)大綱要求、高考考試大綱說明、新課程標(biāo)準(zhǔn)精神、高一學(xué)生已有的知識儲備狀況和學(xué)生心理認(rèn)知特征,我確定了四個層面的教學(xué)目標(biāo).第一層面是面向全體學(xué)生的知識目標(biāo):熟練掌握一元二次不等式的解法,正確理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系.第二層面是能力目標(biāo),培養(yǎng)學(xué)生運(yùn)用數(shù)形結(jié)合與分類討論等數(shù)學(xué)思想方法解決問題的能力,提高運(yùn)算和作圖能力.第三層面是德育目標(biāo),通過對解不等式過程中等與不等對立統(tǒng)一關(guān)系的認(rèn)識,向?qū)W生逐步滲透辨證唯物主義思想.第四層面是情感目標(biāo),在教師的啟發(fā)引導(dǎo)下,學(xué)生自主探究,交流討論,培養(yǎng)學(xué)生的合作意識和創(chuàng)新精神. 3.教學(xué)重點、難點確定.
本節(jié)課是在復(fù)習(xí)了一元二次方程和二次函數(shù)之后,利用二次函數(shù)的圖象研究一元二次不等式的解法.只要學(xué)生能夠理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系,并利用其關(guān)系解不等式即可.因此,我確定本節(jié)課的教學(xué)重點為一元二次不等式的解法,關(guān)鍵是一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系. 二.教法學(xué)法分析:
數(shù)學(xué)是發(fā)展學(xué)生思維、培養(yǎng)學(xué)生良好意志品質(zhì)和美好情感的重要學(xué)科,在教學(xué)中,我們不僅要使學(xué)生獲得知識、提高解題能力,還要讓學(xué)生在教師的啟發(fā)引導(dǎo)下學(xué)會學(xué)習(xí)、樂于學(xué)習(xí),感受數(shù)學(xué)學(xué)科的人文思想,使學(xué)生在學(xué)習(xí)中培養(yǎng)堅強(qiáng)的意志品質(zhì)、形成良好的道德情感.為了更好地體現(xiàn)課堂教學(xué)中“教師為主導(dǎo),學(xué)生為主體”的教學(xué)關(guān)系和“以人為本,以學(xué)定教”的教學(xué)理念,在本節(jié)課的教學(xué)過程中,將緊緊圍繞教師組織——啟發(fā)引導(dǎo),學(xué)生探究——交流發(fā)現(xiàn),組織開展教學(xué)活動.我設(shè)計了①回憶舊知,服務(wù)新知,②創(chuàng)設(shè)情境,提出問題,③合作交流,探究新知,④數(shù)學(xué)運(yùn)用,深化認(rèn)知,⑤練習(xí)檢測,反饋新知,⑥談?wù)勈斋@,強(qiáng)化思想,⑦布置作業(yè),實踐新知,環(huán)環(huán)相扣、層層深入的教學(xué)環(huán)節(jié),在教學(xué)中注意關(guān)注整個過程和全體學(xué)生,充分調(diào)動學(xué)生積極參與教學(xué)過程的每個環(huán)節(jié). 三.教學(xué)過程分析:
(一)聯(lián)系舊知,構(gòu)建新知
設(shè)置一系列的問題喚起學(xué)生對舊知識的回憶. 問題1:一元二次方程的解法有哪些呢?
(意圖:讓學(xué)生回顧一元二次方程的解法,為解一元二次不等式做準(zhǔn)備.)
問題2:同學(xué)們還記得二次函數(shù)嗎?二次函數(shù)的形式是怎樣的?你記得二次函數(shù)的性質(zhì)嗎?
(意圖:引導(dǎo)學(xué)生從圖象的角度出發(fā),并啟發(fā)學(xué)生二次函數(shù)的圖象是一條拋物線,其開口方向由二次項系數(shù)決定,為突出重點做準(zhǔn)備)
(二)創(chuàng)設(shè)情景,提出問題
1、讓學(xué)生動手畫直角坐標(biāo)系,然后沿x軸方向上下對折這張紙,觀察它們的值有什么特點?
22、請在剛才的坐標(biāo)系中畫出y=x-7x+6的圖像 問題1:
(1)x軸上方有無圖像?若有請用紅線描出。這部分圖像對應(yīng)的y值如何?(2)x軸下方有無圖像?若有請用藍(lán)線描出。這部分圖像對應(yīng)的y值如何?(3)紅線與藍(lán)線有無交點?若有請用綠色標(biāo)出。
(4)你能找出上述各種情況的x的取值范圍嗎?請在圖中寫出。
問題2:你能說一說這兩個不等式有何共同特點么?(1)含有一個未知數(shù)x;
(2)未知數(shù)的最高次數(shù)為2。通過兩問題得出一元二次不等式的概念:一般地,只含有一個未知數(shù),且未知數(shù)的最高次數(shù)為2的不等式,叫做一元二次不等式。
問題3:判斷下列式子是不是一元二次不等式?
問題4:一元二次函數(shù)、一元二次方程之間有何聯(lián)系呢?
一元二次方程的解即一元二次函數(shù)圖象與x軸交點的橫坐標(biāo),也就是說方程的解即對應(yīng)函數(shù)的零點。
問題5:一元二次不等式如何求解呢?
(三)合作交流,探究新知
1. 探究一元二次不等式x2?x?2?0的解.
容易知道:一元二次方程x2?x?2?0的有兩個實數(shù)根:x1??1或x2?2. 二次函數(shù)y?x2?x?2與x軸有兩個交點:??1,0?和?2,0?. 思考1:觀察圖象一元二次方程的根與二次函數(shù)之間有什么關(guān)系? 思考2:觀察圖象,當(dāng)x為何值時,y?0;
當(dāng)x為何值時,y?0; 當(dāng)x為何值時,y?0.
(設(shè)計意圖 : ①體現(xiàn)學(xué)生的主體性;②有利于加強(qiáng)對圖象的認(rèn)識,從而加強(qiáng)數(shù)形結(jié)合的數(shù)學(xué)思想 ;③有利于加強(qiáng)學(xué)生理解一元二次不等式的解相關(guān)的三個因素;④為歸納解一元二次不等式做好準(zhǔn)備.根據(jù)前面探討的問題引導(dǎo)學(xué)生歸納一元二次不等式的解.)
2. 探究一元二次不等式ax2?bx?c?0或ax2?bx?c?0?a?0?的解法. 組織討論:從上面的例子出發(fā),綜合學(xué)生的意見,可以歸納出確定一元二次不等式的解集,關(guān)鍵要考慮:
2拋物線y?ax?bx?c與x軸的相關(guān)位置的情況,也就是一元二次方程2ax2?bx?c=0的根的情況,而一元二次方程根的情況是由判別式??b?4ac三 3 種取值情況(??0,??0,??0)來確定.
(設(shè)計意圖:這里我將運(yùn)用多媒體圖標(biāo)的形式來展現(xiàn)出其解法思路,學(xué)生有一個完整的邏輯思維,讓學(xué)生在探究中建立知識間的聯(lián)系,體會數(shù)形結(jié)合,強(qiáng)調(diào)突出本節(jié)的難點.)
(四)數(shù)學(xué)運(yùn)用,深化認(rèn)知.
2例1.求不等式2x?3x?2?0的解集. 2變式為:求不等式2x?3x?2?0的解集.
2例2.解不等式?x?2x?3?0.
(設(shè)計意圖:先讓學(xué)生來解答例題,若教師巡視、指導(dǎo),講評學(xué)生完成情況,尋找學(xué)生中的閃光點,給予熱情表揚(yáng).)總結(jié):
解一元二次不等式的步驟:
一化:化二次項前的系數(shù)為正(a>0).二判:判斷對應(yīng)方程的根.三求:求對應(yīng)方程的根.四畫:畫出對應(yīng)函數(shù)的圖象.五解集:根據(jù)圖象寫出不等式的解集.(五)練習(xí)檢測,鞏固收獲
(設(shè)計意圖:為了鞏固和加深一元二次不等式的解法,讓學(xué)生學(xué)以致用,接下來及時組織學(xué)生進(jìn)行課堂練習(xí).然后就學(xué)生在解題中出現(xiàn)的問題共同糾正.)
(六)歸納小結(jié),強(qiáng)化思想
設(shè)計意圖:梳理本節(jié)課的知識點,總結(jié)一元二次不等式解法的步驟:“一化,二判,三求根,四畫圖,五寫解集”的口訣來幫助學(xué)生記憶和歸納,讓學(xué)生掌握嚴(yán)謹(jǐn)?shù)淖鲱}方法,知曉本節(jié)課的重難點.
(七)布置作業(yè),拓展延伸
必做題:課本第80頁習(xí)題A組 1,2.選做題:(1)若關(guān)于m的一元二次方程x
2?(m?1)x?m?0有兩個不相 等的實數(shù)根,求m的取值范圍.2(2)已知不等式x?ax?b?0的解集為x2?x?3?,求a,b的
?值.(設(shè)計意圖:以作業(yè)的鞏固性和發(fā)展性為出發(fā)點,我設(shè)計了必做題和選做題,必做題是對本節(jié)課內(nèi)容的反饋,選做題是對本節(jié)課知識的延伸,整體的設(shè)計意圖是反饋教學(xué),鞏固提高.)四.教學(xué)總結(jié)
本節(jié)課的所有內(nèi)容以習(xí)題的形式展現(xiàn)給學(xué)生,學(xué)生始終在解題中探究,在解題中發(fā)現(xiàn),學(xué)生參與教學(xué)的全過程,成為課堂教學(xué)的主體和學(xué)習(xí)的主人,而老師只須時刻關(guān)注學(xué)生的活動過程,不時給予引導(dǎo),及時糾正.
一元二次不等式課件 篇2
高中數(shù)學(xué)《一元二次不等式的解法(2)》教案
一、教學(xué)目標(biāo)
【知識與技能】
掌握求解一元二次不等式的簡單方法,能正確求解一元二次不等式的解集。
【過程與方法】
在探究一元二次不等式的解法的過程中,提升邏輯推理能力。
【情感、態(tài)度與價值觀】
感受數(shù)學(xué)知識的前后聯(lián)系,提升學(xué)習(xí)數(shù)學(xué)的熱情。
二、教學(xué)重難點
【重點】一元二次不等式的解法。
【難點】一元二次不等式的解法的探究過程。
三、教學(xué)過程
(一)導(dǎo)入新課
回顧一元二次不等式的一般形式,組織學(xué)生舉例一些簡單的一元二次不等式。
提問:如何求解?引出課題。
(二)講解新知
結(jié)合課前回顧的一元二次不等式的一般形式,對比之前所學(xué)內(nèi)容,引導(dǎo)學(xué)生發(fā)現(xiàn)其與一元二次方程和二次函數(shù)的共同特點。
一元二次不等式課件 篇3
新課程理念下的教學(xué)更多的關(guān)注學(xué)生自主探究、關(guān)注學(xué)生的個性發(fā)展,鼓勵學(xué)生勇于提出問題,培養(yǎng)學(xué)生思維的批評性。在課堂上學(xué)生往往會提出讓老師感到“意外”的問題,我在平時的教學(xué)中重視對“課堂意外預(yù)案”的探索和思考,備課時盡量設(shè)想課堂中可能會出現(xiàn)的各種情況,做到有備無患,以免在課堂中學(xué)生提出讓自己出乎意料的問題,使自己陷入被動尷尬境地。結(jié)合以往經(jīng)驗,在本節(jié)課,我提出兩個“意外預(yù)案”。
1、學(xué)生在做課本練習(xí)1(x+2)(x-3)>0時,可能會問到轉(zhuǎn)化為不等式組{或{求解對不對。學(xué)生提出的問題,想法非常好,應(yīng)給予肯定和鼓勵,這與下節(jié)簡單分式不等式和高次不等式的解法有關(guān),是解不等式的另一種解法——等價轉(zhuǎn)化法,不在本節(jié)課之列。
2、根據(jù)以往的經(jīng)驗,在解(x-1)(x+2)>1一類的不等式的時候,由于受方程(x+1)(x+2)=0可轉(zhuǎn)化為x-1=0或x+2=0求解的影響,有可能會出現(xiàn)將不等式轉(zhuǎn)化為不等式組{來求解的錯誤做法,教師要關(guān)注學(xué)生,及時發(fā)現(xiàn)問題并給予糾正,指出上面的轉(zhuǎn)化不是等價轉(zhuǎn)化。
以上是我對本節(jié)課的一些粗淺的認(rèn)識和構(gòu)想,如有不妥之處,懇請各位專家、各位同仁批評指正。謝謝大家!
一元二次不等式課件 篇4
一、教材分析
1、地位和作用。本課是五年制高等師范教材南京大學(xué)出版社《數(shù)學(xué)》教材第一冊第二章第二節(jié)的教學(xué)內(nèi)容,從知識結(jié)構(gòu)看:它是一元一次不等式的延續(xù)和拓展,又是以后研究函數(shù)的定義域、值域等問題的重要工具,起到承前啟后的作用;
從思想層次上看:它涉及到數(shù)形結(jié)合、分類轉(zhuǎn)化等數(shù)學(xué)思想方法,在整個教材中有很強(qiáng)的基礎(chǔ)性。
2、教材內(nèi)容剖析。本節(jié)課的主要內(nèi)容是通過二次函數(shù)的圖像探究一元二次不等式的解法。教材中首先復(fù)習(xí)引入了“三個一次”的關(guān)系,然后依舊帶新,揭示“三個二次”的關(guān)系,其次通過變式例題討論了△=0和△
3、重難點剖析。重點:一元二次不等式的解法。難點:一元二次方程、一元二次不等式、二次函數(shù)的關(guān)系。難點突破:
(1)教師引導(dǎo),學(xué)生自主探究,分組討論。
(2)借助多媒體直觀展示,數(shù)形結(jié)合。
(3)采用由簡單到復(fù)雜,由特殊到一般的教學(xué)策略。
二、目的分析
知識目標(biāo):掌握一元二次不等式的解法,理解“三個二次”之間的關(guān)系
能力目標(biāo):培養(yǎng)學(xué)生“從形到數(shù)”的轉(zhuǎn)化能力,由具體到抽象再到具體,從特殊到一般的歸納概括能力。
情感目標(biāo):在自主探究與討論交流過程中,培養(yǎng)學(xué)生的合作意識。
三、教法分析
教法:“問題串”解決教學(xué)法
以“一串問題”為出發(fā)點,指導(dǎo)學(xué)生“動腦、動手、動眼、動口”,參與知識的形成過程,注重學(xué)生的內(nèi)在發(fā)展。
學(xué)法:合作學(xué)習(xí)(1)以問題為依托,分組探究,合作交流學(xué)習(xí)。(2)以現(xiàn)有認(rèn)知結(jié)構(gòu)為依托,指導(dǎo)學(xué)生用類比方法建構(gòu)新知,用化歸思想解決問題。
四、過程分析
本節(jié)課的教學(xué),設(shè)計了四個教學(xué)環(huán)節(jié):
創(chuàng)設(shè)情景、提出問題
問題1:用一根長為10m的繩子能圍成一個面積大于6m2的矩形嗎?“數(shù)學(xué)來源于生活,應(yīng)用于生活”,首先,以生活中的一個實際問題為背景切入,通過建立簡單的數(shù)學(xué)模型,抽象出一個一元二次不等式,引入課題。
設(shè)計意圖:激發(fā)學(xué)生學(xué)習(xí)興趣,體現(xiàn)數(shù)學(xué)的科學(xué)價值和使用價值。
自主探究,發(fā)現(xiàn)規(guī)律
問題2:解下列方程和不等式。①2x—4=0②2x—4>0③2x—4
歸納、類比法是我們發(fā)現(xiàn)問題、尋求規(guī)律,揭示問題本質(zhì)最常用的方法之一。尋求一元二次不等式的解法,首先從一元一次不等式的解法著手。展示問題2。學(xué)生:用等式和不等式的基本性質(zhì)解題。教師:還有其他的解決方法嗎?展示問題3。
問題3:畫出一次函數(shù)y=2x—4的圖像,觀察圖像,縱坐標(biāo)y=0、y>0、y
學(xué)生:發(fā)現(xiàn)可以借用圖像解題。此問題揭示了“三個一次”的關(guān)系。
設(shè)計意圖:為后面學(xué)習(xí)二次不等式的解法提供鋪墊。
問題4:用圖像法能不能解決一元二次不等式的解呢?已知二次函數(shù)y=x2—2x—8。
(1)求出此函數(shù)與x軸的交點坐標(biāo)。
(2)畫出這個二次函數(shù)的草圖。
(3)在拋物線上找到縱坐標(biāo)y>0的點。
(4)縱坐標(biāo)y>0(即:x2—2x—8>0)的點所對應(yīng)的橫坐標(biāo)x取哪些數(shù)呢?
(5)二次函數(shù)、二次方程、二次不等式的關(guān)系是什幺?
教師:展示問題4。此環(huán)節(jié),要注意下面幾個問題:
(1)啟發(fā)引導(dǎo)學(xué)生運(yùn)用歸納、類比的方法,組織學(xué)生分組討論,自主探究。(2)及時解決學(xué)生的疑點,實現(xiàn)師生合作。(3)先讓學(xué)生自己思考,最后教師和學(xué)生一起歸納步驟。(求根—畫圖—找解),抓住問題本質(zhì),畫圖可省去y軸。教師抓住時機(jī),展示例題1,鞏固方法(△>0的情況),規(guī)范步驟,板書做題步驟,起到示范的作用。設(shè)計意圖:運(yùn)用“解決問題”的教學(xué)方法,使每位學(xué)生參與知識的形成過程,體現(xiàn)了教師主導(dǎo)學(xué)生主體的地位。
變式提問,啟發(fā)誘導(dǎo)
方程:ax2+bx+c=0的解情況函數(shù):y=ax2+bx+c的圖象
不等式的解集
ax2+bx+c>0ax2+bx+c
⊿>0
⊿=0
⊿
教師:展示例題2(1)—x2+x+6≥0(2)x2—4x+40。
學(xué)生:嘗試通過畫圖求解。
此環(huán)節(jié)要注意:引導(dǎo)學(xué)生把不熟悉的問題轉(zhuǎn)化為熟悉的問題解決;對于△=0,△
設(shè)計意圖:通過探索、嘗試的過程,培養(yǎng)了學(xué)生大膽猜想,勇于探索的精神。
自我嘗試,反饋小結(jié)。
教師:展示練習(xí)題,把學(xué)生分成兩個小組,要求當(dāng)堂完成,看哪個組做的好做的快。教師對出現(xiàn)的問題及時反饋。同時,進(jìn)一步啟發(fā)引導(dǎo)學(xué)生將特殊、具體問題的結(jié)論推廣到一般化。展示表格。
學(xué)生:填寫內(nèi)容。
學(xué)生理解了“三個二次”的關(guān)系,得到一般結(jié)論應(yīng)該是水到渠成。最后,教師做本節(jié)課的小結(jié),布置作業(yè)。設(shè)計意圖:激發(fā)了學(xué)生的求知欲,培養(yǎng)了學(xué)生的主動參與意識。
五、評價分析
1、重視學(xué)生學(xué)習(xí)的結(jié)果評價,更重視過程評價。
2、本節(jié)課貫徹了新課程的理念,教學(xué)形式開放,體現(xiàn)了“教師主導(dǎo),學(xué)生主體”的教學(xué)關(guān)系。以上是我對本節(jié)課的粗淺認(rèn)識,如有不妥之處,懇求各位專家、各位同仁批評指正。
一元二次不等式課件 篇5
一元二次不等式及其解法教學(xué)反思
塘沽中專-----戚衛(wèi)民
我在13級電子班教室上了一節(jié)課,由此我進(jìn)行了深刻的反思:
我教的是一個普通中專的班,學(xué)生基礎(chǔ)比較差。因此,第一,課前組織很重要,給 學(xué)生 做思想 工 作,這 節(jié) 課很重要,是大家表現(xiàn) 自己 的好機(jī)會,同 學(xué) 們應(yīng)該遵守紀(jì)律,積極發(fā)言,展示 自己 班良好的素質(zhì)和班風(fēng)。這樣學(xué)生激情會高一些,自然課堂也會活躍一些。第二,把握本節(jié)課的難點,課前做好鋪墊。一元二次不等式及其解法看上去好像很簡單,但是它需要同學(xué)們有很好的基礎(chǔ),解一元二次方程的基礎(chǔ)。而學(xué)生在初中只是熟悉用求根公式解方程,對于十字相乘法分解因式只有極個別會,對于這種情形我在課前把一元二次方程的解法好好的補(bǔ)了一下。還有二次函數(shù)的圖象畫法,也好好的復(fù)習(xí)一下,加深鞏固,突破難點,使得這節(jié)課能順利進(jìn)行下去。
盡管這樣我的課堂效果也不是很好,這是為什么呢?我陷入迷茫之中可能是我的學(xué)生不適應(yīng)教學(xué)方式?可能是學(xué)生緊張?弄錯?后來想想可能我沒有好好地備學(xué)生。我覺得這節(jié)課的教案應(yīng)該這樣設(shè)計,可能會更好:課前引入去掉,應(yīng)該在復(fù)習(xí)時讓學(xué)生解一元二次方程,畫二次函數(shù)圖象,這樣學(xué)生容易進(jìn)入狀態(tài)。然后直接導(dǎo)入新課,有特殊到 一般,由具體到抽象,逐步揭開解一元二次不等式的方法。給出例題應(yīng)由淺入深,先給出形如這樣的:(x-2)(x-3)
讓他們好求方程的根,從而畫圖求不等式的解集,為后續(xù)例題做鋪墊。作為教師我應(yīng)該很規(guī)范的板書。以給學(xué)生榜樣。然后給出形如這樣的不等式:x2+3x-4≥0 由上道題的啟示他們自然會去驗證Δ,用十字相乘法求一元二次方程x2+3x-4=0 的根,畫函數(shù)的圖像,從而求出解集。從這兩道題讓他們自己歸納一下解一元二次不等式的步驟,再出課本習(xí)題,這樣他們一定可以解出來,此種做法可以提高他們的解興趣,把課堂氣氛變得濃烈一些。接著給出-x2-3x+4>0提醒他們要把二項式系數(shù)變?yōu)檎龜?shù)。用課本課后題做練習(xí)。再給出x2-3x+4>0這種Δ0Δ=0的情形。根據(jù)二次函數(shù)的圖像學(xué)生應(yīng)該可以解決。
一節(jié)課究竟要解決什么問題,怎樣解決這是課堂的首要。貼近學(xué)生實際,層層深入,各個擊破,幫學(xué)生排憂解難,同時發(fā)揮他們的主觀能動性,讓學(xué)感受到自己是課堂的主人,這是教師課堂的主旨。還有一點非常重要,老師必須要有很強(qiáng)的親和力。其實親和力的前提是要有愛心,有愛才會親。一個孩子在班上是六十分之一,但在一個家庭是百分百,所以我覺得我們應(yīng)該向愛我們自己的孩子一樣去愛他們,讓學(xué)生感受到我們的關(guān)懷,怎樣做到愛學(xué)生,我覺得自己以后可這樣努力 :記住每一個學(xué)生的名字,在路上和他們打招呼,下課和他們談?wù)勑?,說笑說笑,不 要說一些傷學(xué)生人 格的話語,適當(dāng)鼓勵他們,人心都是肉長的呀,他們會感覺得到的。成績差的學(xué)生其實是非常敏感的,也是很容易叛逆的,在任何時候老師都要想到自己是成年人,是長者,要站在一定的高度考慮我們的學(xué)生,設(shè)身處地為他們想象。這樣就不會有芥蒂,沖突,代溝。這節(jié)課我比較真實展現(xiàn)我的學(xué)生和我自己。無論從哪一方面,業(yè)務(wù)能力,管理能力,對學(xué)生的掌控能力,課堂的把握能力。我都有待學(xué)習(xí)提高。我會努力的!
一元二次不等式課件 篇6
《一元二次不等式解法》說課稿范文
一、 教材簡析
1、地位和價值
一元二次不等式解法是高中數(shù)學(xué)新教材第一冊(上)第一章第5節(jié)的內(nèi)容。在此之前,學(xué)生在初中已學(xué)習(xí)了一元一次不等式,一元一次不等式組,一元二次方程,二次函數(shù),絕對值不等式(高中),這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。一元二次不等式解法是解不等式的基礎(chǔ)和核心,它在高中代數(shù)中起著廣泛應(yīng)用的工具作用,蘊(yùn)藏著“數(shù)與形結(jié)合”的重要思想方法,它已成為代數(shù)、三角、解析幾何交匯綜合的重要部分,是高考綜合題的熱點。
2、教材結(jié)構(gòu)簡介
教材首先以一個一次函數(shù)圖象的應(yīng)用解一元一次不等式,引出圖象法,然后給出一個二次函數(shù),通過具體畫圖象,提出問題。再一般地給出了二次函數(shù)圖象解二次不等式的結(jié)論。課本精選了四個解不等式的例題,并配有相應(yīng)的練習(xí)和習(xí)題。它的后一小節(jié)為解可轉(zhuǎn)化為一元二次不等式的分式不等式。
二、 教育教學(xué)觀
1、 學(xué)生為主體,重學(xué)生參與學(xué)習(xí)活動。
2、 重過程。按照認(rèn)知規(guī)律及學(xué)生認(rèn)知特點,由淺入深,由表及里,設(shè)計一系列教學(xué)活動過程。體現(xiàn)由“實踐……觀察……歸納 ……猜想…… 結(jié)論…… 驗證應(yīng)用”的循環(huán)往復(fù)的認(rèn)知過程。
3、 重能力與態(tài)度的培養(yǎng),在活動中培養(yǎng)學(xué)生自主、交流合作、探究、發(fā)現(xiàn)的能力。重科學(xué)嚴(yán)謹(jǐn)?shù)膫€性品質(zhì)。重參與學(xué)習(xí)的興趣和體驗。
4、 重指導(dǎo)點撥。在學(xué)生自主探究、實踐的基礎(chǔ)上,相機(jī)啟發(fā),恰當(dāng)點撥,促進(jìn)學(xué)生知識由感性向理性提升,由具體到概括抽象,形成師生間的有效互動。
三、 教學(xué)目標(biāo)
基于上述認(rèn)識,及不等式的基本知識,同時學(xué)生在初中已學(xué)過二次函數(shù),考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征,制訂如下教學(xué)目標(biāo):
1、 知識目標(biāo):一元二次方程,一元二次不等式及二次函數(shù)間的聯(lián)系,及利用二次函數(shù)的圖象求解一元二次不等式。
2、 能力目標(biāo):數(shù)形結(jié)合的思想(應(yīng)用二次函數(shù)圖象解不等式)
3、 情感態(tài)度目標(biāo):通過問題解決,培養(yǎng)學(xué)生自主參與學(xué)習(xí),以及嚴(yán)謹(jǐn)求實的.態(tài)度。
四、 教與學(xué)重點、難點
1、重點:用圖象解一元二次不等式。
2、難點:圍繞二次函數(shù)圖象、性質(zhì)這一主線,解決三個“二次”的聯(lián)系和應(yīng)用。
五、 教法與學(xué)法
1、學(xué)情分析及學(xué)法:函數(shù)與圖象應(yīng)用是初中生數(shù)學(xué)的薄弱之處,同時剛進(jìn)入高中的學(xué)生,對高中學(xué)習(xí)還很不適應(yīng),需要加強(qiáng)主動學(xué)習(xí)的指導(dǎo)?;诖耍趯W(xué)生初中知識經(jīng)驗的基礎(chǔ)上,以舊探新;以一系列問題,促進(jìn)主體的學(xué)習(xí)活動(如畫圖象、讀圖等),建構(gòu)知識;以問題情景激勵學(xué)生參與,在恰當(dāng)時機(jī)進(jìn)行點撥啟發(fā),練、導(dǎo)結(jié)合,講練結(jié)合;通過學(xué)生自己做數(shù)學(xué),教師啟發(fā)指導(dǎo),以及學(xué)生領(lǐng)悟,實現(xiàn)學(xué)生對知識的再創(chuàng)造和主動建構(gòu);具體通過教材中的問題及設(shè)計的問題情景,給予學(xué)生活動的空間,通過這些問題(“腳手架”)的解決,使學(xué)生逐步攀升,達(dá)到知識與能力的目標(biāo)。
2、教法:數(shù)學(xué)教學(xué)是數(shù)學(xué)教與學(xué)活動過程的教學(xué),學(xué)生是在探究與發(fā)現(xiàn)中建構(gòu)知識,發(fā)展能力的,因而確定以“問題解決”為教法。實現(xiàn)學(xué)生在教師指導(dǎo)下的發(fā)現(xiàn)探索。同時所學(xué)內(nèi)容適宜用“計算機(jī)高中數(shù)學(xué)問題處理系統(tǒng)”輔助教學(xué)。
六、教學(xué)手段及工具:
多媒體教學(xué)手段,高中數(shù)學(xué)問題處理系統(tǒng)。
七、教學(xué)設(shè)計及教學(xué)過程
1、復(fù)習(xí)設(shè)問,引入新課
高中數(shù)學(xué)新教材第一冊(上)《一元二次不等式解法》(第一課時)說課稿.rar
一元二次不等式課件 篇7
解一元二次不等式化為標(biāo)準(zhǔn)型。判斷△的符號。若△<0,則不等式是在R上恒成立或恒不成立。
若△>0,則求出兩根,在數(shù)軸上標(biāo)出,每個根上畫一條豎線,再從右到左相間標(biāo)正負(fù)號,不等式大于0則取標(biāo)正的范圍,小于0則取標(biāo)負(fù)的范圍。
2.解簡單一元高次不等式
a.化為標(biāo)準(zhǔn)型。
b.將不等式分解成若干個因式的積。
c.求出各個根,在數(shù)軸上標(biāo)出,每個根上畫一條豎線,再從右到左相間標(biāo)正負(fù)號,不等式大于0則取標(biāo)正的范圍,小于0則取標(biāo)負(fù)的范圍。
3.解分式不等式的解
a.化為標(biāo)準(zhǔn)型。
b.可將分式化為整式,將整式分解成若干個因式的積。
c.求出各個根,在數(shù)軸上標(biāo)出,每個根上畫一條豎線,再從右到左相間標(biāo)正負(fù)號,不等式大于0則取標(biāo)正的范圍,小于0則取標(biāo)負(fù)的范圍。(如果不等式是非嚴(yán)格不等式,則要注意分式分母不等于0。)
4.解含參數(shù)的一元二次不等式
a.對二次項系數(shù)a的討論。
若二次項系數(shù)a中含有參數(shù),則須對a的符號進(jìn)行分類討論。分為a>0,a=0,a<0。
b.對判別式△的討論
若判別式△中含有參數(shù),則須對△的符號進(jìn)行分類討論。分為△>0,△=0,△<0。
c.對根大小的討論
若不等式對應(yīng)的方程的根x1、x2中含有參數(shù),則須對x1、x2的大小進(jìn)行分類討論。分為x1>x2,x1=x2,x1<x2。
5.一元二次方程的根的分布問題
a.將方程化為標(biāo)準(zhǔn)型。(a的符號)
b.畫圖觀察,若有區(qū)間端點對應(yīng)的函數(shù)值小于0,則只須討論區(qū)間端點的函數(shù)值。
若沒有區(qū)間端點對應(yīng)的函數(shù)值小于0,則須討論區(qū)間端點的函數(shù)值、△、軸。
6.一元二次不等式的應(yīng)用
⑴在R上恒成立問題(恒不成立問題相反,在某區(qū)間恒成立可轉(zhuǎn)化為實根分布問題)
a.對二次項系數(shù)a的符號進(jìn)行討論,分為a=0與a≠0。
b.a(chǎn)=0時,把a(bǔ)=0帶入,檢驗不等式是否成立,判斷a=0是否屬于不等式解集。
a≠0時,則轉(zhuǎn)化為二次函數(shù)圖像全在x軸上方或下方。
若f(x)>0,則要求a>0,△<0。
若f(x)<0,則要求a<0,△<0。
⑵特殊題型:已知一不等式的解集(含有字母),求另一不等式的解集(與原不等式系數(shù)大小相同,位置不同)。a.寫出原不等式對應(yīng)的方程,由韋達(dá)定理得出解集字母與方程系數(shù)間的關(guān)系。
b.寫出變換后不等式對應(yīng)的方程,由由韋達(dá)定理得出解集字母與方程系數(shù)間的關(guān)系。
c.將a中得到的關(guān)系變化后帶入b的關(guān)系中,得到變換后方程的兩根。
d.判斷兩根的大小,變換后不等式二次項的系數(shù),從而寫出所求解集。
一元二次不等式課件 篇8
一、教材分析
(一)教材的地位和作用
“一元二次不等式解法”既是初中一元一次不等式解法在知識上的延伸和發(fā)展,又是本章集合知識的運(yùn)用與鞏固,也為下一章函數(shù)的定義域和值域教學(xué)作鋪墊,起著鏈條的作用。同時,這部分內(nèi)容較好地反映了方程、不等式、函數(shù)知識的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊(yùn)含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學(xué)思想方法,能較好地培養(yǎng)學(xué)生的觀察能力、概括能力、探究能力及創(chuàng)新意識。
(二)教學(xué)內(nèi)容
本節(jié)內(nèi)容分2課時學(xué)習(xí)。本課時通過二次函數(shù)的圖象探索一元二次不等式的解集。通過復(fù)習(xí)“三個一次”的關(guān)系,即一次函數(shù)與一元一次方程、一元一次不等式的關(guān)系;以舊帶新尋找“三個二次”的關(guān)系,即二次函數(shù)與一元二次方程、一元二次不等式的關(guān)系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數(shù)學(xué)中的和諧美,體驗成功的樂趣。
二、教學(xué)目標(biāo)分析
根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點和高一學(xué)生的認(rèn)知規(guī)律,本節(jié)課的教學(xué)目標(biāo)確定為:
知識目標(biāo)——理解“三個二次”的關(guān)系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。
能力目標(biāo)——通過看圖象找解集,培養(yǎng)學(xué)生“從形到數(shù)”的轉(zhuǎn)化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。
情感目標(biāo)——創(chuàng)設(shè)問題情景,激發(fā)學(xué)生觀察、分析、探求的學(xué)習(xí)激情、強(qiáng)化學(xué)生參與意識及主體作用。
三、重難點分析
一元二次不等式是高中數(shù)學(xué)中最基本的不等式之一,是解決許多數(shù)學(xué)問題的重要工具。本節(jié)課的重點確定為:一元二次不等式的解法。
要把握這個重點。關(guān)鍵在于理解并掌握利用二次函數(shù)的圖象確定一元二次不等式解集的方法——圖象法,其本質(zhì)就是要能利用數(shù)形結(jié)合的思想方法認(rèn)識方程的解,不等式的解集與函數(shù)圖象上對應(yīng)點的橫坐標(biāo)的內(nèi)在聯(lián)系。由于初中沒有專門研究過這類問題,高一學(xué)生比較陌生,要真正掌握有一定的難度。因此,本節(jié)課的難點確定為:“三個二次”的關(guān)系。要突破這個難點,讓學(xué)生歸納“三個一次”的關(guān)系作鋪墊。
四、教法與學(xué)法分析
(一)學(xué)法指導(dǎo)
教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會學(xué)是目的。因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會學(xué)習(xí)。本節(jié)課主要是教給學(xué)生“動手畫、動眼看、動腦想、動口說、善提煉、勤鉆研”的研討式學(xué)習(xí)方法,這樣做增加了學(xué)生自主參與,合作交流的機(jī)會,教給了學(xué)生獲取知識的途徑、思考問題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會逐步感受到數(shù)學(xué)的美,會產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時代特色,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。
(二)教法分析
本節(jié)課設(shè)計的指導(dǎo)思想是:現(xiàn)代認(rèn)知心理學(xué)——建構(gòu)主義學(xué)習(xí)理論。
建構(gòu)主義學(xué)習(xí)理論認(rèn)為:應(yīng)把學(xué)習(xí)看成是學(xué)生主動的建構(gòu)活動,學(xué)生應(yīng)與一定的知識背景即情景相聯(lián)系,在實際情景下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識與經(jīng)驗同化和索引出當(dāng)前要學(xué)習(xí)的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。
本節(jié)課采用“誘思引探教學(xué)法”。把問題作為出發(fā)點,指導(dǎo)學(xué)生“畫、看、說、用”。較好地探求一元二次不等式的解法。
五、課堂設(shè)計
本節(jié)課的教學(xué)設(shè)計充分體現(xiàn)以學(xué)生發(fā)展為本,培養(yǎng)學(xué)生的觀察、概括和探究能力,遵循學(xué)生的認(rèn)知規(guī)律,體現(xiàn)理論聯(lián)系實際、循序漸進(jìn)和因材施教的教學(xué)原則,通過問題情境的創(chuàng)設(shè),激發(fā)興趣,使學(xué)生在問題解決的探索過程中,由學(xué)會走向會學(xué),由被動答題走向主動探究。
(一)創(chuàng)設(shè)情景,引出“三個一次”的關(guān)系
本節(jié)課開始,先讓學(xué)生解一元二次方程x2—x—6=0,如果我把“=”改成“>”則變成一元二次不等式x2—x—6>0讓學(xué)生解,學(xué)生肯定感到很突然。但是“思維往往是從驚奇和疑問開始”,這樣直奔主題,目的在于構(gòu)造懸念,激活學(xué)生的思維興趣。
為此,我設(shè)計了以下幾個問題:
1、請同學(xué)們解以下方程和不等式:
①2x—7=0;②2x—7>0;③2x—7
一元二次不等式課件 篇9
1.創(chuàng)設(shè)情景——引入新課。我們常說“興趣是最好的老師”,長期以來,學(xué)生對學(xué)習(xí)數(shù)學(xué)缺乏興趣,甚至失去信心,一個重要的原因,是老師在教學(xué)中不重視學(xué)生對學(xué)習(xí)的情感體驗,教學(xué)應(yīng)該充分考慮學(xué)生的情感和需要,想方設(shè)法讓學(xué)生在學(xué)習(xí)中樹立信心,感受學(xué)習(xí)的樂趣。根據(jù)教材內(nèi)容的安排,我以學(xué)生熟悉的畫一次函數(shù)圖象、求一次方程和一次不等式的解為背景知識切入,設(shè)置一個練習(xí)題組,一方面讓學(xué)生總結(jié)復(fù)習(xí)已有知識,為后面學(xué)習(xí)二次不等式的解法打下基礎(chǔ),做好鋪墊,另一方面,使學(xué)生在自己熟悉的問題中首先獲得解題成功的快樂體驗,然后以20xx年江蘇省的一道高考試題為引子,引入本節(jié)課的新授內(nèi)容。對于本題,引導(dǎo)學(xué)生,利用上面解練習(xí)題組1的方法,畫出二次函數(shù)圖象來解答。二次函數(shù)是初中數(shù)學(xué)的重要內(nèi)容,本題又給出了函數(shù)圖象上許多點,相信學(xué)生畫出圖象應(yīng)該不成問題,只要教師適當(dāng)點撥,學(xué)生不難得到正確答案。以高考試題為背景引入新課,可以提高學(xué)生興趣,抓住學(xué)生眼球,吸引學(xué)生注意力,還可以讓學(xué)生實實在在感受到,高考題就在我們的課本中,就在我們平常的練習(xí)中。
2.探究交流——發(fā)現(xiàn)規(guī)律。從特殊到一般是我們發(fā)現(xiàn)問題、尋求規(guī)律、揭示問題本質(zhì)最常用的方法之一。我把課本例題1、2編為練習(xí)題組(一),交由學(xué)生用上面解高考題的方法——圖象法去解,學(xué)生由于熟知二次函數(shù)圖象,求解應(yīng)該不會有太大的問題。在這個過程中,教師要啟發(fā)引導(dǎo)學(xué)生注意對比兩題的異同,組織引導(dǎo)學(xué)生展開交流討論,探討第(2)題能不能先把二次項系數(shù)化正以后再構(gòu)造函數(shù)畫圖求解。然后達(dá)成共識,如果二次項系數(shù)為負(fù)數(shù)時,先做等價轉(zhuǎn)化,把二次項系數(shù)化為正數(shù)再解,課本19頁例3、例4作為題組(二),繼續(xù)讓學(xué)生用上面的圖象法,由學(xué)生自己求解,這時我及時提示學(xué)生注意這兩題與題組(一)中兩題的不同(例1、例2對應(yīng)方程都有兩個不等實根,例3對應(yīng)方程有兩相等實根,例4對應(yīng)方程無實根)。兩個題組的練習(xí)之后,可以尋求解二次不等式的一般規(guī)律。
3.啟發(fā)引導(dǎo)——形成結(jié)論。前面兩個題組的四個小題,基本涵蓋了一般一元二次不等式解的各種情況,進(jìn)一步啟發(fā)引導(dǎo)學(xué)生將特殊、具體題目的結(jié)論做一般化總結(jié),與學(xué)生一起就△>0,△<0,△=0的三種情況,總結(jié)二次不等式ax2+bx+c>0或ax2+bx+c<0(a>0)的解的情況應(yīng)該水到渠成。至此,學(xué)生可以感受到,解二次不等式只須①將二次項系數(shù)化為正數(shù),②求解二次方程ax2+bx+c=0的.根。③根據(jù)①后的二次不等式的符號寫出解集即可,必要時也可以結(jié)合圖象寫解集。這樣我們就得到了二次不等式的另外一種解法(可稱為“三步曲”法)。
4.訓(xùn)練小結(jié)——鞏固深化。為了鞏固和加深二次不等式的兩種解法,接下來及時組織學(xué)生進(jìn)行課堂練習(xí),完成課本21頁練習(xí)1—4題。本環(huán)節(jié)請不同層次的學(xué)生在黑板上書寫解題過程,之后師生共同糾正問題,規(guī)范解題過程的書寫。
5.延伸拓寬——提高能力。課堂教學(xué)既要面向全體學(xué)生,又應(yīng)關(guān)注學(xué)生的個體差異。體現(xiàn)分類推進(jìn),分層教學(xué)的原則。為此,我又設(shè)計了一個提高練習(xí)題組,共有三道備選題目,以供程度較好學(xué)有余力的學(xué)生能夠更好的展示自己的解題能力,取得更進(jìn)一步的提高。
一元二次不等式課件 篇10
展過程一元二次不等式教學(xué)設(shè)計
一、教學(xué)內(nèi)容分析:
1、教材地位和作用
本節(jié)課是數(shù)學(xué)(基礎(chǔ)模塊)上冊第二章第三節(jié)《一元二次不等式》。從內(nèi)容上看它是我們初中學(xué)過的一元一次不等式的延伸,同時它也與一元二次方程、二次函數(shù)之間聯(lián)系緊密,涉及的知識面較多。從思想層面看,本節(jié)課突出本現(xiàn)了數(shù)形結(jié)合思想。同時一元二次不等式是解決函數(shù)定義域、值域等問題的重要工具,因此本節(jié)課在整個中學(xué)數(shù)學(xué)中具有較重要的地位和作用。
2、教學(xué)目標(biāo)
知識目標(biāo):正確理解一元二次不等式、一元二次方程、二次函數(shù)的關(guān)系。熟練掌握一元二次不等式的解法。
能力目標(biāo):培養(yǎng)數(shù)形結(jié)合思想、抽象思維能力和形象思維能力。
思想目標(biāo):在教學(xué)中滲透由具體到抽象,由特殊到一般,類比猜想、等價轉(zhuǎn)化的數(shù)學(xué)思想方法。
情感目標(biāo):通過具體情境,使學(xué)生體驗數(shù)學(xué)與實踐的緊密聯(lián)系,感受數(shù)學(xué)魅力,激發(fā)學(xué)生求知欲望。
3、重難點
重點:一元二次不等式的解法。
難點:一元二次方程,一元二次不等式與二次函數(shù)的關(guān)系。
二、學(xué)生情況分析:
我們的學(xué)生是在學(xué)習(xí)了一元一次不等式,一元一次方程、一元一次函數(shù),一元二次方程的基礎(chǔ)上學(xué)習(xí)一元二次不等式。但大都數(shù)學(xué)生的基礎(chǔ)都不是很好,解一元二次方程有一定的困難。
三、教學(xué)環(huán)境分析:教學(xué)環(huán)境應(yīng)包括和諧的師生關(guān)系、多媒體的合理應(yīng)用、良好的課堂組織、合理的問題情境。創(chuàng)設(shè)和諧的師生關(guān)系有利于提高學(xué)習(xí)效率,我們學(xué)校要建立和諧的師生關(guān)系是需要花很多心思的,特別是就業(yè)班的同學(xué),且要有一個相當(dāng)長的適應(yīng)時間。我們學(xué)校的每位老師都有手提電腦,每間教室都有寬屏電子顯示器,老師都能熟練掌握多媒體設(shè)備的運(yùn)用。運(yùn)用多媒體教學(xué)效果好、學(xué)生容易理解、學(xué)習(xí)的積極性高。上課時比較注意創(chuàng)設(shè)合適的問題情境,效果會不錯,學(xué)生從生活實際出發(fā),回答所提的問題,不知不覺學(xué)習(xí)了新的知識,他們不會感覺到學(xué)習(xí)疲勞,反而能積極主動地學(xué)習(xí)。
四、教學(xué)目標(biāo)分析:
知識與技能:正確理解一元二次不等式、一元二次方程、二次函數(shù)的關(guān)系。熟練掌握一元二次不等式的解法。
過程與方法:通過看圖象找解集,培養(yǎng)學(xué)生從從形到數(shù)的轉(zhuǎn)化能力,從具體到抽象、從特殊到一般的歸納概括能力;通過對問題的思考、探究、交流,培養(yǎng)學(xué)生良好的數(shù)學(xué)交流能力,增強(qiáng)其數(shù)形結(jié)合的思維意識。在教學(xué)中滲透由具體到抽象,由特殊到一般,類比猜想、等價轉(zhuǎn)化的數(shù)學(xué)思想方法。
情感態(tài)度與價值觀:通過具體情境,使學(xué)生體驗數(shù)學(xué)與實踐的緊密聯(lián)系,激發(fā)學(xué)生學(xué)習(xí)研究一元二次不等式的積極性和對數(shù)學(xué)的情感,使學(xué)生充分體驗獲取知識的成功感受;在探究、討論、交流過程中培養(yǎng)學(xué)生的合作意識和團(tuán)隊精神,使其養(yǎng)成嚴(yán)謹(jǐn)?shù)闹螌W(xué)態(tài)度和良好的思維習(xí)慣。
一元二次不等式課件 篇11
《一元二次不等式及其解法(第1課時)》教學(xué)設(shè)計
Eric 一 內(nèi)容分析
本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續(xù)和深化,對已學(xué)習(xí)過的集合知識的鞏固和運(yùn)用具有重要的作用,也與后面的函數(shù)、數(shù)列、三角函數(shù)、線形規(guī)劃、直線與圓錐曲線以及導(dǎo)數(shù)等內(nèi)容密切相關(guān)。許多問題的解決都會借助一元二次不等式的解法。因此,一元二次不等式的解法在整個高中數(shù)學(xué)教學(xué)中具有很強(qiáng)的基礎(chǔ)性,體現(xiàn)出很大的工具作用。
二 學(xué)情分析
學(xué)生已經(jīng)掌握了高中所學(xué)的基本初等函數(shù)的圖象及其性質(zhì), 能利用函數(shù)的圖象及其性質(zhì)解決一些問題。學(xué)生知道不等關(guān)系, 掌握了不等式的性質(zhì), 通過這部分內(nèi)容的學(xué)習(xí), 學(xué)生將學(xué)會利用二次函數(shù)的圖象, 通過數(shù)形結(jié)合的思想, 掌握一元二次不等式的解法。
三 教學(xué)目標(biāo)
1.知識與技能目標(biāo):(1)熟練應(yīng)用二次函數(shù)圖象解一元二次不等式的方法(2)了解一元二次不等式與相應(yīng)函數(shù), 方程的聯(lián)系 2.過程與方法:(1)通過學(xué)生已學(xué)過的一元一次不等式為例引入一元二次不等式的有關(guān)概及解法(2)讓學(xué)生觀察二次函數(shù),在此基礎(chǔ)上, 找到一元二次不等式的解法并掌握此解法(3)在學(xué)生尋找一元二次不等式的過中程中培養(yǎng)學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想 3.情感與價值目標(biāo):(1)通過新舊知識的聯(lián)系獲取新知,使學(xué)生體會溫故而知新的道理
(2)通過對解不等式過程中等與不等對立統(tǒng)一關(guān)系的認(rèn)識,向?qū)W生逐步滲透辨證唯物主義思想。
(3)在教師的啟發(fā)引導(dǎo)下,學(xué)生自主探究,交流討論,培養(yǎng)學(xué)生的合作意識和創(chuàng)新精神。
四 教學(xué)重點、難點 1.重點
一元二次不等式的解法 2.難點
理解元二次方程與一元二次不等式解集的關(guān)系
五 教學(xué)方法
啟發(fā)式教學(xué)法,討論法,講授法
六 教學(xué)過程
1.創(chuàng)設(shè)情景,提出問題(約10分鐘)
師:在初中,我們解過一元一次不等式,如解不等式x – 1 > 0,現(xiàn)在請同學(xué)們先畫出函數(shù)y = x – 1 的圖象,并通過觀察圖象回答以下問題: 1)x 為何值時,y = 0;2)x 為何值時,y > 0;3)x 為何值時,y 0的解集能從函數(shù)y = x – 1上看出來嗎?
學(xué)生畫圖,思考。先把問題交給學(xué)生自主探究,過一段時間,再小組交流,此間教師巡視并指導(dǎo)。提問學(xué)生代表。
通過對上述問題的探究,學(xué)生得出以下結(jié)論:
因為上述方程x – 1 = 0以及不等式x – 1 > 0的左邊恰好是上述函數(shù)y = x3x – 2 > 0;2)4x23x – 2 = 0的解是x1 =-1/2, x2 = 2.所以2x24x + 1 = 0 的解是x1 = x2 = 1/2, 所以不等式4x22x + 3
練習(xí):課本80頁練習(xí)第1題(1)-(3)【靈活掌握】.師:今天我們這節(jié)課的內(nèi)容有兩個: 1)會一元二次不等式的解法 2)理解三個“二次”的關(guān)系
作業(yè):課本第80頁 習(xí)題 A
4.板書設(shè)計
§ 一元二次不等式及其解法
解不等式x2 – x – 6 > 0, 請先畫出二次函數(shù) y = x2 – x – 6的圖像,并回答以下問題: 1)x 為何值時,y = 0;y > 0;y 0的解集呢?
七 教學(xué)反思
組1、2題 例,解不等式:
1)2x24x + 1 > 0;3)-x2 + 2x – 3
解:1)因為Δ =(-3)2 – 4×2×(-2)= 25 > 0, 方程的2x23x – 2 > 0的解集是{x| x1 2}.2)因為Δ = 0,方程4x24x + 1 > 0的解集是{x|x ≠ 1/2}.
一元二次不等式課件 篇12
各位評委、各位老師:
大家好!
我叫,來自。今天我說課的課題是《一元二次不等式的解法》(第一課時)。下面我將圍繞本節(jié)課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個問題,從教材內(nèi)容分析、教法學(xué)法分析、教學(xué)過程分析和課堂意外預(yù)案等幾個方面逐一加以分析和說明。
一、教材內(nèi)容分析:
1、本節(jié)課內(nèi)容在整個教材中的地位和作用。
概括地講,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續(xù)和深化,對已學(xué)習(xí)過的集合知識的鞏固和運(yùn)用具有重要的作用,也與后面的函數(shù)、數(shù)列、三角函數(shù)、線形規(guī)劃、直線與圓錐曲線以及導(dǎo)數(shù)等內(nèi)容密切相關(guān)。許多問題的解決都會借助一元二次不等式的解法。因此,一元二次不等式的解法在整個高中數(shù)學(xué)教學(xué)中具有很強(qiáng)的基礎(chǔ)性,體現(xiàn)出很大的工具作用。
2、教學(xué)目標(biāo)定位。
根據(jù)教學(xué)大綱要求、高考考試大綱說明、新課程標(biāo)準(zhǔn)精神、高一學(xué)生已有的知識儲備狀況和學(xué)生心理認(rèn)知特征,我確定了四個層面的教學(xué)目標(biāo)。第一層面是面向全體學(xué)生的知識目標(biāo):熟練掌握一元二次不等式的兩種解法,正確理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系。第二層面是能力目標(biāo),培養(yǎng)學(xué)生運(yùn)用數(shù)形結(jié)合與等價轉(zhuǎn)化等數(shù)學(xué)思想方法解決問題的能力,提高運(yùn)算和作圖能力。第三層面是德育目標(biāo),通過對解不等式過程中等與不等對立統(tǒng)一關(guān)系的認(rèn)識,向?qū)W生逐步滲透辨證唯物主義思想。第四層面是情感目標(biāo),在教師的啟發(fā)引導(dǎo)下,學(xué)生自主探究,交流討論,培養(yǎng)學(xué)生的合作意識和創(chuàng)新精神。
3、教學(xué)重點、難點確定。
本節(jié)課是在復(fù)習(xí)了一次不等式的解法之后,利用二次函數(shù)的圖象研究一元二次不等式的解法。只要學(xué)生能夠理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系,并利用其關(guān)系解不等式即可。因此,我確定本節(jié)課的教學(xué)重點為一元二次不等式的解法,關(guān)鍵是一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系。
二、教法學(xué)法分析:
數(shù)學(xué)是發(fā)展學(xué)生思維、培養(yǎng)學(xué)生良好意志品質(zhì)和美好情感的重要學(xué)科,在教學(xué)中,我們不僅要使學(xué)生獲得知識、提高解題能力,還要讓學(xué)生在教師的啟發(fā)引導(dǎo)下學(xué)會學(xué)習(xí)、樂于學(xué)習(xí),感受數(shù)學(xué)學(xué)科的人文思想,使學(xué)生在學(xué)習(xí)中培養(yǎng)堅強(qiáng)的意志品質(zhì)、形成良好的道德情感。為了更好地體現(xiàn)課堂教學(xué)中“教師為主導(dǎo),學(xué)生為主體”的教學(xué)關(guān)系和“以人為本,以學(xué)定教”的教學(xué)理念,在本節(jié)課的教學(xué)過程中,我將緊緊圍繞教師組織——啟發(fā)引導(dǎo),學(xué)生探究——交流發(fā)現(xiàn),組織開展教學(xué)活動。我設(shè)計了①創(chuàng)設(shè)情景——引入新課,②交流探究——發(fā)現(xiàn)規(guī)律,③啟發(fā)引導(dǎo)——形成結(jié)論,④練習(xí)小結(jié)——深化鞏固,⑤思維拓展——提高能力,五個環(huán)環(huán)相扣、層層深入的教學(xué)環(huán)節(jié),在教學(xué)中注意關(guān)注整個過程和全體學(xué)生,充分調(diào)動學(xué)生積極參與教學(xué)過程的每個環(huán)節(jié)。
不等式課件精選九篇
為了促進(jìn)學(xué)生掌握上課知識點,老師需要提前準(zhǔn)備教案,老師在寫教案課件時還需要花點心思去寫。?教案和課件優(yōu)化可使教學(xué)任務(wù)的完成更加精細(xì)化。幼兒教師教育網(wǎng)小編特意為大家收集整理了“不等式課件”,歡迎參考愿您成為更好的自己!
不等式課件 篇1
不等式的性質(zhì) 教學(xué)設(shè)計
十六中 尚進(jìn)軍
【教學(xué)重點與難點】
教學(xué)重點:掌握不等式的三條基本性質(zhì),尤其是不等式的基本性質(zhì)3 教學(xué)難點:正確應(yīng)用不等式的三條基本性質(zhì)進(jìn)行不等式變形 【教學(xué)目標(biāo)】
1、探索并掌握不等式的基本性質(zhì)
2、會用不等式的基本性質(zhì)進(jìn)行化簡 【教學(xué)方法】
通過觀察、分析、討論,引導(dǎo)學(xué)生歸納總結(jié)出不等式的三條基本性質(zhì),從具體上升到理論,再由理論指導(dǎo)具體的練習(xí),從而強(qiáng)化學(xué)生對知識的理解與掌握.
【教學(xué)過程】
一、創(chuàng)設(shè)情境 復(fù)習(xí)引入
(設(shè)計說明:設(shè)置以下習(xí)題是為了溫故而知新,為學(xué)習(xí)本節(jié)內(nèi)容提供必要的知識準(zhǔn)備.)問題:
1、什么是等式?等式的基本性質(zhì)是什么?
2、什么是不等式?
3、用“>”或“<”填空.(1)3
2×5 3×5
2×(-1)3×(-1)3-5 7-5 2÷2 3÷2 2×(-5)3×(-5)3+a 7+a
2÷(-2)3÷(-2)(教學(xué)說明: 復(fù)習(xí)等式的基本性質(zhì)后學(xué)生自然會聯(lián)想到,不等式是否有與等式相類似的性質(zhì),從而引起學(xué)生的探究欲望.接著問題3為學(xué)生探究不等式的性質(zhì)提供了載體,通過觀察,尋找規(guī)律,得出不等式的性質(zhì).)
二、師生互動,探索新知
1、不等式的基本性質(zhì)
問題1:觀察思考問題3,猜想出不等式的性質(zhì)
先讓學(xué)生獨立思考,后合作交流,通過充分討論,類比等式性質(zhì)得出不等式的性質(zhì).觀察時,引導(dǎo)學(xué)生注意不等號的方向,通過(1)題學(xué)生容易得出不等式性質(zhì)1: 不等式基本性質(zhì)1 不等式兩邊加(或減)同一個數(shù)(或式子),不等號的方向不變. 比較(2)、(3)題,注意觀察不等號方向,并思考不等號方向的改變與什么有關(guān)?由學(xué)生概括總結(jié),教師補(bǔ)充完善得出: 不等式基本性質(zhì)2 不等式兩邊乘(或除以)同一個正數(shù),不等號的方向不變. 不等式基本性質(zhì)3 不等式兩邊乘(或除以)同一個負(fù)數(shù),不等號的方向改變.
問題2:將不等式-2<6兩邊都加上7,-9,兩邊都乘3,-3試一試,進(jìn)一步驗證上面得出的三條結(jié)論. 教師 強(qiáng)調(diào)指出:不等式的三條基本性質(zhì)實質(zhì)上是對不等式兩邊進(jìn)行“+”、“-”、“×”、“÷”四則運(yùn)算,當(dāng)進(jìn)行“+”、“-”法時,不等號方向不變;當(dāng)乘(或除以)同一個正數(shù)時,不等號方向不變;只有當(dāng)乘(或除以)同一個負(fù)數(shù)時,不等號的方向才改變.
問題3:嘗試用數(shù)學(xué)式子表示不等式的三條基本性質(zhì). 學(xué)生思考出答案,教師訂正,最后得出:(1)如果a>b,那么a±c>b±c(2)如果a>b,c>0那么ac>bc(或>)(3)如果a>b,ca” 或“x26;(2)3x50;(4)-4x>3.解:(l)根據(jù)不等式基本性質(zhì)1,不等式的兩邊都加上7,不等號的方向不變. 得 x-7+7>26 +>33(2)根據(jù)不等式基本性質(zhì)1,兩邊都減去2x,不等號的方向不變,得3x-2x75,不等號的方向不變,得(4)根據(jù)不等式基本性質(zhì)3,兩邊都除以-4,不等號的方向改變,得x(教學(xué)說明:這些不等式比較簡單,可以利用不等式的性質(zhì)直接求解,從而加深對這些性質(zhì)的認(rèn)識.教師板書(1)題解題過程.(2)(3)(4)題由學(xué)生在練習(xí)本上完成,指定三個學(xué)生板演,然后師生共同判斷板演是否正確.解題時要引導(dǎo)學(xué)生與解一元一次方程的思路進(jìn)行對比,有助于加強(qiáng)知識之間的前后聯(lián)系,突出新知識的特點,并將原題與“x>a” 或“xc, a+c>b, b+c>a 我們現(xiàn)在求的是兩邊之差與第三邊的關(guān)系,所以由不等式的性質(zhì)1將上式變形為: 由a +b>c得a>c-b, b>c-a.同理,由a+c>b, b+c>a可得c>b-a, b>a-c,c>a-b, a>b-c.這就是說,三角形中任意兩邊之差小于第三邊.(教學(xué)說明:此問題應(yīng)用不等式的性質(zhì)由“三角形的任意兩邊之和大于第三邊”得出“三角形中任意兩邊之差小于第三邊”這個與已有結(jié)論等價的新結(jié)論.“三角形的任意兩邊之和大于第三邊”對應(yīng)的是三個形式一樣的不等式,而不是一個不等式.由這三個不等式再推出“三角形中任意兩邊之差小于第三邊”.為了加深學(xué)生的感性認(rèn)識,可以通過測量的方法驗證這個結(jié)論.)三、鞏固訓(xùn)練,熟練技能:1、如果a>b,那么(1)a-3 b-3,(2)2a 2b(3)-3a-3b,(4)a-b 0(5)(6)-b_____-、在下列各題橫線上填入不等號,并說明是根據(jù)不等式的哪一條基本性質(zhì).(1)若a–3<9,則a_____12;(2)若-a<10,則a_____–10;(3)若a>–1,則a_____–4;(4)若-a>0,則a_____0.3、利用不等式的性質(zhì)解下列不等式,并在數(shù)軸上表示解集(解未知數(shù)為x的不等式,就是要使不等式逐步化為“x>a”或“x<a”的形式)(1)x-1<0;(2)x>-x+6;(3)3x>7;(4)-x<-3.(教學(xué)說明:這些練習(xí)進(jìn)一步加深了學(xué)生對不等式性質(zhì)的理解,做此練習(xí)題時,應(yīng)讓學(xué)生注意觀察它們是應(yīng)用不等式的哪條性質(zhì),是怎樣由已知變形得到的.注意應(yīng)用不等式性質(zhì)3時,不等號要改變方向.做第3題時要引導(dǎo)學(xué)生與解一元一次方程的思路進(jìn)行對比,讓學(xué)生認(rèn)識到應(yīng)用不等式的性質(zhì)1變形,相當(dāng)于移項.)四、總結(jié)反思,課堂小結(jié)1、不等式的基本性質(zhì)是什么?如何用數(shù)學(xué)式子表示?2、在本節(jié)課的學(xué)習(xí)中,你還有什么疑惑? 3.主要用到的思想方法是類比思想.4.注意的問題: 當(dāng)不等式兩邊同乘(或除以)同一個數(shù)時,一定要看清是正數(shù)還是負(fù)數(shù),若是負(fù)數(shù),要變兩個號,一個性質(zhì)符號,另一個是不等號,對于未給定范圍的字母,應(yīng)分情況討論.六、布置課后作業(yè):1、課本127頁練習(xí)2、課本128習(xí)題的5、6、7題 【評價與反思】通過具體的事例觀察并歸納出不等式的三條基本性質(zhì),引導(dǎo)學(xué)生用數(shù)學(xué)式子表示三條基本性質(zhì),同時注意將不等式的三條基本性質(zhì)與等式的基本性質(zhì)進(jìn)行比較,以加深學(xué)生的理解.在教學(xué)過程中,注重培養(yǎng)學(xué)生運(yùn)用類比方法觀察、分析、解決問題的能力及歸納總結(jié)概括的能力.同時培養(yǎng)了學(xué)生積極主動的參與意識和勇敢嘗試、探索的精神.
不等式課件 篇2
本節(jié)教學(xué)的重點是不等式的解集的概念及在數(shù)軸上表示不等式的解集的方法.難點為不等式的解集的概念.
相同點:定義方式相同(使方程成立的未知數(shù)的值,叫做方程的解);解的表示方法也相同.
不同點:解的個數(shù)不同,一般地,一個不等式有無數(shù)多個解,而一個方程只有一個或幾個解,例如, 能使不等式 成立,那么 是不等式的一個解,類似地 等也能使不等式 成立,它們都是不等式 的解,事實上,當(dāng) 取大于 的數(shù)時,不等式 都成立,所以不等式 有無數(shù)多個解.
不等式的解與不等式的解集是兩個不同的概念,不等式的解是指滿足這個不等式的未知數(shù)的某個值,而不等式的解集,是指滿足這個不等式的未知數(shù)的所有的值,不等式的所有解組成了解集,解集中包括了每一個解.
注意:不等式的解集必須滿足兩個條件:第一,解集中的任何一個數(shù)值,都能使不等式成立;第二,解集外的任何一個數(shù)值,都不能使不等式成立.
一般地,一個含未知數(shù)的不等式有無數(shù)多個解,其解集是某個范圍,這個范圍可用一個最簡單的不等式表示出來,例如,不等式 的解集是 .
如不等式 的解集 ,可以用數(shù)軸上表示4的點的左邊部分表示,因為 包含 ,所以在表示4的點上畫實心圓.
如不等式 的解集 ,可以用數(shù)軸上表示4的點的左邊部分表示,因為 包含 ,所以在表示4的點上畫實心圈.
注意:在數(shù)軸上,右邊的點表示的數(shù)總比左邊的點表示的數(shù)大,所以在數(shù)軸上表示不等式的解集時應(yīng)牢記:大于向右畫,小于向左畫;有等號的畫實心圓點,無等號的畫空心圓圈.
1.使學(xué)生了解不等式的解集、解不等式的概念,會在數(shù)軸上表示出不等式的解集.
2.知道不等式的“解集”與方程“解”的不同點.
通過教學(xué),使學(xué)生能夠正確地在數(shù)軸上表示出不等式的解集,并且能把數(shù)軸上的某部分?jǐn)?shù)集用相應(yīng)的不等式表示.
通過講解不等式的“解集”與方程“解”的關(guān)系,向?qū)W生滲透對立統(tǒng)一的辯證觀點.
通過本節(jié)課的學(xué)習(xí),讓學(xué)生了解不等式的解集可利用圖形來表達(dá),滲透數(shù)形結(jié)合的數(shù)學(xué)美.
2.學(xué)生學(xué)法:明確不等式的解與解集的區(qū)別和聯(lián)系,并能熟練地用數(shù)軸表示不等式的解集,在數(shù)軸上表示不等式的解集時,要特別注意:大于向右畫,小于向左畫;有等號的畫實心圓點,無等號的畫空心圓圈.
不等式課件 篇3
基本不等式是數(shù)學(xué)中一個重要的基礎(chǔ)公式,也是高中數(shù)學(xué)學(xué)習(xí)的重點之一。此公式廣泛應(yīng)用于各種求證、排列、組合、概率等數(shù)學(xué)問題中,具有廣泛的實際應(yīng)用價值。本文將圍繞基本不等式的定義、推導(dǎo)、應(yīng)用和解題技巧進(jìn)行講解。
一、基本不等式的定義
基本不等式又稱柯西-施瓦茨不等式,其一般形式為:
∣∣∣∣∑iaibi∣∣∣∣∣≤∣∣∣∣∑iai∣∣∣∣∣∣∣∣∣∑ibi∣∣∣∣∣
其中a1,a2,…,an和b1,b2,…,bn為任意實數(shù)。該不等式的本質(zhì)含義是,在平面直角坐標(biāo)系中,向量間的內(nèi)積不大于它們模的乘積之積,并且當(dāng)且僅當(dāng)向量線性相關(guān)時取等號。
二、基本不等式的推導(dǎo)
基本不等式的推導(dǎo)涉及到向量的概念。假設(shè)有兩個n維向量a和b,它們的內(nèi)積為∑iaibi,則它們的長度分別為:|a|=√∑iai2和|b|=√∑ibi2。
將a和b定義為Rn中的兩個向量,則它們的夾角為θ,則有:
cosθ=∑iaibi/|a||b|
通過分析cosθ的大小關(guān)系,顯然有:
?1≤cosθ≤1
進(jìn)一步得到基本不等式:
|∑iaibi|≤∣∣∣∣∑iai∣∣∣∣∣∣∣∣∑ibi∣∣∣∣∣
三、基本不等式的應(yīng)用
基本不等式廣泛應(yīng)用于各種求證、排列、組合、概率等數(shù)學(xué)問題中,下面將分別介紹它們的應(yīng)用。
1. 求證
基本不等式可以用于求證數(shù)學(xué)中的一些定理,比如互余等比數(shù)列的和定理。具體應(yīng)用時,我們可以將等比數(shù)列拆成兩個向量,然后應(yīng)用基本不等式即可得到所證定理。
2. 排列組合
在排列組合問題中,基本不等式可以幫助我們確定最優(yōu)解,以最小或最大值為目標(biāo)得到所需的數(shù)字。例如,在n個數(shù)字中有幾對數(shù)對,他們之間的差值恰好為k,可以通過將原問題轉(zhuǎn)換為求兩個向量之間的夾角,然后應(yīng)用基本不等式進(jìn)行求解。
3. 概率
在概率問題中,基本不等式可以用于推算隨機(jī)事件中不等的概率值,例如玩牌游戲中的胡牌概率等。我們可以將每個事件看作向量,然后使用基本不等式計算它們的夾角,從而得到相應(yīng)的概率值。
四、基本不等式的解題技巧
基本不等式的應(yīng)用需要掌握一些解題技巧。下面列舉一些常用的技巧:
1. 將數(shù)列表示成向量
在排列組合問題中,將數(shù)列表示成向量,有利于方便運(yùn)用基本不等式進(jìn)行計算。
2. 極小化或極大化
當(dāng)問題中要求最小或最大值時,我們可以使用極小化或極大化的思路,以求解最優(yōu)解。
3. 利用對稱性
當(dāng)有對稱條件時,可以運(yùn)用基本不等式中的對稱性質(zhì),簡化數(shù)學(xué)推理。
4. 運(yùn)用方法的差異性
在某些情況下,我們可以發(fā)現(xiàn)數(shù)列的算術(shù)平均數(shù)和幾何平均數(shù)在大小方面的差異,從而確定使用哪個方法進(jìn)行計算。
綜上所述,基本不等式是高中數(shù)學(xué)學(xué)習(xí)的重點之一,應(yīng)用范圍廣泛。掌握了基本不等式的定義、推導(dǎo)、應(yīng)用和解題技巧,能夠在數(shù)學(xué)競賽中取得更好的成績,也有利于我們理解、應(yīng)用其它數(shù)學(xué)定理。
不等式課件 篇4
《不等式的性質(zhì)(1)》教學(xué)設(shè)計
一、引入
展示任務(wù)單的數(shù)據(jù)分析,向?qū)W生明確本堂課的教學(xué)內(nèi)容。
二、預(yù)習(xí)檢測
學(xué)生回答“什么是不等式的性質(zhì)” 不等式的性質(zhì)1 不等式兩邊加(或減)同一個數(shù)(或式子),不等號的方向不變 不等式的性質(zhì)2 不等式兩邊乘(或除以)同一個正數(shù),不等號的方向不變 不等式的性質(zhì)3 不等式兩邊乘(或除以)同一個負(fù)數(shù),不等號的方向改變
三、應(yīng)用1:利用不等式的性質(zhì)比較大小
【例1】若a?b,判斷3?2a與3?2b的大小關(guān)系.小結(jié):利用不等式的性質(zhì)比較大小的一般思路: 利用不等式的性質(zhì)將“已知”逐步化成“目標(biāo)
(1)教師對任務(wù)單中錯誤率較高的題目進(jìn)行講解;
(2)設(shè)置類似的問題作為例題,并進(jìn)行鞏固訓(xùn)練和變式訓(xùn)練。
【鞏固】(1)若3a?4?3b?4,則a___b;(2)若?5a?7??5b?7,則a___?b,則: 【變式一】若 ①(k2?1)a___(k2?1)b ②1?k2a___1?k2b
【變式二】若a?b,試比較ka與kb的大小.【鞏固】(1)若a?b,且(k?1)a?(k?1)b,則k的取值范圍是______.1(2)由kx?1變形可得x?,則k的取值范圍是________.k
四、應(yīng)用2:利用不等式的性質(zhì)解不等式
(1)針對任務(wù)單中學(xué)生解不等式時在步驟中出現(xiàn)的問題,教師規(guī)范解題步驟;
(2)教師分享某位同學(xué)任務(wù)單中對“不等式的性質(zhì)與等式性質(zhì)的異同?”的回答,小組討論利用不等式的性質(zhì)解不等式步驟中需要注意的問題;(3)學(xué)生綜合范例和討論結(jié)果,進(jìn)行鞏固訓(xùn)練和變式訓(xùn)練?!纠?】利用不等式的性質(zhì)解不等式:4y?12??2?3y.【鞏固】13用不等式的性質(zhì)解不等式:y?2?y?522 【變式】13已知y?2?y?5,化簡y?3?(6?2y)
五、課堂小結(jié)
小組討論分享:通過本節(jié)課的學(xué)習(xí),“我知道了??”“我掌握了??”。
六、課堂檢測
學(xué)生獨立完成課堂檢測,由數(shù)據(jù)反饋出本堂課的達(dá)成度
七、課后思考 布置課后思考題
利用不等式性質(zhì)1,比較2a與a的大?。╝?0).2,比較2a與a的大?。╝?0).利用不等式性質(zhì)
不等式課件 篇5
基本不等式是中學(xué)數(shù)學(xué)中比較重要的知識點,它是一條數(shù)學(xué)公式,可以用來證明數(shù)學(xué)上的不等式問題。在中學(xué)階段,我們通常會學(xué)習(xí)到關(guān)于基本不等式的概念、性質(zhì)以及應(yīng)用等方面的知識。接下來,本篇文章將圍繞這一主題展開,詳細(xì)說明基本不等式的相關(guān)知識點和應(yīng)用場景。
一、基本不等式的概念和性質(zhì)
基本不等式實際上是針對于a、b兩個正實數(shù)而言的,它的數(shù)學(xué)表述為:(a+b)2≥4ab 。 這個公式被稱為基本不等式的“基本式”。同時,在這個式子中,等號成立的條件是a=b時。接下來,讓我們來看看基本不等式的一些性質(zhì)。
1.基本不等式的證明:
(a+b)2=a2+2ab+b2≥4ab (由于a2+b2≥2ab)
化簡得:a2+b2≥2ab,即(a-b)2≥0,結(jié)合等式左側(cè)兩邊同時加上4ab,則得到公式(a+b)2≥4ab,也就是基本不等式。
2. 基本不等式的解釋:
從式子來看,基本不等式的左邊是一個完全平方數(shù),即(a+b)2。右邊是4ab。又因為基本不等式中的變量a和b都是正實數(shù),所以無論a和b的大小關(guān)系如何,四倍的乘積4ab一定是大于等于a2+b2、即2ab的。因此,我們可以得到基本不等式的結(jié)論:(a+b)2≥4ab。
3. 基本不等式的應(yīng)用:
基本不等式有非常廣泛的應(yīng)用,其中一些典型的應(yīng)用場景包括以下幾種:
a. 使用基本不等式證明其他不等式:
比如,對于x、y兩個正實數(shù),我們可以將不等式(x-y)2≥0 化簡為x2+y2≥2xy 的形式,然后用上基本不等式,即可快速證明(x-y)2≥0 成立。
b. 使用基本不等式解決實際問題:
比如,用4米長的繩子圍成一個矩形獸欄,求獸欄能夠圍住的最大面積是多少? 我們可以將這個問題轉(zhuǎn)換為求:4m邊長的正方形對面提醒獸欄的最大面積問題。此時,我們可以利用基本不等式,推導(dǎo)出正方形的對角線最大長度即為4√2米,由此可以得出此時正方形的面積即為16平方米,也就是獸欄的最大面積。
c. 使用基本不等式驗證一些數(shù)學(xué)結(jié)論:
比如,我們可以利用基本不等式來驗證任意兩個正實數(shù)的平均數(shù)一定大于等于它們的幾何平均數(shù)。 具體的,對于兩個正實數(shù)a和b,我們可以推導(dǎo)得到:
(a+b)2≥4ab
(a+b)2/4≥ab
(√ab+√ab)2/4≥ab
(?ab) ≥ (a+b)/2
由此可得,兩個正實數(shù)的平均數(shù)一定大于等于它們的幾何平均數(shù),即( a+b)/2≥?ab。
二、基本不等式的應(yīng)用實例
1.題目描述:
小峰有若干元錢,他能夠涵蓋八天的生活物資開銷。現(xiàn)在,他去買菜了,花掉了R元錢,求他能不能仍然用這筆錢過完余下的那幾天。
2.解題思路:
我們可以設(shè)小峰剩下的錢數(shù)為x,應(yīng)該取得一個不等式來表示這個問題。具體地,設(shè)日均消費為m(m 一定是小于R/x 和x/8之間較小數(shù)),則從第9天開始,小峰所存的錢應(yīng)數(shù)學(xué)表達(dá)式為:
x-R≥m*(8),
x≥m*(8)+R
這是一個關(guān)于x的不等式,為驗證其是否成立,我們需要對它進(jìn)行推導(dǎo)。為了推導(dǎo)方便,我們將不等式變形如下:
m*(8)+R≤x
然后,我們可以利用基本不等式將其化簡為如下形式:
(mx/?8)^2+(Rx/?8)^2≥2mRx/4
由于 x>0,所以令 t = x/?8,則上式化簡為:
(m/2)t^2+(R/2)^2≥tmR
或者
(t-R/m)^2+(m/2)^2≥R^2/ 4m^2
根據(jù)上面的式子,我們可以得出,只要 t≥R/m,即x≥m*(8)+R,則小峰就有足夠的錢過余下的幾天生活了。
3.綜述
基本不等式是非常重要的中學(xué)數(shù)學(xué)知識點,它不僅有較為實際的應(yīng)用場景,還能用于證明和推導(dǎo)其他數(shù)學(xué)結(jié)論。在學(xué)習(xí)基本不等式的時候,我們需要注意,對于不等式的變量,要理解它們所表示的實際含義和邏輯關(guān)系,從而更好地應(yīng)用基本不等式來解決實際問題。
不等式課件 篇6
本節(jié)課的研究是對初中不等式學(xué)習(xí)的延續(xù)和拓展,也是實數(shù)理論的進(jìn)一步發(fā)展.在本節(jié)課的學(xué)習(xí)過程中,將讓學(xué)生回憶實數(shù)的基本理論,并能用實數(shù)的基本理論來比較兩個代數(shù)式的大小.
通過本節(jié)課的學(xué)習(xí),讓學(xué)生從一系列的具體問題情境中,感受到在現(xiàn)實世界和日常生活中存在著大量的不等關(guān)系,并充分認(rèn)識不等關(guān)系的存在與應(yīng)用.對不等關(guān)系的相關(guān)素材,用數(shù)學(xué)觀點進(jìn)行觀察、歸納、抽象,完成量與量的比較過程.即能用不等式或不等式組把這些不等關(guān)系表示出來.
在本節(jié)課的學(xué)習(xí)過程中還安排了一些簡單的、學(xué)生易于處理的問題,其用意在于讓學(xué)生注意對數(shù)學(xué)知識和方法的應(yīng)用,同時也能激發(fā)學(xué)生的學(xué)習(xí)興趣,并由衷地產(chǎn)生用數(shù)學(xué)工具研究不等關(guān)系的愿望.根據(jù)本節(jié)課的教學(xué)內(nèi)容,應(yīng)用再現(xiàn)、回憶得出實數(shù)的基本理論,并能用實數(shù)的基本理論來比較兩個代數(shù)式的大小.
在本節(jié)教學(xué)中,教師可讓學(xué)生閱讀書中實例,充分利用數(shù)軸這一簡單的數(shù)形結(jié)合工具,直接用實數(shù)與數(shù)軸上點的一一對應(yīng)關(guān)系,從數(shù)與形兩方面建立實數(shù)的順序關(guān)系.要在溫故知新的基礎(chǔ)上提高學(xué)生對不等式的認(rèn)識.
1.在學(xué)生了解不等式產(chǎn)生的實際背景下,利用數(shù)軸回憶實數(shù)的基本理論,理解實數(shù)的大小關(guān)系,理解實數(shù)大小與數(shù)軸上對應(yīng)點位置間的關(guān)系.
2.會用作差法判斷實數(shù)與代數(shù)式的大小,會用配方法判斷二次式的大小和范圍.
3.通過溫故知新,提高學(xué)生對不等式的認(rèn)識,激發(fā)學(xué)生的學(xué)習(xí)興趣,體會數(shù)學(xué)的奧秘與數(shù)學(xué)的結(jié)構(gòu)美.
教學(xué)重點:比較實數(shù)與代數(shù)式的大小關(guān)系,判斷二次式的大小和范圍.
思路1.(章頭圖導(dǎo)入)通過多媒體展示衛(wèi)星、飛船和一幅山巒重疊起伏的壯觀畫面,它將學(xué)生帶入“橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同”的大自然和浩瀚的宇宙中,使學(xué)生在具體情境中感受到不等關(guān)系在現(xiàn)實世界和日常生活中是大量存在的,由此產(chǎn)生用數(shù)學(xué)研究不等關(guān)系的強(qiáng)烈愿望,自然地引入新課.
思路2.(情境導(dǎo)入)列舉出學(xué)生身體的高矮、身體的輕重、距離學(xué)校路程的遠(yuǎn)近、百米賽跑的時間、數(shù)學(xué)成績的多少等現(xiàn)實生活中學(xué)生身邊熟悉的事例,描述出某種客觀事物在數(shù)量上存在的不等關(guān)系.這些不等關(guān)系怎樣在數(shù)學(xué)上表示出來呢?讓學(xué)生自由地展開聯(lián)想,教師組織不等關(guān)系的相關(guān)素材,讓學(xué)生用數(shù)學(xué)的觀點進(jìn)行觀察、歸納,使學(xué)生在具體情境中感受到不等關(guān)系與相等關(guān)系一樣,在現(xiàn)實世界和日常生活中大量存在著.這樣學(xué)生會由衷地產(chǎn)生用數(shù)學(xué)工具研究不等關(guān)系的愿望,從而進(jìn)入進(jìn)一步的探究學(xué)習(xí),由此引入新課.
1回憶初中學(xué)過的不等式,讓學(xué)生說出“不等關(guān)系”與“不等式”的異同.怎樣利用不等式研究及表示不等關(guān)系?
2在現(xiàn)實世界和日常生活中,既有相等關(guān)系,又存在著大量的不等關(guān)系.你能舉出一些實際例子嗎?
3數(shù)軸上的任意兩點與對應(yīng)的兩實數(shù)具有怎樣的關(guān)系?
4任意兩個實數(shù)具有怎樣的關(guān)系?用邏輯用語怎樣表達(dá)這個關(guān)系?
活動:教師引導(dǎo)學(xué)生回憶初中學(xué)過的不等式概念,使學(xué)生明確“不等關(guān)系”與“不等式”的異同.不等關(guān)系強(qiáng)調(diào)的是關(guān)系,可用符號“>”“b”“a
教師與學(xué)生一起舉出我們?nèi)粘I钪胁坏汝P(guān)系的例子,可讓學(xué)生充分合作討論,使學(xué)生感受到現(xiàn)實世界中存在著大量的不等關(guān)系.在學(xué)生了解了一些不等式產(chǎn)生的實際背景的前提下,進(jìn)一步學(xué)習(xí)不等式的有關(guān)內(nèi)容.
實例1:某天的天氣預(yù)報報道,最高氣溫32 ℃,最低氣溫26 ℃.
實例2:對于數(shù)軸上任意不同的兩點A、B,若點A在點B的左邊,則xA
實例5:三角形兩邊之和大于第三邊,兩邊之差小于第三邊.
實例6:限速40 km/h的路標(biāo)指示司機(jī)在前方路段行駛時,應(yīng)使汽車的速度v不超過40 km/h.
實例7:某品牌酸奶的質(zhì)量檢查規(guī)定,酸奶中脂肪的含量f應(yīng)不少于2.5%,蛋白質(zhì)的含量p應(yīng)不少于2.3%.
教師進(jìn)一步點撥:能夠發(fā)現(xiàn)身邊的數(shù)學(xué)當(dāng)然很好,這說明同學(xué)們已經(jīng)走進(jìn)了數(shù)學(xué)這門學(xué)科,但作為我們研究數(shù)學(xué)的人來說,能用數(shù)學(xué)的眼光、數(shù)學(xué)的觀點進(jìn)行觀察、歸納、抽象,完成這些量與量的比較過程,這是我們每個研究數(shù)學(xué)的人必須要做的,那么,我們可以用我們所研究過的什么知識來表示這些不等關(guān)系呢?學(xué)生很容易想到,用不等式或不等式組來表示這些不等關(guān)系.那么不等式就是用不等號將兩個代數(shù)式連結(jié)起來所成的式子.如-71+4,2x≤6,a+2≥0,3≠4,0≤5等.
教師引導(dǎo)學(xué)生將上述的7個實例用不等式表示出來.實例1,若用t表示某天的氣溫,則26 ℃≤t≤32 ℃.實例3,若用x表示一個非負(fù)數(shù),則x≥0.實例5,|AC|+|BC|>|AB|,如下圖.
|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.
|AB|-|BC|
實例6,若用v表示速度,則v≤40 km/h.實例7,f≥2.5%,p≥2.3%.對于實例7,教師應(yīng)點撥學(xué)生注意酸奶中的脂肪含量與蛋白質(zhì)含量需同時滿足,避免寫成f≥2.5%或p≥2.3%,這是不對的.但可表示為f≥2.5%且p≥2.3%.
對以上問題,教師讓學(xué)生輪流回答,再用投影儀給出課本上的兩個結(jié)論.
討論結(jié)果:
(1)(2)略;(3)數(shù)軸上任意兩點中,右邊點對應(yīng)的實數(shù)比左邊點對應(yīng)的實數(shù)大.
(4)對于任意兩個實數(shù)a和b,在a=b,a>b,a0a>b;a-b=0a=b;a-b
活動:通過兩例讓學(xué)生熟悉兩個代數(shù)式的大小比較的基本方法:作差,配方法.
點評:本節(jié)兩例的求解,是借助因式分解和應(yīng)用配方法完成的,這兩種方法是代數(shù)式變形時經(jīng)常使用的方法,應(yīng)讓學(xué)生熟練掌握.
1.若f(x)=3x2-x+1,g(x)=2x2+x-1,則f(x)與g(x)的大小關(guān)系是( )
解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).
2.已知x≠0,比較(x2+1)2與x4+x2+1的大小.
解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.
∵x≠0,得x2>0.從而(x2+1)2>x4+x2+1.
例2比較下列各組數(shù)的大小(a≠b).
(1)a+b2與21a+1b(a>0,b>0);
(2)a4-b4與4a3(a-b).
活動:比較兩個實數(shù)的大小,常根據(jù)實數(shù)的運(yùn)算性質(zhì)與大小順序的關(guān)系,歸結(jié)為判斷它們的差的符號來確定.本例可由學(xué)生獨立完成,但要點撥學(xué)生在最后的符號判斷說理中,要理由充分,不可忽略這點.
解:(1)a+b2-21a+1b=a+b2-2aba+b=a+b2-4ab2a+b=a-b22a+b.
∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴a-b22a+b>0,即a+b2>21a+1b.
(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)
=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]
=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].
∵2a2+(a+b)2≥0(當(dāng)且僅當(dāng)a=b=0時取等號),
又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2]
∴a4-b4
點評:比較大小常用作差法,一般步驟是作差——變形——判斷符號.變形常用的手段是分解因式和配方,前者將“差”變?yōu)椤胺e”,后者將“差”化為一個或幾個完全平方式的“和”,也可兩者并用.
已知x>y,且y≠0,比較xy與1的大小.
活動:要比較任意兩個數(shù)或式的大小關(guān)系,只需確定它們的差與0的大小關(guān)系.
∵x>y,∴x-y>0.
當(dāng)y
當(dāng)y>0時,x-yy>0,即xy-1>0.∴xy>1.
點評:當(dāng)字母y取不同范圍的值時,差xy-1的正負(fù)情況不同,所以需對y分類討論.
例3建筑設(shè)計規(guī)定,民用住宅的窗戶面積必須小于地板面積.但按采光標(biāo)準(zhǔn),窗戶面積與地板面積的比值應(yīng)不小于10%,且這個比值越大,住宅的采光條件越好.試問:同時增加相等的窗戶面積和地板面積,住宅的采光條件是變好了,還是變壞了?請說明理由.
活動:解題關(guān)鍵首先是把文字語言轉(zhuǎn)換成數(shù)學(xué)語言,然后比較前后比值的大小,采用作差法.
解:設(shè)住宅窗戶面積和地板面積分別為a、b,同時增加的面積為m,根據(jù)問題的要求a
由于a+mb+m-ab=mb-abb+m>0,于是a+mb+m>ab.又ab≥10%,
因此a+mb+m>ab≥10%.
所以同時增加相等的窗戶面積和地板面積后,住宅的采光條件變好了.
點評:一般地,設(shè)a、b為正實數(shù),且a0,則a+mb+m>ab.
已知a1,a2,…為各項都大于零的等比數(shù)列,公比q≠1,則( )
C.a1+a8=a4+a5 D.a1+a8與a4+a5大小不確定
解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4
=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).
∵{an}各項都大于零,∴q>0,即1+q>0.
又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.
1.下列不等式:①a2+3>2a;②a2+b2>2(a-b-1);③x2+y2>2xy.其中恒成立的不等式的個數(shù)為( )
2.比較2x2+5x+9與x2+5x+6的大小.
答案:
1.C解析:∵②a2+b2-2(a-b-1)=(a-1)2+(b+1)2≥0,
③x2+y2-2xy=(x-y)2≥0.
∴只有①恒成立.
2.解:因為2x2+5x+9-(x2+5x+6)=x2+3>0,
所以2x2+5x+9>x2+5x+6.
1.教師與學(xué)生共同完成本節(jié)課的小結(jié),從實數(shù)的基本性質(zhì)的回顧,到兩個實數(shù)大小的比較方法;從例題的活動探究點評,到緊跟著的變式訓(xùn)練,讓學(xué)生去繁就簡,聯(lián)系舊知,將本節(jié)課所學(xué)納入已有的知識體系中.
2.教師畫龍點睛,點撥利用實數(shù)的基本性質(zhì)對兩個實數(shù)大小比較時易錯的地方.鼓勵學(xué)有余力的學(xué)生對節(jié)末的思考與討論在課后作進(jìn)一步的探究.
1.本節(jié)設(shè)計關(guān)注了教學(xué)方法的優(yōu)化.經(jīng)驗告訴我們:課堂上應(yīng)根據(jù)具體情況,選擇、設(shè)計最能體現(xiàn)教學(xué)規(guī)律的教學(xué)過程,不宜長期使用一種固定的教學(xué)方法,或原封不動地照搬一種實驗?zāi)J?各種教學(xué)方法中,沒有一種能很好地適應(yīng)一切教學(xué)活動.也就是說,世上沒有萬能的教學(xué)方法.針對個性,靈活變化,因材施教才是成功的施教靈藥.
2.本節(jié)設(shè)計注重了難度控制.不等式內(nèi)容應(yīng)用面廣,可以說與其他所有內(nèi)容都有交匯,歷來是高考的重點與熱點.作為本章開始,可以適當(dāng)開闊一些,算作拋磚引玉,讓學(xué)生有個自由探究聯(lián)想的平臺,但不宜過多向外拓展,以免對學(xué)生產(chǎn)生負(fù)面影響.
3.本節(jié)設(shè)計關(guān)注了學(xué)生思維能力的訓(xùn)練.訓(xùn)練學(xué)生的思維能力,提升思維的品質(zhì),是數(shù)學(xué)教師直面的重要課題,也是中學(xué)數(shù)學(xué)教育的主線.采用一題多解有助于思維的發(fā)散性及靈活性,克服思維的僵化.變式訓(xùn)練教學(xué)又可以拓展學(xué)生思維視野的廣度,解題后的點撥反思有助于學(xué)生思維批判性品質(zhì)的提升.
1.比較(x-3)2與(x-2)(x-4)的大小.
2.試判斷下列各對整式的大小:(1)m2-2m+5和-2m+5;(2)a2-4a+3和-4a+1.
5.設(shè)a>0,b>0,且a≠b,試比較aabb與abba的大小.
∴(x-3)2>(x-2)(x-4).
=m2.
∵m2≥0,∴(m2-2m+5)-(-2m+5)≥0.
∴m2-2m+5≥-2m+5.
=a2+2.
∵a2≥0,∴a2+2≥2>0.
∴a2-4a+3>-4a+1.
=x24,
又∵x>0,∴x24>0.
∴(1+x2)2>(1+x)2.
由x>0,得1+x2>1+x.
=(x-y)[(x2+y2)-(x+y)2]
=-2xy(x-y).
∵x0,x-y
∴-2xy(x-y)>0.
∴(x2+y2)(x-y)>(x2-y2)(x+y).
5.解:∵aabbabba=aa-bbb-a=(ab)a-b,且a≠b,
當(dāng)a>b>0時,ab>1,a-b>0,
則(ab)a-b>1,于是aabb>abba.
則(ab)a-b>1.
于是aabb>abb a.
綜上所述,對于不相等的正數(shù)a、b,都有aabb>abba.
不等式課件 篇7
《課題:實際問題與一元一次不等式》教學(xué)設(shè)計
【教學(xué)目標(biāo)】:
1.通過列一元一次不等式解決具有不等關(guān)系的實際問題,進(jìn)一步熟練掌握一元一次不等式的解法,體會不等式是解決實際問題的有效的數(shù)學(xué)模型。
2.通過應(yīng)用一元一次不等式解決實際問題,進(jìn)一步強(qiáng)化應(yīng)用數(shù)學(xué)的意識,從而使學(xué)生樂于接觸社會環(huán)境中的數(shù)學(xué)信息,談?wù)摂?shù)學(xué)話題,能夠在數(shù)學(xué)活動中發(fā)揮積極作用。
3.通過探究,增進(jìn)學(xué)生之間的配合,培養(yǎng)學(xué)生敢于面對困難和克服困難的勇氣,樹立學(xué)好數(shù)學(xué)的自信心。
【重點難點】:
重點:由實際問題中的不等關(guān)系列出不等式。
難點:列一元一次不等式描述實際問題中的不等關(guān)系
【教學(xué)過程】:
回顧舊知、引入新課
師:之前我們學(xué)習(xí)過利用一元一次方程解決生活中的銷售問題,現(xiàn)在李老師就來考考大家,請看第一題:
出示幻燈片1
1.一種商品標(biāo)價100元,按標(biāo)價的8折出售,若想單件商品獲利10元,設(shè)進(jìn)價為x元,則可列等式。
(學(xué)生解決并給出合理解釋)
師:那我們一起來回顧一下利用一元一次方程解決實際問題的基本步驟是什么?
學(xué)生回答后,教師總結(jié):
利用一元一次方程解決實際問題的一般步驟:
審、設(shè)、列、解、答
師:好!請看第二題:
2.一種商品標(biāo)價100元,按標(biāo)價的8折出售,若想單件商品獲利不低于10元,設(shè)進(jìn)價為x元,則。
師:相較于第一題,題目發(fā)生了什么變化?
學(xué)生抓住關(guān)鍵詞“不低于”,列出不等式。
師:找到不等關(guān)系,列一元一次不等式也是解決實際問題的常用方法。今天,我們就來學(xué)習(xí)實際問題與一元一次不等式。
出示幻燈片
2小組討論、探究新知
師:馬上就要過春節(jié)了,想要給自己準(zhǔn)備什么禮物?
師:老師也想給可愛的兒子買禮物,通過考察,已經(jīng)知道有兩家超市正在舉行優(yōu)惠活動,咱們一起去逛一逛,好不好?
出示幻燈片3
甲超市說:凡在本超市累計購買100元商品后,再購買的商品按原價的90%收費。
乙超市:凡在本超市累計購買50元商品后,再購買的商品按原價的95%收費
師:李老師覺得甲超市優(yōu)惠,因為打9折?你的意見呢?
(學(xué)生發(fā)表自己的意見)
師:剛才幾位同學(xué)表達(dá)了自己的觀點,可是這僅僅是我們的猜想,解決問題不能只靠猜想,運(yùn)用數(shù)學(xué)知識該如何解決這個問題呢?
出示幻燈片
4下面老師就把時間交給大家,4人一小組展開討論,到底該選擇哪家超市購買才能獲得更大優(yōu)惠?
(學(xué)生討論的過程中,教師主要巡視并和學(xué)生共同探究。)
經(jīng)過探討,小組形成初步想法,小組派代表分享討論結(jié)果,逐一解決列表達(dá)式、分類、建模列不等式、解不等式等題目中難點,教師以板書形式將結(jié)果呈現(xiàn)在黑板上,并引導(dǎo)學(xué)生補(bǔ)充,完善解題過程,并利用多媒體進(jìn)行展示。
學(xué)以致用 挑戰(zhàn)自我?guī)煟和瑢W(xué)們理解得非常到位!那么再碰到類似的問題你能解決了嗎?
出示幻燈片
5我校計劃在暑假期間組織學(xué)生到某地旅游,參加旅游的人數(shù)估計為10~25人,甲、乙兩家旅行社的服務(wù)質(zhì)量相同,且報價都是每人200元.經(jīng)過協(xié)商:甲旅行社表示可給予每位學(xué)生七五折優(yōu)惠;乙旅行社表示可先免去一位學(xué)生的旅游費用,其余學(xué)生八折優(yōu)惠.我校選擇哪一家旅行社支付的旅游費用較少?
學(xué)生獨立思考后進(jìn)行小組討論,選代表上黑板展示。
梳理過程 總結(jié)提高
教師引導(dǎo)學(xué)生回顧兩道題的解題過程,談?wù)劔@得的感悟,學(xué)生獨立思考片刻后進(jìn)行小組交流討論。
出示幻燈片6
回顧這個問題的解題過程,你有哪些感悟呢?
例如:我感受最深的是??
我感到最困難的是??
我發(fā)現(xiàn)生活中??
我學(xué)會了??
布置作業(yè) 測評反饋
出示幻燈片7
作業(yè):
一、在市場上收集兩種手機(jī)收費方式,幫爸爸(媽媽)選擇一種合適的消費方式.二、習(xí)題(134頁)1.(1)(2)5.
不等式課件 篇8
1.使學(xué)生感受到生活中存在著大量的不等關(guān)系,了解不等式和一元一次不等式的意義;
2.讓學(xué)生自發(fā)地尋找不等式的解,會在數(shù)軸上正確地表示出不等式的解集;
3.能夠根據(jù)題意準(zhǔn)確迅速地列出相應(yīng)的不等式。
1.通過汽車行駛過a地這一實例的研究,使學(xué)生體會到數(shù)學(xué)來源于生活,又服務(wù)于生活,培養(yǎng)學(xué)生“學(xué)數(shù)學(xué)、用數(shù)學(xué)”的意識;
2.經(jīng)歷由具體實例建立不等模型的過程,探究不等式的解與解集的不同意義的過程,滲透數(shù)形結(jié)合的思想。
㈢情感、態(tài)度、價值觀:
1.通過對不等式、不等式的解與解集的探究,引導(dǎo)學(xué)生在獨立思考的基礎(chǔ)上積極參與對數(shù)學(xué)問題的討論,培養(yǎng)他們的合作交流意識;
2.讓學(xué)生充分體會到生活中處處有數(shù)學(xué),并能將它們應(yīng)用到生活的各個領(lǐng)域中去。
3.培養(yǎng)學(xué)生類比的思想方法、數(shù)形結(jié)合的思想。
1.教學(xué)重點:不等式、一元一次不等式、不等式解與解集的意義;在數(shù)軸上正確地表示出不等式的解集;
2.教學(xué)難點:不等式解集的意義,根據(jù)題意列出相應(yīng)的不等式。
計算機(jī)、自制cai課件、實物投影儀、三角板等。
教師創(chuàng)設(shè)情境引入,學(xué)生交流探討;師生共同歸納;教師示范畫圖,課件交互式練習(xí)。
〖創(chuàng)設(shè)情境——從生活走向數(shù)學(xué)〗
[多媒體展示]“五·一黃金周”快要到了,蕪湖市某兩個商場為了促銷商品,推行以下促銷方案:①甲商場:購物不超過50元者,不優(yōu)惠;超過50元的,超過部分折優(yōu)惠。②乙商場:購物不超過100元者,不優(yōu)惠;超過100元的,超過部分九折優(yōu)惠。親愛的同學(xué),如果五·一期間,你去購物,選擇到哪個商場,才比較合算呢?
(以上教學(xué)內(nèi)容是向?qū)W生設(shè)疑,激發(fā)學(xué)生探索問題、研究問題的積極性,可以讓學(xué)生討論一會兒)
教師:要想正確地解決這個問題,我們大家就要學(xué)習(xí)第九章《不等式和不等式組》,學(xué)完本章的內(nèi)容后,我相信,聰明的你們一定都會作出正確的選擇,真正地做到既經(jīng)濟(jì)又實惠。
首先,我們來共同學(xué)習(xí)本章的第一節(jié)課——9.1.1節(jié)《不等式及其解集》
〖新課學(xué)習(xí)〗
學(xué)習(xí)目標(biāo):
1.能感受到生活中存在著大量的不等關(guān)系,了解不等式和一元一次不等式和意義;
2.會尋找不等式的解,會在數(shù)軸上正確地表示出不等式的解集;
3.能夠根據(jù)題意準(zhǔn)確迅速地列出相應(yīng)的不等式。
[多媒體展示一段動畫]:引例:一輛勻速行駛的汽車在11:20距離a地50千米,要在12:00之前駛過a地,車速應(yīng)滿足什么條件?
設(shè)車速是x千米/小時,
(1)從時間上看,汽車要在12:00之前駛過a地,則以這個速度行駛50千米所用的時間不到 小時,即
(2)從路程上看,汽車要在12:00之前駛過a地,則以這個速度行駛 小時的路程要超過50千米,即
請同學(xué)們觀察上面的兩個式子,式子左右兩邊的大小關(guān)系是怎樣的? 左右兩邊相等嗎?
在學(xué)生充分發(fā)表自己意見的基礎(chǔ)上,師生共同歸納得出:
用“>”或“<”號表示大小關(guān)系的式子叫做不等式;
用“≠”表示不等關(guān)系的式子也是不等式。
判斷下列式子中哪些是不等式,是不等式的請在題后的括號內(nèi)劃“√”,不是的請劃“×”
(1)3> 2????? (???? ) (2)2a+1> 0?? (???? )?? (3)a+b=b+a? (???? )
(4)x< 2x+1?? (???? )???? (5)x=2x-5??? (???? ) (6)2x+4x< 3x+1 (???? )????????? (7)15≠7+9? (???? )
上面的不等式中,有些不含未知數(shù),有些含有未知數(shù),大家把(2)、(4)、(6)式與(5)式類比,(5)式是一個一元一次方程,能不能給(2)、(4)、(6)式也起個名字呢?
含有一個未知數(shù), 未知數(shù)的次數(shù)是1的不等式,叫做一元一次不等式.
問題2:車速可以是78千米/小時嗎?75千米/小時呢? 72千米/小時呢?
問題3:我們曾經(jīng)學(xué)過“使方程兩邊相等的未知數(shù)的值就是方程的解”,那么我們可以把使不等式成立的未知數(shù)的值叫做什么呢?
(師生共同歸納)使不等式成立的未知數(shù)的值叫做不等式的解。
2.課堂練習(xí)二——動一動腦,動一動手,你一定能算得對。
76, 73, 79, 80, 74.9, 75.1, 90, 60
(學(xué)生做完后,師問):你還能找出這個不等式的其他的解嗎?這個不等式有多少個解?你從中發(fā)現(xiàn)了什么規(guī)律?
(學(xué)生討論后,師生共同總結(jié)):當(dāng)x>75時,不等式 x>50總成立;而當(dāng)x<75或x=75時,不等式 x>50不成立,這就是說,任何一個大于75的數(shù)都是不等式 x>50的解,這樣的解有無數(shù)個。因此,x>75表示了能使不等式 x>50成立的x的取值范圍,叫做不等式 x>50的解的集合,簡稱解集。
我們再回到前面的問題,經(jīng)過剛才的分析,可以知道,要使汽車在12:00之前駛過a地,車速必須大于75千米/小時。
一個含有未知數(shù)的不等式的所有的解,組成了這個不等式的解集。
4.在數(shù)軸上表示不等式的解集;
注意:在表示75的點上畫空心圓圈,表示不包括這一點.
5.課堂練習(xí)三——動一動腦,動一動手,你一定能算得對。
判斷下列數(shù)中哪些是不等式x+3>6的解? 哪些不是?
-4, -2.5,? 0,? 1,? 2.5,? 3,? 3.2,? 4.8,? 8,? 12
求不等式的解集的過程叫做解不等式。
7.課堂練習(xí)四——看誰算得最快最準(zhǔn)。
直接想出不等式的解集,并在數(shù)軸上表示出不等式的解集:
(1) x+3>6;??????? (2)2x<8;?? ?(3)x-2>0
解:(1)x>3;???????? (2)x<4;??? (3)x>2。
1.例用不等式表示:
(1)x與1的和是正數(shù);??????(2)的與的的差是負(fù)數(shù);
(3)的2倍與1的和大于3;(4)的一半與4的差小于的3倍.
解:(1)x+1>0;???????? (2)+b<0;
(3)2+1>3;????? (4)-4<3;
2.課堂練習(xí)五——看誰最列得又快又準(zhǔn)。
用不等式表示:
(1)是正數(shù);??????????(2)是負(fù)數(shù);
(3)與5的和小于7;??(4)與2的差大于-1;
(5)的4倍大于8;??????(6)的一半小于3.
答案;(1)>0;??????? (2)<0;?? (3)+5>0;
學(xué)生小結(jié),師生共同完善:
2.會尋找不等式的解,會在數(shù)軸上正確地表示出不等式的解集;
3.能夠根據(jù)題意準(zhǔn)確迅速地列出相應(yīng)的不等式。
不等式課件 篇9
不等式的性質(zhì)(2)教學(xué)目標(biāo)
1.知識與技能:理解不等式的性質(zhì),會解簡單的一元一次不等式,并能在數(shù)軸上表示出解集。
2.過程與方法:通過經(jīng)歷不等式性質(zhì)的簡單應(yīng)用,積累數(shù)學(xué)活動。通過獨立解題,進(jìn)一步理解不等式的性質(zhì),體會不等式性質(zhì)的價值。
3.情感態(tài)度和價值觀:認(rèn)識到通過觀察、實驗、類比可以獲得數(shù)學(xué)結(jié)論,體驗數(shù)學(xué)活動充滿著探索性和創(chuàng)造性。在獨立思考的基礎(chǔ)上,積極參與對數(shù)學(xué)問題的討論,敢于發(fā)表自己的觀點,學(xué)會分享別人的想法和結(jié)果,并重新審視自己的想法,能從交流中獲益。重點難點
1.重點:不等式的性質(zhì)及其解法. 2.難點:不等式性質(zhì)的探索及運(yùn)用.方法策略
啟發(fā)式教學(xué)法——以設(shè)問和疑問層層引導(dǎo),激發(fā)學(xué)生,啟發(fā)學(xué)生積極思考,培養(yǎng)和發(fā)展學(xué)生的抽象思維能力。
探究教學(xué)法——引導(dǎo)學(xué)生去疑;鼓勵學(xué)生去探; 激勵學(xué)生去思,培養(yǎng)學(xué)生的創(chuàng)造性思維和批判精神。教學(xué)過程:
一、梳理舊知,引出新課
問題1: 在前面的學(xué)習(xí)中,你學(xué)到了不等式的哪些性質(zhì)?(用文字語言敘述)(鼓勵學(xué)生回答問題,用電子白版顯示三條性質(zhì)的符號語言)問題2: 解一元一次方程最終的目的是把方程轉(zhuǎn)化成哪種形式?其主要的理論依據(jù)是什么?
(為問題3做鋪墊)
二、合作交流,探究新知
問題3: 利用不等式的性質(zhì)解下列不等式:
(1)x?7?26(2)3x?2x?1 2(3)x?50(4)?4x?3 3(類比著解一元一次方程的方法教師先解(1),并用數(shù)軸表示其解集,然后讓學(xué)生試解(2)(3)(4)并和同學(xué)交流,最后教師點評。)
思考1:(3)(4)的求解過程,類似于解方程的哪一步變形? 思考2:依據(jù)不等式性質(zhì)3解不等式時應(yīng)注意什么? 隨堂練習(xí):1.完成課本P119練習(xí)1 問題4: 2011年北京的最低氣溫是19℃,最高氣溫是28℃,你能把北京的氣溫用不等式表示出來嗎?
(符號“≥”讀作“大于或等于”,也可以說是“不小于”;符號“≤”讀作“小于或等于”,也可以說是“不大于”.形如a≥b或a≤b的式子也是不等式,它們具有類似前面所說的不等式的性質(zhì)).隨堂練習(xí):完成課本119頁練習(xí)2.問題5: 某長方體形狀的容器長5 cm,寬3 cm,高10 cm.容器內(nèi)原有水的高度為3cm,現(xiàn)準(zhǔn)備向它繼續(xù)注水.用V(單位:cm3)表示新注入水的體積,寫出V的取值范圍.(學(xué)生先合作探究,然后讓學(xué)生交流探究結(jié)果,最后老師講評并強(qiáng)調(diào)在解決實際問題的時候,要考慮取值的現(xiàn)實意義。)
三、歸納完善,豐富新知
1:如何利用不等式的性質(zhì)解簡單不等式? 2:依據(jù)不等式性質(zhì)3解不等式時應(yīng)注意什么? 3:請說明符號“≥”和“≤”的含義?
四、布置作業(yè)
必做題:P120第5,7,8題.選做題:P120第9題
不等式的課件收藏
經(jīng)驗時常告訴我們,做事要提前做好準(zhǔn)備。在幼兒教育工作中,我們都有會準(zhǔn)備一寫需要用到資料。資料包含著人類在社會實踐,科學(xué)實驗和研究過程中所匯集的經(jīng)驗。有了資料的協(xié)助我們的工作會變得更加順利!所以,關(guān)于幼師資料你究竟了解多少呢?小編現(xiàn)在推薦你閱讀一下不等式的課件收藏,相信能對大家有所幫助。
不等式的課件 篇1
基本不等式是初中數(shù)學(xué)比較重要的一個概念,對于求解不等式問題有非常大的作用。在教學(xué)中,老師可以通過多學(xué)示例,呈現(xiàn)形式多樣,讓學(xué)生深刻理解基本不等式的本質(zhì)和應(yīng)用,使學(xué)生在解決實際問題中靈活掌握相關(guān)知識。本文將結(jié)合基本不等式的定義、性質(zhì)和應(yīng)用,探討其相關(guān)主題。
一、基本不等式的定義和性質(zhì)
基本不等式是在解決實際問題時常用到的一種數(shù)學(xué)方法,它可以有效地幫助我們解決很多實際問題。在數(shù)學(xué)中,一般把基本不等式定義為,對于任何正整數(shù)a和b,有下列不等關(guān)系:
(a+b)^2>=4ab
這個不等式在初中數(shù)學(xué)中非常重要,我們還可以把它解釋成下面的形式:對于任何兩個正數(shù)a和b,有下列不等式:
a/b+b/a>=2
這個式子實際上就是基本不等式的一個特例,也說明了基本不等式中的a和b可以指任何兩個正數(shù)。
基本不等式的一些性質(zhì):
1、兩邊同時乘以正數(shù)或是開根號(即不改變不等關(guān)系的實質(zhì))是允許的。
2、當(dāng)a=b時等號成立。
3、當(dāng)a不等于b時,不等號成立。
這些性質(zhì)是我們用基本不等式時需要注意的幾個關(guān)鍵點。如果我們了解了這些基本的性質(zhì),就可以更加靈活地運(yùn)用基本不等式解決實際問題。
二、基本不等式的應(yīng)用
基本不等式的應(yīng)用非常廣泛,例如可以用它來解決以下問題:
1、證明
√(a^2+b^2)>=a/√2+b/√2
這個問題就可以使用基本不等式來證明,首先得到(a+b)^2>=2(a^2+b^2),將式子化簡可得√(a^2+b^2)>=a/√2+b/√2,這就是想要證明的結(jié)論。
2、解決一些最值問題。例如:如何使a+b的值最???這個問題可以用基本不等式來解決,我們設(shè)a+b=k,那么a+b的平方就是k^2,代入基本不等式中可得出:
k^2>=4ab,即(a+b)^2>=4ab
這個不等式右邊是4ab,左邊則是(a+b)^2,因此a+b的值取得最小值時,應(yīng)當(dāng)使(a+b)^2=4ab,所以a=b,因此a+b的最小值就是2a或是2b。
3、證明一些平方和不等式的結(jié)論。例如:
(a/b)^2+(b/a)^2>=2
這個問題可以通過基本不等式進(jìn)行證明,首先我們設(shè)x=a/b,y=b/a,很顯然有x+y>=2,然后通過簡單的運(yùn)算可得:x^2+y^2>=2,也即(a/b)^2+(b/a)^2>=2。
綜上所述,基本不等式作為初中數(shù)學(xué)比較重要的一部分,其定義、性質(zhì)和應(yīng)用都與實際問題密切相關(guān)。在解決實際問題時,我們可以通過多學(xué)示例,靈活運(yùn)用基本不等式的性質(zhì)和應(yīng)用,進(jìn)而更好地理解其本質(zhì)和應(yīng)用,從而使初中數(shù)學(xué)知識更加牢固。
不等式的課件 篇2
(1)運(yùn)用問題的形式幫助學(xué)生整理全章的內(nèi)容,建立知識體系。
(2)在獨立思考的基礎(chǔ)上,鼓勵學(xué)生開展小組和全班的交流,使學(xué)生通過交流和反思加強(qiáng)對所學(xué)知識的理解和掌握,并逐步建立知識體系。
通過問題情境的設(shè)立,使學(xué)生再現(xiàn)已學(xué)知識,鍛煉抽象、概括的能力。解決問題
通過具體問題來體會知識間的聯(lián)系和學(xué)習(xí)本章所采用的主要思想方法。
通過獨立思考獲取學(xué)習(xí)的成功體驗,通過小組交流培養(yǎng)合作交流意識,通過大膽發(fā)表自己的觀點,增強(qiáng)自信心。
重點:對一元一次不等式基本性質(zhì)的掌握;理解不等式(組)解及解集的含義,會解簡單的一元一不等式(組),并會在數(shù)軸上表示其解集;會解相關(guān)的問題,建立起相關(guān)的知識體系。
不等式有哪些基本性質(zhì)?它與等式的性質(zhì)有什么相同和不同之處?
解一元一次不等式和解一元一次方程有什么異同?引導(dǎo)學(xué)生回憶解一元一次方程的步驟.比較兩者之間的不同學(xué)生舉例回答.
舉例說明在數(shù)軸上如何表示一元一不等式(組)的解集分組競賽.看哪一組出的題型好,全班一起解答.
舉例說明不等式、函數(shù)、方程的聯(lián)系.引導(dǎo)學(xué)生回憶函數(shù)的有關(guān)內(nèi)容.舉例說明三者之間的關(guān)系.小組討論,合作回答.函數(shù)性質(zhì)、圖象
小組交流、討論不等式和函數(shù)、函數(shù)和方程等之間的關(guān)系,分別舉例說明.
布置作業(yè)開動腦筋,勇于表達(dá)自己的'想法.
(1)在運(yùn)用所學(xué)知識解決具體問題的同時,加深對全章知識體系理解。
(2)發(fā)展學(xué)生抽象能力、推理能力和有條理表達(dá)自己想法的能力.
教學(xué)思考:
體會數(shù)學(xué)的應(yīng)用價值,并學(xué)會在解決問題過程中與他人合作.解決問題。在獨立思考的基礎(chǔ)上,積極參與問題的討論,從交流中學(xué)習(xí),并敢于發(fā)表自己的觀點和主張,同時尊重與理解別人的觀點。
情感態(tài)度與價值觀:
進(jìn)一步嘗試學(xué)習(xí)數(shù)學(xué)的成功體驗,認(rèn)識到不等式是解決實際問題的重要工具,逐漸形成對數(shù)學(xué)活動積極參與的意識。
重點:
對一元一次不等式基本性質(zhì)的掌握;理解不等式(組)解及解集的含義,會解簡單的一元一次不等式(組),并會在數(shù)軸上表示其解集;會解相關(guān)的問題,建立起相關(guān)的知識體系。
↓ ↓
安排一組練習(xí)讓學(xué)生充分充分討論解決.
(1)當(dāng)X取何值時,Y>0(2)當(dāng)X取何值時,Y=0(3)當(dāng)X取何值時,Y
3.某工人制造機(jī)器零件,如果每天比預(yù)定多做一件,那么8天所做零件超過100件;如果每天比預(yù)定少做一件,那么8天所做零件不到90件,這個工人預(yù)定每天做幾個零件?
不等式的課件 篇3
一元二次不等式是高中數(shù)學(xué)中的一個重要概念,是指一個帶有二次項的不等式。在數(shù)學(xué)學(xué)習(xí)中,我們經(jīng)常需要利用二次不等式來解決問題,掌握這個概念對于深入了解高中數(shù)學(xué)知識是至關(guān)重要的。因此,學(xué)習(xí)一元二次不等式是高中數(shù)學(xué)學(xué)習(xí)中的一大難點,需要認(rèn)真對待。
一元二次不等式的概念和性質(zhì)
一元二次不等式可以寫成如下形式:
ax2 + bx + c > 0
或
ax2 + bx + c
其中a、b、c都是實數(shù),a ≠ 0。
我們可以通過一些方法求出不等式的根,比如將其轉(zhuǎn)化為標(biāo)準(zhǔn)形式。將不等式變形,我們可以得到如下形式:
ax2 + bx
或
ax2 + bx > – c
然后,我們再用求一元二次方程根的方法求出不等式的解,就能夠得到它的解集。
對于不等式ax2 + bx + c > 0,其圖像為二次函數(shù)的上凸形,即開口向上的拋物線,而對于不等式ax2 + bx + c
一元二次不等式的解法
解一元二次不等式的方法有很多,下面我們介紹其中的兩種:
方法一:化為標(biāo)準(zhǔn)形式,再利用求一元二次方程根的方法求解。
方法二:利用符號法將不等式中的式子化簡,得到一系列不等式,然后將這些不等式求解即可。
實際上,解一元二次不等式還有很多其他的方法,比如絕對值法、圖形法等等。在解題時,我們要根據(jù)具體的情況選擇最合適的方法來求解。
一元二次不等式的應(yīng)用
一元二次不等式廣泛應(yīng)用于數(shù)學(xué)學(xué)習(xí)以及生活中的各個領(lǐng)域,比如物理學(xué)、經(jīng)濟(jì)學(xué)、社會學(xué)等。下面我們以生活中的一個例子來說明一元二次不等式的應(yīng)用。
假設(shè)你要購買一臺電視機(jī),商家提供了兩種方案供你選擇。方案一:首付1500元,每月還款100元;方案二:首付3500元,每月還款80元。那么,你需要比較兩個方案的總花費,來決定哪個方案更加劃算。
我們假設(shè)電視機(jī)的總價格為x元。那么,方案一的總花費為:
C1 = 1500 + 100×n
而方案二的總花費為:
C2 = 3500 + 80×n
這里n為分期的期數(shù),即你需要還款的總期數(shù)。為了比較兩種方案的劃算程度,我們可以列出一個一元二次不等式:
1500 + 100×n
經(jīng)過化簡,我們可以得到:
20n > 2000
n > 100
因此,當(dāng)還款期數(shù)大于100期時,方案一比方案二更加劃算。這個例子很好地展示了一元二次不等式的應(yīng)用,它能夠幫助我們在日常生活中做出明智的選擇,也能夠更加深入地理解數(shù)學(xué)知識。
總結(jié)
一元二次不等式是高中數(shù)學(xué)學(xué)習(xí)中的重要概念,它在數(shù)學(xué)中和生活中都有廣泛的應(yīng)用。學(xué)習(xí)一元二次不等式需要我們認(rèn)真對待,掌握其概念、性質(zhì)和解法,同時也需要我們理解其實際應(yīng)用,這樣才能夠更好地掌握高中數(shù)學(xué)的知識。
不等式的課件 篇4
本節(jié)課的研究是對初中不等式學(xué)習(xí)的延續(xù)和拓展,也是實數(shù)理論的進(jìn)一步發(fā)展.在本節(jié)課的學(xué)習(xí)過程中,將讓學(xué)生回憶實數(shù)的基本理論,并能用實數(shù)的基本理論來比較兩個代數(shù)式的大小.
通過本節(jié)課的學(xué)習(xí),讓學(xué)生從一系列的具體問題情境中,感受到在現(xiàn)實世界和日常生活中存在著大量的不等關(guān)系,并充分認(rèn)識不等關(guān)系的存在與應(yīng)用.對不等關(guān)系的相關(guān)素材,用數(shù)學(xué)觀點進(jìn)行觀察、歸納、抽象,完成量與量的比較過程.即能用不等式或不等式組把這些不等關(guān)系表示出來.
在本節(jié)課的學(xué)習(xí)過程中還安排了一些簡單的、學(xué)生易于處理的問題,其用意在于讓學(xué)生注意對數(shù)學(xué)知識和方法的應(yīng)用,同時也能激發(fā)學(xué)生的學(xué)習(xí)興趣,并由衷地產(chǎn)生用數(shù)學(xué)工具研究不等關(guān)系的愿望.根據(jù)本節(jié)課的教學(xué)內(nèi)容,應(yīng)用再現(xiàn)、回憶得出實數(shù)的基本理論,并能用實數(shù)的基本理論來比較兩個代數(shù)式的大小.
在本節(jié)教學(xué)中,教師可讓學(xué)生閱讀書中實例,充分利用數(shù)軸這一簡單的數(shù)形結(jié)合工具,直接用實數(shù)與數(shù)軸上點的一一對應(yīng)關(guān)系,從數(shù)與形兩方面建立實數(shù)的順序關(guān)系.要在溫故知新的基礎(chǔ)上提高學(xué)生對不等式的認(rèn)識.
1.在學(xué)生了解不等式產(chǎn)生的實際背景下,利用數(shù)軸回憶實數(shù)的基本理論,理解實數(shù)的大小關(guān)系,理解實數(shù)大小與數(shù)軸上對應(yīng)點位置間的關(guān)系.
2.會用作差法判斷實數(shù)與代數(shù)式的大小,會用配方法判斷二次式的大小和范圍.
3.通過溫故知新,提高學(xué)生對不等式的認(rèn)識,激發(fā)學(xué)生的學(xué)習(xí)興趣,體會數(shù)學(xué)的奧秘與數(shù)學(xué)的結(jié)構(gòu)美.
教學(xué)重點:比較實數(shù)與代數(shù)式的大小關(guān)系,判斷二次式的大小和范圍.
思路1.(章頭圖導(dǎo)入)通過多媒體展示衛(wèi)星、飛船和一幅山巒重疊起伏的壯觀畫面,它將學(xué)生帶入“橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同”的大自然和浩瀚的宇宙中,使學(xué)生在具體情境中感受到不等關(guān)系在現(xiàn)實世界和日常生活中是大量存在的,由此產(chǎn)生用數(shù)學(xué)研究不等關(guān)系的強(qiáng)烈愿望,自然地引入新課.
思路2.(情境導(dǎo)入)列舉出學(xué)生身體的高矮、身體的輕重、距離學(xué)校路程的遠(yuǎn)近、百米賽跑的時間、數(shù)學(xué)成績的多少等現(xiàn)實生活中學(xué)生身邊熟悉的事例,描述出某種客觀事物在數(shù)量上存在的不等關(guān)系.這些不等關(guān)系怎樣在數(shù)學(xué)上表示出來呢?讓學(xué)生自由地展開聯(lián)想,教師組織不等關(guān)系的相關(guān)素材,讓學(xué)生用數(shù)學(xué)的觀點進(jìn)行觀察、歸納,使學(xué)生在具體情境中感受到不等關(guān)系與相等關(guān)系一樣,在現(xiàn)實世界和日常生活中大量存在著.這樣學(xué)生會由衷地產(chǎn)生用數(shù)學(xué)工具研究不等關(guān)系的愿望,從而進(jìn)入進(jìn)一步的探究學(xué)習(xí),由此引入新課.
1回憶初中學(xué)過的不等式,讓學(xué)生說出“不等關(guān)系”與“不等式”的異同.怎樣利用不等式研究及表示不等關(guān)系?
2在現(xiàn)實世界和日常生活中,既有相等關(guān)系,又存在著大量的不等關(guān)系.你能舉出一些實際例子嗎?
3數(shù)軸上的任意兩點與對應(yīng)的兩實數(shù)具有怎樣的關(guān)系?
4任意兩個實數(shù)具有怎樣的關(guān)系?用邏輯用語怎樣表達(dá)這個關(guān)系?
活動:教師引導(dǎo)學(xué)生回憶初中學(xué)過的不等式概念,使學(xué)生明確“不等關(guān)系”與“不等式”的異同.不等關(guān)系強(qiáng)調(diào)的是關(guān)系,可用符號“>”“b”“a
教師與學(xué)生一起舉出我們?nèi)粘I钪胁坏汝P(guān)系的例子,可讓學(xué)生充分合作討論,使學(xué)生感受到現(xiàn)實世界中存在著大量的不等關(guān)系.在學(xué)生了解了一些不等式產(chǎn)生的實際背景的前提下,進(jìn)一步學(xué)習(xí)不等式的有關(guān)內(nèi)容.
實例1:某天的天氣預(yù)報報道,最高氣溫32 ℃,最低氣溫26 ℃.
實例2:對于數(shù)軸上任意不同的兩點A、B,若點A在點B的左邊,則xA
實例5:三角形兩邊之和大于第三邊,兩邊之差小于第三邊.
實例6:限速40 km/h的路標(biāo)指示司機(jī)在前方路段行駛時,應(yīng)使汽車的速度v不超過40 km/h.
實例7:某品牌酸奶的質(zhì)量檢查規(guī)定,酸奶中脂肪的含量f應(yīng)不少于2.5%,蛋白質(zhì)的含量p應(yīng)不少于2.3%.
教師進(jìn)一步點撥:能夠發(fā)現(xiàn)身邊的數(shù)學(xué)當(dāng)然很好,這說明同學(xué)們已經(jīng)走進(jìn)了數(shù)學(xué)這門學(xué)科,但作為我們研究數(shù)學(xué)的人來說,能用數(shù)學(xué)的眼光、數(shù)學(xué)的觀點進(jìn)行觀察、歸納、抽象,完成這些量與量的比較過程,這是我們每個研究數(shù)學(xué)的人必須要做的,那么,我們可以用我們所研究過的什么知識來表示這些不等關(guān)系呢?學(xué)生很容易想到,用不等式或不等式組來表示這些不等關(guān)系.那么不等式就是用不等號將兩個代數(shù)式連結(jié)起來所成的式子.如-71+4,2x≤6,a+2≥0,3≠4,0≤5等.
教師引導(dǎo)學(xué)生將上述的7個實例用不等式表示出來.實例1,若用t表示某天的氣溫,則26 ℃≤t≤32 ℃.實例3,若用x表示一個非負(fù)數(shù),則x≥0.實例5,|AC|+|BC|>|AB|,如下圖.
|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.
|AB|-|BC|
實例6,若用v表示速度,則v≤40 km/h.實例7,f≥2.5%,p≥2.3%.對于實例7,教師應(yīng)點撥學(xué)生注意酸奶中的脂肪含量與蛋白質(zhì)含量需同時滿足,避免寫成f≥2.5%或p≥2.3%,這是不對的.但可表示為f≥2.5%且p≥2.3%.
對以上問題,教師讓學(xué)生輪流回答,再用投影儀給出課本上的兩個結(jié)論.
討論結(jié)果:
(1)(2)略;(3)數(shù)軸上任意兩點中,右邊點對應(yīng)的實數(shù)比左邊點對應(yīng)的實數(shù)大.
(4)對于任意兩個實數(shù)a和b,在a=b,a>b,a0a>b;a-b=0a=b;a-b
活動:通過兩例讓學(xué)生熟悉兩個代數(shù)式的大小比較的基本方法:作差,配方法.
點評:本節(jié)兩例的求解,是借助因式分解和應(yīng)用配方法完成的,這兩種方法是代數(shù)式變形時經(jīng)常使用的方法,應(yīng)讓學(xué)生熟練掌握.
1.若f(x)=3x2-x+1,g(x)=2x2+x-1,則f(x)與g(x)的大小關(guān)系是( )
解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).
2.已知x≠0,比較(x2+1)2與x4+x2+1的大小.
解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.
∵x≠0,得x2>0.從而(x2+1)2>x4+x2+1.
例2比較下列各組數(shù)的大小(a≠b).
(1)a+b2與21a+1b(a>0,b>0);
(2)a4-b4與4a3(a-b).
活動:比較兩個實數(shù)的大小,常根據(jù)實數(shù)的運(yùn)算性質(zhì)與大小順序的關(guān)系,歸結(jié)為判斷它們的差的符號來確定.本例可由學(xué)生獨立完成,但要點撥學(xué)生在最后的符號判斷說理中,要理由充分,不可忽略這點.
解:(1)a+b2-21a+1b=a+b2-2aba+b=a+b2-4ab2a+b=a-b22a+b.
∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴a-b22a+b>0,即a+b2>21a+1b.
(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)
=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]
=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].
∵2a2+(a+b)2≥0(當(dāng)且僅當(dāng)a=b=0時取等號),
又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2]
∴a4-b4
點評:比較大小常用作差法,一般步驟是作差——變形——判斷符號.變形常用的手段是分解因式和配方,前者將“差”變?yōu)椤胺e”,后者將“差”化為一個或幾個完全平方式的“和”,也可兩者并用.
已知x>y,且y≠0,比較xy與1的大小.
活動:要比較任意兩個數(shù)或式的大小關(guān)系,只需確定它們的差與0的大小關(guān)系.
∵x>y,∴x-y>0.
當(dāng)y
當(dāng)y>0時,x-yy>0,即xy-1>0.∴xy>1.
點評:當(dāng)字母y取不同范圍的值時,差xy-1的正負(fù)情況不同,所以需對y分類討論.
例3建筑設(shè)計規(guī)定,民用住宅的窗戶面積必須小于地板面積.但按采光標(biāo)準(zhǔn),窗戶面積與地板面積的比值應(yīng)不小于10%,且這個比值越大,住宅的采光條件越好.試問:同時增加相等的窗戶面積和地板面積,住宅的采光條件是變好了,還是變壞了?請說明理由.
活動:解題關(guān)鍵首先是把文字語言轉(zhuǎn)換成數(shù)學(xué)語言,然后比較前后比值的大小,采用作差法.
解:設(shè)住宅窗戶面積和地板面積分別為a、b,同時增加的面積為m,根據(jù)問題的要求a
由于a+mb+m-ab=mb-abb+m>0,于是a+mb+m>ab.又ab≥10%,
因此a+mb+m>ab≥10%.
所以同時增加相等的窗戶面積和地板面積后,住宅的采光條件變好了.
點評:一般地,設(shè)a、b為正實數(shù),且a0,則a+mb+m>ab.
已知a1,a2,…為各項都大于零的等比數(shù)列,公比q≠1,則( )
C.a1+a8=a4+a5 D.a1+a8與a4+a5大小不確定
解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4
=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).
∵{an}各項都大于零,∴q>0,即1+q>0.
又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.
1.下列不等式:①a2+3>2a;②a2+b2>2(a-b-1);③x2+y2>2xy.其中恒成立的不等式的個數(shù)為( )
2.比較2x2+5x+9與x2+5x+6的大小.
答案:
1.C解析:∵②a2+b2-2(a-b-1)=(a-1)2+(b+1)2≥0,
③x2+y2-2xy=(x-y)2≥0.
∴只有①恒成立.
2.解:因為2x2+5x+9-(x2+5x+6)=x2+3>0,
所以2x2+5x+9>x2+5x+6.
1.教師與學(xué)生共同完成本節(jié)課的小結(jié),從實數(shù)的基本性質(zhì)的回顧,到兩個實數(shù)大小的比較方法;從例題的活動探究點評,到緊跟著的變式訓(xùn)練,讓學(xué)生去繁就簡,聯(lián)系舊知,將本節(jié)課所學(xué)納入已有的知識體系中.
2.教師畫龍點睛,點撥利用實數(shù)的基本性質(zhì)對兩個實數(shù)大小比較時易錯的地方.鼓勵學(xué)有余力的學(xué)生對節(jié)末的思考與討論在課后作進(jìn)一步的探究.
1.本節(jié)設(shè)計關(guān)注了教學(xué)方法的優(yōu)化.經(jīng)驗告訴我們:課堂上應(yīng)根據(jù)具體情況,選擇、設(shè)計最能體現(xiàn)教學(xué)規(guī)律的教學(xué)過程,不宜長期使用一種固定的教學(xué)方法,或原封不動地照搬一種實驗?zāi)J?各種教學(xué)方法中,沒有一種能很好地適應(yīng)一切教學(xué)活動.也就是說,世上沒有萬能的教學(xué)方法.針對個性,靈活變化,因材施教才是成功的施教靈藥.
2.本節(jié)設(shè)計注重了難度控制.不等式內(nèi)容應(yīng)用面廣,可以說與其他所有內(nèi)容都有交匯,歷來是高考的重點與熱點.作為本章開始,可以適當(dāng)開闊一些,算作拋磚引玉,讓學(xué)生有個自由探究聯(lián)想的平臺,但不宜過多向外拓展,以免對學(xué)生產(chǎn)生負(fù)面影響.
3.本節(jié)設(shè)計關(guān)注了學(xué)生思維能力的訓(xùn)練.訓(xùn)練學(xué)生的思維能力,提升思維的品質(zhì),是數(shù)學(xué)教師直面的重要課題,也是中學(xué)數(shù)學(xué)教育的主線.采用一題多解有助于思維的發(fā)散性及靈活性,克服思維的僵化.變式訓(xùn)練教學(xué)又可以拓展學(xué)生思維視野的廣度,解題后的點撥反思有助于學(xué)生思維批判性品質(zhì)的提升.
1.比較(x-3)2與(x-2)(x-4)的大小.
2.試判斷下列各對整式的大?。?1)m2-2m+5和-2m+5;(2)a2-4a+3和-4a+1.
5.設(shè)a>0,b>0,且a≠b,試比較aabb與abba的大小.
∴(x-3)2>(x-2)(x-4).
=m2.
∵m2≥0,∴(m2-2m+5)-(-2m+5)≥0.
∴m2-2m+5≥-2m+5.
=a2+2.
∵a2≥0,∴a2+2≥2>0.
∴a2-4a+3>-4a+1.
=x24,
又∵x>0,∴x24>0.
∴(1+x2)2>(1+x)2.
由x>0,得1+x2>1+x.
=(x-y)[(x2+y2)-(x+y)2]
=-2xy(x-y).
∵x0,x-y
∴-2xy(x-y)>0.
∴(x2+y2)(x-y)>(x2-y2)(x+y).
5.解:∵aabbabba=aa-bbb-a=(ab)a-b,且a≠b,
當(dāng)a>b>0時,ab>1,a-b>0,
則(ab)a-b>1,于是aabb>abba.
則(ab)a-b>1.
于是aabb>abb a.
綜上所述,對于不相等的正數(shù)a、b,都有aabb>abba.
不等式的課件 篇5
基本不等式是初中數(shù)學(xué)中重要的一章內(nèi)容,也是高中數(shù)學(xué)和競賽數(shù)學(xué)的基礎(chǔ)?;静坏仁降膶W(xué)習(xí)不僅有助于提高學(xué)生的數(shù)學(xué)素養(yǎng)和解題能力,同時也能幫助他們提高邏輯思維能力。本文旨在探討“基本不等式”這一主題。
一、基本不等式的定義與性質(zhì)
基本不等式是說:對于正實數(shù)x1,x2,…,xn,有
(x1+x2+…+xn)/n≥√(x1x2…xn),當(dāng)且僅當(dāng)x1=x2=…=xn時等號成立。
基本不等式的性質(zhì)有以下幾條:
(1)當(dāng)n為偶數(shù)時,等號成立;
(2)當(dāng)n為奇數(shù)時,當(dāng)且僅當(dāng)所有數(shù)相等時等號成立;
(3)兩個數(shù)的平均數(shù)不小于它們的幾何平均數(shù),即(a+b)/2≥√(ab),其中a,b均為正實數(shù)且a≠b;
(4)當(dāng)n≥3時,三個數(shù)的平均數(shù)不小于它們的幾何平均數(shù),即(a+b+c)/3≥√(abc),其中a,b,c均為正實數(shù)且a≠b≠c。
二、基本不等式的應(yīng)用
基本不等式作為一種重要的數(shù)學(xué)工具,可以應(yīng)用于眾多問題之中。以下是基本不等式的一些常見應(yīng)用。
1. 求和式的最小值
例題1:已知-x1+x2+x3+x4+x5=-18,其中x1,x2,x3,x4,x5均為正數(shù),并且x1+x2+x3+x4+x5≥5,則x1x2x3x4x5的最小值為多少?
解法:根據(jù)已知條件,設(shè)x1+x2+x3+x4+x5=5+m(其中m≥0),則有x1+x2+x3+x4+x5+m=5+2m。代入到基本不等式中可得:
(x1+x2+x3+x4+x5+m)/5≥√(x1x2x3x4x5)m/5≥√(x1x2x3x4x5)/5
移項得到x1x2x3x4x5≥1,則x1x2x3x4x5的最小值為1。
2. 比較函數(shù)大小
例題2:比較函數(shù)f(x)=√(a2+x2)+√(b2+(c-x)2)(a,b,c>0)在[0,c]上的最小和最大值。
解法:根據(jù)已知條件和基本不等式,將f(x)分解成兩個正數(shù)的平均數(shù)不小于它們的幾何平均數(shù)的形式,即
f(x)=[√(a2+x2)+√(b2+(c-x)2)]/2+1/2[√(a2+x2)+√(b2+(c-x)2)]
≥√[(√(a2+x2)×√(b2+(c-x)2)]+1/2(2c)
=√(a2+b2+c2+ab-ac-bc)+c
當(dāng)x=c/3時等號成立,即f(x)的最小值為√(a2+b2+c2+ab-ac-bc)+c,最大值為√(a2+b2+c2+ab+ac+bc)+c。
3. 求極限
例題3:已知數(shù)列{a_n}(n≥1)的通項公式為a_n=(√n+1)/(n+1),則求∑(n從1到∞)a_n的極限。
解法:根據(jù)基本不等式,有
a_1+a_2+…+a_n≥n(√(a_1a_2…a_n))^1/n
代入已知條件,可得:
a_1+a_2+…+a_n≥n[(√(1+1)×√(2+1)×…×√(n+1))/((1+1)×(2+1)×…×(n+1))]^(1/n)
= n[√(n+1)/2×1/3×…×1/(n+1)]^(1/n) =n[(n+1)/[2(n+1)]]^(1/n)
極限為1/2。
4. 求證不等式
例題4:已知a,b,c為正實數(shù),且a+b+c=1,證明∑(a/(1-a))≥3(a2+b2+c2)/(ab+bc+ca)。
解法:將不等式化簡,得:
∑(a/(1-a))≥3(a2+b2+c2)/(ab+bc+ca)
?(a/(1-a))+(b/(1-b))+(c/(1-c))≥3(a2+b2+c2)/(ab+bc+ca)
?(a/(1-a))+(b/(1-b))+(c/(1-c))≥3[(a+b+c)2-(ab+bc+ca)]/(ab+bc+ca)
由于a+b+c=1,有
(ab+bc+ca)≤a2+b2+c2,
(a/(1-a))+(b/(1-b))+(c/(1-c))≥(a+b+c)2/(a(1-a)+b(1-b)+c(1-c))≥3(a2+b2+c2)/(ab+bc+ca)
其中第一個不等式成立是因為當(dāng)a=b=c=1/3時,等號成立;第二個不等式用到了基本不等式的形式。
綜上所述,基本不等式是數(shù)學(xué)中的重要概念,掌握了基本不等式的定義、性質(zhì)和應(yīng)用方法,將有助于提高人們的數(shù)學(xué)素養(yǎng)和解題能力。在日常生活和學(xué)習(xí)中,要重視基本不等式的學(xué)習(xí)和應(yīng)用,逐步提高自己的數(shù)學(xué)水平。
不等式的課件 篇6
學(xué)生初步接觸了一點代數(shù)知識(如用字母表示定律,用符號表示數(shù)),是在學(xué)生學(xué)習(xí)了用字母表示數(shù)以后基礎(chǔ)上進(jìn)行學(xué)習(xí)。應(yīng)用方程是解決問題的基礎(chǔ),有關(guān)的幾個概念,教材只作描述不下定義。在教學(xué)設(shè)計中仍然把理念作為教學(xué)的重點,理解方程的意義,判斷“等式”和“方程”知道方程是一個“含有未知數(shù)的等式”,才有可能明確所謂解方程。
學(xué)生不夠活潑,學(xué)習(xí)積極性不是很高,學(xué)生數(shù)學(xué)基礎(chǔ)不好。方程對學(xué)生來說還是比較陌生的,在他們頭腦中還沒有過方程這樣的表象,所以授新課就要從學(xué)生原有的`基礎(chǔ)開始,因為在前面學(xué)習(xí)用字母表示數(shù)的這部分內(nèi)容時,有了基礎(chǔ),我想在學(xué)習(xí)簡易方程應(yīng)該沒什么大的問題。
1、使學(xué)生初步理解和辨析“等式”“不等式”的意義。
2、會按要求用方程表示出數(shù)量關(guān)系,
3、培養(yǎng)學(xué)生的觀察、比較、分析能力。
教學(xué)重點: 用字母表示常見的數(shù)量關(guān)系,會用方程的意義去判斷一個式子是否是方程。
教師介紹天平各部分名稱。讓學(xué)生操作當(dāng)天平兩端托盤的物體的質(zhì)量相等時,天平就會平衡,指針指向中。根據(jù)這這個原理來稱物體的質(zhì)量。(讓學(xué)生操作,激發(fā)學(xué)生的興趣,借助實物演示的優(yōu)勢。初步感受平衡與不平衡的表象)
1、實物演示,引出方程:
(1)在天平稱出100克的左邊空杯,讓學(xué)生觀察是否平衡,感受1只空杯=100克。
(2)往空杯里倒入果汁,另一邊加100克法碼,問學(xué)生發(fā)現(xiàn)了什么? (讓學(xué)生感受天平慢慢傾斜,水是未知數(shù))引出100+X>200,往右加100克法碼, 問:哪邊重些?(學(xué)生初步感受平衡和不平衡的表象) 問:怎樣用式子表示?100+X<300
(3)教學(xué)100+X=250 問:如果是天平平衡怎么辦?(讓學(xué)生討論交流平衡的方案)把100克法碼換成50克的砝碼,這時會怎樣?(引導(dǎo)學(xué)生觀察這時天平出現(xiàn)平衡), 問:現(xiàn)在兩邊的質(zhì)量怎樣?現(xiàn)在水有多重知道嗎?如果用字母X表示怎樣用式子表示?得出:100+X=250
示題:100+X<250100+X=2504X+50>10040+40=80 X÷2=45X-12=27
請學(xué)生觀察合作交流分類:
(一)引出(1)兩邊不相等,叫做不等式。(2)兩邊相等叫做等式。
(2)含有未知數(shù)的等式100+X=250 X÷2=4 揭示:(2)這樣的含有未知數(shù)等式叫做方程(通過分類,培養(yǎng)學(xué)生對方程意義的了解) 問:方程的具備條件是什么?(感知必須是等式,而一定含有未知數(shù))你能寫出一些方程嗎?(同桌交流檢查)
(三)練習(xí)判斷那些是方程?那些不是方程?
6+2X=14103+X250÷2=1256+X>251÷A=3X+Y=180 (讓學(xué)生加深對方程的意義的認(rèn)識,培養(yǎng)學(xué)生的判斷能力。)
教師:我們能夠判斷什么是方程了,方程和等式有很密切的關(guān)系,你能畫圖來表示他們的關(guān)系嗎?(小組合作討論交流)
方程 等式 (讓學(xué)生通過觀察、思考、分析、歸類,自主發(fā)現(xiàn)獲得對方程和等式的關(guān)系理解,同時初步滲透教學(xué)中的集合思想。)
不等式的課件 篇7
基本不等式作為高中數(shù)學(xué)必修內(nèi)容之一,在學(xué)生學(xué)習(xí)中扮演著極為重要的角色。本篇文章將圍繞基本不等式,探討它的概念、性質(zhì)、證明方法及應(yīng)用,并展示基本不等式的魅力和實用性。
一、基本不等式的概念
基本不等式是指對于任意正實數(shù) $a_1,a_2,\cdots,a_n$ 和任意正整數(shù) $n$,有以下不等式成立:
$\dfrac{a_1}{n}+\dfrac{a_2}{n}+\cdots+\dfrac{a_n}{n}\geq\sqrt[n]{a_1a_2\cdots a_n}$
這個不等式也被稱為均值不等式或AM-GM不等式。其中,$\dfrac{a_1}{n}+\dfrac{a_2}{n}+\cdots+\dfrac{a_n}{n}$ 表示這些數(shù)的算術(shù)平均值,而 $\sqrt[n]{a_1a_2\cdots a_n}$ 表示這些數(shù)的幾何平均值。均值不等式的意義在于,算術(shù)平均數(shù)大于等于幾何平均數(shù)。
二、基本不等式的性質(zhì)
基本不等式有以下幾個性質(zhì):
1. 當(dāng)且僅當(dāng) $a_1=a_2=\cdots=a_n$ 時等號成立。
2. 如果 $a_1,a_2,\cdots,a_n$ 中至少有一個數(shù)為 id="article-content1">
不等式課件
發(fā)布時間:2023-09-29 不等式課件 2023不等式課件14篇。
經(jīng)驗時常告訴我們,做事要提前做好準(zhǔn)備。在平日里的學(xué)習(xí)中,幼兒園教師時常會提前準(zhǔn)備好有用的資料。資料可以指人事物的相關(guān)多類信息、情報。有了資料才能更好地安排接下來的學(xué)習(xí)工作!你是否收藏了一些有用的幼師資料內(nèi)容呢?以下是由小編為大家整理的“2023不等式課件14篇”,僅供參考,歡迎大家閱讀。
不等式課件 篇1
七年級數(shù)學(xué)不等式課件
教學(xué)目標(biāo):
通過對具體實例的學(xué)習(xí),使學(xué)生能夠了解生活中的不等量關(guān)系,理解不等式的概念,知道什么是不等式的解,為以后學(xué)習(xí)不等式的解法奠定基礎(chǔ).
知識與能力:
1.通過對具體事例的分析和探索,得到生活中不等量的關(guān)系.
2.通過理解得到不等式的概念,從而使學(xué)生經(jīng)歷實際問題中數(shù)量的分析、抽象過程,體會現(xiàn)實中有各種各樣錯綜復(fù)雜的數(shù)量關(guān)系.
3.了解不等式的意義,知道不等式是用來刻畫生活中的數(shù)量關(guān)系的.
4.知道什么是不等式的解.
過程與方法:
1.引導(dǎo)學(xué)生分析具體事例,從對具體事例的分析中得到不等量關(guān)系.
2.引導(dǎo)并幫助學(xué)生列出不等式,分析不等式的成立條件.
3.通過分析、抽象得到不等式的概念和不等式的解的概念.
4.通過習(xí)題鞏固和加深對概念的理解.
情感、態(tài)度與價值觀:
1.通過學(xué)生的分析和抽象過程使他們體會現(xiàn)實中錯綜復(fù)雜的數(shù)量關(guān)系,然后從而培養(yǎng)其抽象思維能力.
2.通過分組討論學(xué)習(xí),體會在解決具體問題的過程中與他人合作的重要性,培養(yǎng)學(xué)生的團(tuán)體協(xié)作精神,使學(xué)生獲得合作交流的學(xué)習(xí)方式.
3.通過聯(lián)系與發(fā)展、對立與統(tǒng)一的思考方法對學(xué)生進(jìn)行辯證唯物主義教育.
4.通過創(chuàng)設(shè)問題串,讓學(xué)生仔細(xì)觀察、對比、歸納、整理,嘗試對有理數(shù)進(jìn)行分類,然后體驗教學(xué)活動充滿著探索性和創(chuàng)造性.
教學(xué)重、難點及教學(xué)突破
重點:不等式的概念和不等式的解的概念.
難點:對文字表述的數(shù)量關(guān)系能列出不等式.
教學(xué)突破:由于學(xué)生在以前已經(jīng)對數(shù)量的大小關(guān)系和含數(shù)字的不等式有所了解,但還沒有接觸過含未知數(shù)的不等式,在學(xué)生分析問題的時候注意引入現(xiàn)實中大量存在的數(shù)量間的不等關(guān)系,研究它們的變化規(guī)律,使學(xué)生知道用不等式解決實際問題的方便之處.在本節(jié)的教學(xué)中能夠在組織學(xué)生討論的過程中適當(dāng)?shù)貪B透變量的知識,讓學(xué)生感受其中的函數(shù)思想,并引導(dǎo)學(xué)生發(fā)現(xiàn)不等式的解與方程的解之間的區(qū)別.在處理本節(jié)難點時指導(dǎo)學(xué)生練習(xí)有理數(shù)和代數(shù)式的知識,準(zhǔn)確“譯出”不等式.
教學(xué)過程:
一.研究問題:
世紀(jì)公園的票價是:每人5元,一次購票滿30張可少收1元.某班有27名少先隊員去世公園進(jìn)行活動.當(dāng)領(lǐng)隊王小華準(zhǔn)備好了零錢到售票處買了27張票時,愛動腦的李敏同紀(jì)學(xué)喊住了王小華,提議買30張票.但有的同學(xué)不明白.明明只有27個人,買30張票,豈不浪費嗎?
那么,究竟李敏的提議對不對呢?是不是真的浪費呢
二.新課探究:
分析上面的問題:設(shè)有x人要進(jìn)世紀(jì)公園,①若x≥30,應(yīng)該如何買票?②若x
結(jié)論:至少要有多少人進(jìn)公園時,買30張票才合算?
概括:1、不等式的定義:表示不等關(guān)系的式子,叫做不等式.不等式用符號>,
2、不等式的解:能使不等式成立的未知數(shù)的值,叫做不等式的解.
3、不等式的分類:⑴恒不等式:-71+4,a+2>a+1.
⑵條件不等式:x+3>6,a+2>3,y-3>-5.
三、基礎(chǔ)訓(xùn)練.
例1、用不等式表示:⑴a是正數(shù);⑵b不是負(fù)數(shù);⑶c是非負(fù)數(shù);⑷x的平方是非負(fù)數(shù);⑸x的一半小于-1;⑹y與4的和不小于3.
注:⑴不等式表示代數(shù)式之間的不相等關(guān)系,與方程表示相等關(guān)系相對應(yīng);
⑵研究不等關(guān)系列不等式的重點是抓關(guān)鍵詞,弄清不等關(guān)系.
例2、用不等式表示:⑴a與1的和是正數(shù);⑵x的2倍與y的3倍的差是非負(fù)數(shù);⑶x的2倍與1的和大于—1;⑷a的一半與4的差的絕對值不小于a.
例3、當(dāng)x=2時,不等式x-1
注:⑴檢驗字母的值能否使不等式成立,只要代入不等式的左右兩邊,如果符合不等號所表示的關(guān)系,就成立,否則就不成立.⑵代入法是檢驗不等式的解的重要方法.
學(xué)生練習(xí):課本P42練習(xí)1、2、3.
四、能力拓展
學(xué)校組織學(xué)生觀看電影,某電影院票價每張12元,50人以上(含50人)的團(tuán)體票可享受8折優(yōu)惠,現(xiàn)有45名學(xué)生一起到電影院看電影,為享受8折優(yōu)惠,必須按50人購團(tuán)體票.
⑴請問他們購買團(tuán)體票是否比不打折而按45人購票便宜;
⑵若學(xué)生到該電影院人數(shù)不足50人,應(yīng)至少有多少人買團(tuán)體票比不打折而按實際人數(shù)購票便宜.
解:⑴按實際45人購票需付錢_________ 元,然后如果按50人購買團(tuán)體票則需付錢50×12×80%=480元,所以購買團(tuán)體票便宜.
⑵設(shè)有x人到電影院觀看電影,當(dāng)x_____時,按實際人數(shù)買票______張,需付款_______元,而按團(tuán)體票購票需付款________元,如果買團(tuán)體票合算,那么應(yīng)有不等式________________,
由①得,當(dāng)x=45時,上式成立,讓我們再取一些數(shù)據(jù)試一試,將結(jié)果填入下表:
x12x比較480與12x的大小48
由上表可見,至少要__________人時進(jìn)電影院,購團(tuán)體票才合算.
五、小結(jié):
⑴不等式的定義,不等式的'解.
⑵對實際問題中探索得到的不等式的解,然后不僅要滿足數(shù)學(xué)式子,而且要注意實際意義.
六、作業(yè)課本P42習(xí)題8.1第1、2、3題.
補(bǔ)充題:
1.用不等式表示:
(1)與1的和是正數(shù);(2)的與的的差是非負(fù)數(shù);
(3)的2倍與1的和大于3;(4)的一半與4的差的絕對值不小于.
(5)的2倍減去1不小于與3的和;(6)與的平方和是非負(fù)數(shù);
(7)的2倍加上3的和大于-2且小于4;(8)減去5的差的絕對值不大于
2.小李和小張決定把省下的零用錢存起來.這個月小李存了168元,然后小張存了85元.下個月開始小李每月存16元,小張每月存25元.問幾個月后小張的存款數(shù)能超過小李?(試根據(jù)題意列出不等式,并參照教科書中問題1的探索,找出所列不等式的解)
3.某公司在甲、乙兩座倉庫分別有農(nóng)用車12輛和6輛,現(xiàn)需要調(diào)往A縣10輛,調(diào)往B縣8輛,已知從甲倉庫調(diào)運(yùn)一輛農(nóng)用車到A縣和B縣的運(yùn)費分別為40元和80元,然后從乙倉庫調(diào)運(yùn)一輛農(nóng)用車到A縣和B縣的運(yùn)費分別為30元和50元,(1)設(shè)從乙倉庫調(diào)往A縣農(nóng)用車輛,用含的代數(shù)式表示總運(yùn)費W元;(2)請你用嘗試的方法,探求總運(yùn)費不超過900元,共有幾種調(diào)運(yùn)方案?你能否求出總運(yùn)費最低的調(diào)運(yùn)方案.
不等式課件 篇2
(1)本節(jié)內(nèi)容,是在學(xué)習(xí)了用方程思想解決實際問題和一元一次不等式的性質(zhì)及其解法等知識的基礎(chǔ)上,把實際問題和一元一次不等式結(jié)合在一起,既是對已學(xué)知識的運(yùn)用和深化,又為今后用不等式組解決實際問題以及更廣泛的應(yīng)用數(shù)學(xué)建模的思想方法奠定基礎(chǔ),具有在代數(shù)學(xué)中承上啟下的作用;
(2)通過本節(jié)的學(xué)習(xí),學(xué)生將繼續(xù)經(jīng)歷把生活中的數(shù)和數(shù)量關(guān)系轉(zhuǎn)化為數(shù)學(xué)符號的體驗過程,體會不等式和方程一樣都是刻畫現(xiàn)實世界數(shù)量關(guān)系的重要模型。
(3)在列不等式解決實際問題的探索過程中,引導(dǎo)學(xué)生注意估算意識,體會算式結(jié)果所對應(yīng)的實際意義,滲透建立數(shù)學(xué)模型,分類討論等數(shù)學(xué)思想,對提升學(xué)生應(yīng)用數(shù)學(xué)意識思考和解決問題的能力起到積極的作用。
對于用不等式解決實際問題,學(xué)生容易出現(xiàn)的認(rèn)知困難主要有兩個方面:①哪類的實際問題需要用一元一次不等式來解決;②如何將實際問題轉(zhuǎn)化為一元一次不等式并加以解決。
根據(jù)以上的分析和《數(shù)學(xué)課程標(biāo)準(zhǔn)》對本課內(nèi)容的教學(xué)要求,本節(jié)課的教學(xué)重點是:一元一次不等式在決策類實際問題中的應(yīng)用;難點是:如何將實際問題中的數(shù)量關(guān)系符號化,并根據(jù)解集和結(jié)合實際情況分類討論得出合理結(jié)論。
根據(jù)本課教材的特點、《數(shù)學(xué)課程標(biāo)準(zhǔn)》對本節(jié)課的教學(xué)要求以及學(xué)生的認(rèn)知水平,我從三個方面確定了以下教學(xué)目標(biāo):
1、能進(jìn)一步熟練的解一元一次不等式,能從實際問題中抽象出不等關(guān)系的數(shù)學(xué)模型,并結(jié)合解集解決簡單的實際問題。
2、通過觀察、實踐、討論等活動,積累利用一元一次不等式解決實際問題的經(jīng)驗,提高分類考慮、討論問題的能力,感知方程與不等式的內(nèi)在聯(lián)系,體會不等式和方程同樣都是刻畫現(xiàn)實世界數(shù)量關(guān)系的重要模型。
3、在積極參與數(shù)學(xué)學(xué)習(xí)活動的過程中,體會實事求是的態(tài)度和從數(shù)學(xué)的角度思考問題的習(xí)慣;學(xué)會在解決困難時,與其他同學(xué)交流,相互啟發(fā),培養(yǎng)合作精神。
根據(jù)教學(xué)內(nèi)容、教學(xué)目標(biāo)和學(xué)生的認(rèn)知水平,我主要采取教師啟發(fā)引導(dǎo),學(xué)生自主探究的教學(xué)方法.教學(xué)過程中,創(chuàng)設(shè)適當(dāng)?shù)慕虒W(xué)情境,引導(dǎo)學(xué)生獨立思考、共同探究,使學(xué)生經(jīng)歷將生活中的數(shù)和數(shù)量關(guān)系轉(zhuǎn)化為數(shù)學(xué)符號的具體建模過程,體會不等式作為刻畫現(xiàn)實世界數(shù)量關(guān)系的重要模型的價值。
教學(xué)中使用多媒體投影、計算機(jī)輔助教學(xué),目的是充分發(fā)揮其快捷、生動、形象的特點,為學(xué)生提供直觀感性的材料,有助于學(xué)生對問題的關(guān)注和理解,激發(fā)學(xué)生的學(xué)習(xí)興趣.
為了達(dá)到本節(jié)課的教學(xué)目標(biāo),突出重點,突破難點,我把教學(xué)過程通過兩個實際問題逐步深入;最后歸納小結(jié),布置作業(yè).具體過程如下:
1、課題引入:
我們以前已經(jīng)學(xué)過了一元一次方程以及二元一次方程組的解法,并在解決許多實際問題的過程中感受到:將相等關(guān)系用數(shù)學(xué)符號抽象后所得到的“方程”確實是一種有效數(shù)學(xué)工具,它能讓我們的思維過程更加準(zhǔn)確和簡明!
但是,生活中除了相等的數(shù)量關(guān)系以外,還存在著大量的不等關(guān)系,通過前幾節(jié)課的學(xué)習(xí),我們也已經(jīng)基本了解了不等式的性質(zhì)和簡單不等式的解法。今天,就讓我們通過一些帶有選擇“決策”意義的實際問題來共同探討一下一元一次不等式這種數(shù)學(xué)模型是如何解決生活中的實際問題的。
實際情景1:在為我校初一年級學(xué)生選定營養(yǎng)餐的過程中選中了有兩家公司.
這兩家公司某種適合初一學(xué)生的營養(yǎng)餐的報價均是是6.5元/份,營養(yǎng)含量和服務(wù)承諾也均相同,且都表示對學(xué)生優(yōu)惠:甲公司表示每份按報價的90%收費,乙公司表示購買100份以上的部分按報價的80%收費.
結(jié) 合新課標(biāo)對本小節(jié)的要求:會用一元一次不等式解決簡單的實際問題,我選擇的是從數(shù)量關(guān)系上與教材例題類似的收費問題,并且真實數(shù)值與所在年級事情相一致,比書上的例題更能貼近學(xué)生的實際生活,引發(fā)學(xué)生探求的`興趣。特別的,通常此類題目是不給出具體單價的,因為并不影響最后結(jié)論,考慮到學(xué)生現(xiàn)階段的數(shù)學(xué)抽象 仍以識別數(shù)量的具體含義為主,所以我在此處添加了單價,并增設(shè)了問題一,用以降低抽象思維的梯度,為后續(xù)的設(shè)未知數(shù)的“代數(shù)化抽象”作適當(dāng)?shù)匿亯|。
問題(1)請你判斷,我們年級580人用餐,應(yīng)該選擇哪家公司能讓每位學(xué)生的餐費平均算來更低呢?
預(yù)案 一:教師應(yīng)關(guān)注學(xué)生能否在討論中認(rèn)清“每位學(xué)生的餐費平均算來更低”所對應(yīng)的數(shù)量意義,將之轉(zhuǎn)化為“付給公司的總金額少”。在此處不排除學(xué)生因生活經(jīng)歷的缺乏,而對題目中所隱含的數(shù)量關(guān)系抽象能力弱。應(yīng)關(guān)注每一位同學(xué)的感受,讓同學(xué)們充分理解交流,擴(kuò)大參與思考的廣度,獲得基本抽象思維的生長點。
預(yù)案二:在進(jìn)行甲乙公司所需費用的計算時,會有分部計算和綜合計算兩種計算形式,對于那些列綜合算式的同學(xué),教師應(yīng)多給予展示機(jī)會,從而幫助其他同學(xué)整理思路,理解算式的實際含義;為后續(xù)的字母抽象做好鋪墊。具體計算學(xué)生可以合理使用計算器提高課堂速度。
預(yù)案三:學(xué)生還有可能不通過計算,直接猜測甲公司合算或者乙公司合算,對于這種有可能產(chǎn)生的聲音,教師應(yīng)從估算的角度加以引導(dǎo)。引導(dǎo)學(xué)生體會在580人的前提下,超過100人部分(480人)的甲公司是九折乙公司是八折, 10%的差距,;100人以內(nèi)(少于100人)甲公司九折,乙公司不打折10%的差距,480的10%明顯大于100的10%,所以選乙合算,并引導(dǎo)學(xué)生用計算的方法驗證估算的準(zhǔn)確性。
結(jié)論:580人時選擇乙公司能讓每位學(xué)生的餐費平均算來更低。
問題(2)你能否用以前學(xué)過的知識,在不知道具體人數(shù)的前提下制定一套方案,當(dāng)其他學(xué)校的初一年級也想在這兩家公司之間進(jìn)行選擇時,不用重復(fù)第一題的計算過程,只要知道人數(shù)就馬上能根據(jù)你方案的結(jié)論作出決策呢?
結(jié)合以前的訓(xùn)練,學(xué)生很容易想到要通過設(shè)未知數(shù)的方法進(jìn)行符號表達(dá),將非常關(guān)鍵而題目中并未給出的學(xué)生人數(shù)設(shè)為未知數(shù)。由于本題的具體分析過程仍然是由學(xué)生分析討論完成,可能出現(xiàn)的情況是:
預(yù)案一:一部分綜合能力較強(qiáng)的同學(xué)會根據(jù)實際意義直接列出綜合算式:或
此處教師應(yīng)該引導(dǎo)學(xué)生觀察,在化簡不等式的過程中單價并未影響結(jié)果(利用不等式性質(zhì)二將其作為公倍數(shù)約去),即:題目中沒有具體的單價也不會影響本題的決策。
還可以結(jié)合小學(xué)單位一的思想化簡不等式,引導(dǎo)學(xué)生體會并不是題目中出現(xiàn)的所有數(shù)量都會影響不等關(guān)系,有可能引發(fā)學(xué)生的關(guān)于數(shù)量關(guān)系的深層次思考。
預(yù)案 二:還有一部分學(xué)生會因為生活經(jīng)驗少的關(guān)系,綜合思考能力弱,無法快速的理清數(shù)量關(guān)系,列出綜合算式,思考受阻,教師應(yīng)引導(dǎo)學(xué)生體會在第一題的算式意義的提示下,如何分別列出表達(dá)甲乙公司所需總費用的過程量代數(shù)式。然后在通過將之用不等號連接的方式,來表達(dá)兩筆費用的大小,降低因綜合性所引起的思維梯度, 在過程中讓學(xué)生體會“分步建?!钡乃季S的條理性。
問題(1)如果你是該企業(yè)的高級管理人員,請你設(shè)計該企業(yè)在購買設(shè)備時兩種型號有幾種不同的組合方案;
問題(2)若按固定產(chǎn)量預(yù)算企業(yè)每月產(chǎn)生的污水量約為20xx噸,為了節(jié)約資金,應(yīng)選擇哪種購買方案?
實際情景2的選擇除涉及“角色扮演”和“環(huán)?!钡热宋囊蛩氐目紤]以外,在在結(jié)合本節(jié)的教學(xué)目標(biāo)上還有如下考慮,
1、 本題取材于真實的實際生活問題,情景中的符號和數(shù)量關(guān)系較多,不等關(guān)系在文字語言的敘述中顯得比第一題更加隱蔽,需要學(xué)生更深化的思考才能列出算式,是在第一個情景的基礎(chǔ)上的擴(kuò)展和深化。
2、 在學(xué)生的討論過程中,教師應(yīng)注重引導(dǎo)學(xué)生體會,用圖表表示的數(shù)字信息比文字表達(dá)更便于觀察和有序思考,感受“有序表達(dá)”在實際中的價值。
3、 結(jié)合本題每一個的具體問題的分析和解決,學(xué)生必須要從表格中分析篩選相關(guān)的有用數(shù)據(jù),(例如:在第一問設(shè)計方案時未用到“處理污水量”和“年消耗費”,在第二問中未用到“價格”和“年消耗費”)這種分析和篩選的思考經(jīng)歷將有助于加強(qiáng)學(xué)生對數(shù)據(jù)關(guān)系的理解和運(yùn)用能力。
結(jié)合以前的訓(xùn)練,在思考問題(1)學(xué)生很容易想到要通過設(shè)A型或B型設(shè)備的
例如:(1)設(shè)購買污水處理設(shè)備A型 臺,則B型(10 – )臺,由題意知:
在此處,將“限額為105萬元”轉(zhuǎn)化為“≤105”是學(xué)生要突破的第一關(guān),教師應(yīng)在次處多展示同學(xué)的對“限額為105萬元”語言解釋,盡可能多的在具有不同經(jīng)歷基礎(chǔ)的同學(xué)心中將這個抽象過程生活化、自然化。
因為在實際情景中往往要根據(jù)未知數(shù)所代表的具體含義為未知數(shù)的加一個取值范圍的限定,而這個隱含的限制條件往往是學(xué)生中所不容易考慮到的,教師應(yīng)注意引導(dǎo)學(xué)生注意這一問題,
例如:本題中的 是設(shè)備的臺數(shù),應(yīng)用非負(fù)整數(shù)的限制,所以 可取0、1、2,因此有三種購買方案:
①購A型0臺,B型10臺;
②購A型1臺,B型9臺;
③購A型2臺,B型8臺。
此處細(xì)節(jié)性的思考經(jīng)歷,有助于提高學(xué)生在建模過程中更全面的考慮數(shù)值的實際意義,促進(jìn)抽象符號與具體意義在頭腦中的融合。
特別的,此處的“0”是學(xué)生最容易忽視和丟掉的,教師在此處應(yīng)重點引導(dǎo)學(xué)生思考當(dāng)“ ”時,往往是企業(yè)最可能選的方案,因為不同的設(shè)備涉及到不同的維護(hù)問題,單一品種的設(shè)備往往更便于管理,這種思考有助于發(fā)散學(xué)生的思維,促進(jìn)其結(jié)合實際作更全面的思考。
問題(2)的思維梯度較前幾個問題進(jìn)一步加大,學(xué)生必須理解“節(jié)約資金”這個目的的達(dá)成 一定是在“完成任務(wù)”的前提下的,要先通過對(1)中所得的三套方案是否能完成任務(wù)加以討論和驗證,然后再涉及計算哪個方案費用更低的問題
在驗證三套方案的可行性時,收思維方式的局限,學(xué)生往往會選擇逐一列舉計算的討論方式,并且由于數(shù)量少,很容易得出答案,教師可引導(dǎo)學(xué)生思考,如果滿足(1)的方案不是三種,而是三十種呢?三百種呢?除了逐一討論以外還有沒有什么更好的方式能幫助我們迅速縮小范圍呢?引導(dǎo)學(xué)生將所買設(shè)備能否完成任務(wù)量轉(zhuǎn)化為如下不等關(guān)系:
(2)同(1)所設(shè)購買污水處理設(shè)備A型 臺,則B型(10 – )臺,
240 +200(10 – )≥20xx;
因此為了節(jié)約資金,應(yīng)選購A型1臺,B型9臺。
此處的分析和引導(dǎo)有助于學(xué)生體會不等式在有效縮小討論范圍時的實際價值。
通過以上問題的解決,學(xué)生對不等式和方程一樣都是刻畫現(xiàn)實世界數(shù)量關(guān)系的重要模型有了進(jìn)一部的認(rèn)識,并感受到不等式確實是從實際問題中提出,又為解決實際問題提供明確的幫助有效數(shù)學(xué)工具。
本階段通過學(xué)習(xí)小結(jié)進(jìn)行課堂教學(xué)的反饋,組織和指導(dǎo)學(xué)生歸納知識、技能、方法,深化對數(shù)學(xué)思想方法的認(rèn)識,為后續(xù)學(xué)習(xí)打好基礎(chǔ)。
不等式課件 篇3
(1)本節(jié)內(nèi)容,是在學(xué)習(xí)了用方程思想解決實際問題和一元一次不等式的性質(zhì)及其解法等知識的基礎(chǔ)上,把實際問題和一元一次不等式結(jié)合在一起,既是對已學(xué)知識的運(yùn)用和深化,又為今后用不等式組解決實際問題以及更廣泛的應(yīng)用數(shù)學(xué)建模的思想方法奠定基礎(chǔ),具有在代數(shù)學(xué)中承上啟下的作用;
(2)通過本節(jié)的學(xué)習(xí),學(xué)生將繼續(xù)經(jīng)歷把生活中的數(shù)和數(shù)量關(guān)系轉(zhuǎn)化為數(shù)學(xué)符號的體驗過程,體會不等式和方程一樣都是刻畫現(xiàn)實世界數(shù)量關(guān)系的重要模型。
(3)在列不等式解決實際問題的探索過程中,引導(dǎo)學(xué)生注意估算意識,體會算式結(jié)果所對應(yīng)的實際意義,滲透建立數(shù)學(xué)模型,分類討論等數(shù)學(xué)思想,對提升學(xué)生應(yīng)用數(shù)學(xué)意識思考和解決問題的能力起到積極的作用。
對于用不等式解決實際問題,學(xué)生容易出現(xiàn)的認(rèn)知困難主要有兩個方面:①哪類的實際問題需要用一元一次不等式來解決;②如何將實際問題轉(zhuǎn)化為一元一次不等式并加以解決。
根據(jù)以上的分析和《數(shù)學(xué)課程標(biāo)準(zhǔn)》對本課內(nèi)容的教學(xué)要求,本節(jié)課的教學(xué)重點是:一元一次不等式在決策類實際問題中的應(yīng)用;難點是:如何將實際問題中的數(shù)量關(guān)系符號化,并根據(jù)解集和結(jié)合實際情況分類討論得出合理結(jié)論。
根據(jù)本課教材的特點、《數(shù)學(xué)課程標(biāo)準(zhǔn)》對本節(jié)課的教學(xué)要求以及學(xué)生的認(rèn)知水平,我從三個方面確定了以下教學(xué)目標(biāo):
1.能進(jìn)一步熟練的解一元一次不等式,能從實際問題中抽象出不等關(guān)系的數(shù)學(xué)模型,并結(jié)合解集解決簡單的實際問題。
2.通過觀察、實踐、討論等活動,積累利用一元一次不等式解決實際問題的經(jīng)驗,提高分類考慮、討論問題的能力,感知方程與不等式的內(nèi)在聯(lián)系,體會不等式和方程同樣都是刻畫現(xiàn)實世界數(shù)量關(guān)系的重要模型。
3.在積極參與數(shù)學(xué)學(xué)習(xí)活動的過程中,體會實事求是的態(tài)度和從數(shù)學(xué)的角度思考問題的習(xí)慣;學(xué)會在解決困難時,與其他同學(xué)交流,相互啟發(fā),培養(yǎng)合作精神。
三、教學(xué)方法的選擇
根據(jù)教學(xué)內(nèi)容、教學(xué)目標(biāo)和學(xué)生的認(rèn)知水平,我主要采取教師啟發(fā)引導(dǎo),學(xué)生自主探究的教學(xué)方法.教學(xué)過程中,創(chuàng)設(shè)適當(dāng)?shù)慕虒W(xué)情境,引導(dǎo)學(xué)生獨立思考、共同探究,使學(xué)生經(jīng)歷將生活中的數(shù)和數(shù)量關(guān)系轉(zhuǎn)化為數(shù)學(xué)符號的具體建模過程,體會不等式作為刻畫現(xiàn)實世界數(shù)量關(guān)系的重要模型的價值,
教學(xué)中使用多媒體投影、計算機(jī)輔助教學(xué),目的是充分發(fā)揮其快捷、生動、形象的特點,為學(xué)生提供直觀感性的材料,有助于學(xué)生對問題的.關(guān)注和理解,激發(fā)學(xué)生的學(xué)習(xí)興趣.
為了達(dá)到本節(jié)課的教學(xué)目標(biāo),突出重點,突破難點,我把教學(xué)過程通過兩個實際問題逐步深入;最后歸納小結(jié),布置作業(yè).具體過程如下:
1、課題引入:
我們以前已經(jīng)學(xué)過了一元一次方程以及二元一次方程組的解法,并在解決許多實際問題的過程中感受到:將相等關(guān)系用數(shù)學(xué)符號抽象后所得到的“方程”確實是一種有效數(shù)學(xué)工具,它能讓我們的思維過程更加準(zhǔn)確和簡明!
但是,生活中除了相等的數(shù)量關(guān)系以外,還存在著大量的不等關(guān)系,通過前幾節(jié)課的學(xué)習(xí),我們也已經(jīng)基本了解了不等式的性質(zhì)和簡單不等式的解法。今天,就讓我們通過一些帶有選擇“決策”意義的實際問題來共同探討一下一元一次不等式這種數(shù)學(xué)模型是如何解決生活中的實際問題的。
實際情景1:在為我校初一年級學(xué)生選定營養(yǎng)餐的過程中選中了有兩家公司.
這兩家公司某種適合初一學(xué)生的營養(yǎng)餐的報價均是是6.5元/份,營養(yǎng)含量和服務(wù)承諾也均相同,且都表示對學(xué)生優(yōu)惠:甲公司表示每份按報價的90%收費,乙公司表示購買100份以上的部分按報價的80%收費.
結(jié) 合新課標(biāo)對本小節(jié)的要求:會用一元一次不等式解決簡單的實際問題,我選擇的是從數(shù)量關(guān)系上與教材例題類似的收費問題,并且真實數(shù)值與所在年級事情相一致,比書上的例題更能貼近學(xué)生的實際生活,引發(fā)學(xué)生探求的興趣。特別的,通常此類題目是不給出具體單價的,因為并不影響最后結(jié)論,考慮到學(xué)生現(xiàn)階段的數(shù)學(xué)抽象 仍以識別數(shù)量的具體含義為主,所以我在此處添加了單價,并增設(shè)了問題一,用以降低抽象思維的梯度,為后續(xù)的設(shè)未知數(shù)的“代數(shù)化抽象”作適當(dāng)?shù)匿亯|。
問題(1)請你判斷,我們年級580人用餐,應(yīng)該選擇哪家公司能讓每位學(xué)生的餐費平均算來更低呢?
預(yù)案 一:教師應(yīng)關(guān)注學(xué)生能否在討論中認(rèn)清“每位學(xué)生的餐費平均算來更低”所對應(yīng)的數(shù)量意義,將之轉(zhuǎn)化為“付給公司的總金額少”。在此處不排除學(xué)生因生活經(jīng)歷的缺乏,而對題目中所隱含的數(shù)量關(guān)系抽象能力弱。應(yīng)關(guān)注每一位同學(xué)的感受,讓同學(xué)們充分理解交流,擴(kuò)大參與思考的廣度,獲得基本抽象思維的生長點。
預(yù)案二:在進(jìn)行甲乙公司所需費用的計算時,會有分部計算和綜合計算兩種計算形式,對于那些列綜合算式的同學(xué),教師應(yīng)多給予展示機(jī)會,從而幫助其他同學(xué)整理思路,理解算式的實際含義;為后續(xù)的字母抽象做好鋪墊。具體計算學(xué)生可以合理使用計算器提高課堂速度。
預(yù)案三:學(xué)生還有可能不通過計算,直接猜測甲公司合算或者乙公司合算,對于這種有可能產(chǎn)生的聲音,教師應(yīng)從估算的角度加以引導(dǎo)。引導(dǎo)學(xué)生體會在 580人的前提下,超過100人部分(480人)的甲公司是九折乙公司是八折, 10%的差距,;100人以內(nèi)(少于100人)甲公司九折,乙公司不打折10%的差距,480的10%明顯大于100的10%,所以選乙合算,并引導(dǎo)學(xué)生用計算的方法驗證估算的準(zhǔn)確性。
不等式課件 篇4
教學(xué)建議
一、知識結(jié)構(gòu)
本書首先結(jié)合實例引入一元一次不等式組的解集的概念,然后通過三個例題說明利用數(shù)軸解一元一次不等式組的方法,最后對一元一次不等式組的解法步驟進(jìn)行了總結(jié).
二、重點、難點分析
本節(jié)教學(xué)的重點是掌握一元一次不等式組的解法步驟并準(zhǔn)確地求出解集.難點是正確應(yīng)用不等式的基本性質(zhì)對不等式進(jìn)行變形、求不等式組中各個不等式解集的公共部分.不等式在中學(xué)代數(shù)中是研究問題的重要工具,例如求函數(shù)的定義域、值域、研究函數(shù)的單調(diào)性,求最大值、最小值,一元二次方程根的討論等,都要用到不等式的知識.不等式也是進(jìn)一步學(xué)習(xí)其他數(shù)學(xué)內(nèi)容的基礎(chǔ).學(xué)習(xí)和掌握不等式的求解和不等式的證明方法,對培養(yǎng)學(xué)生邏輯思維能力也有極其重要的作用.在處理解不等式的問題中,一元一次不等式組的解法,具有特別重要的意義.這是因為,解各類不等式的問題都可以歸結(jié)為解一些由簡單不等式所組成的不等式組.
1、在構(gòu)成不等式組的幾個不等式中
①這幾個一元一次不等式必須含有同一個未知數(shù);
②這里的“幾個”并未確定不等式的個數(shù),只要不是一個,兩個,三個,四個……都行.
2、當(dāng)幾個不等式的解集沒有公共部分時,我們就說這個不等式組無解.
3、由兩個一元一次不等式組成的不等式的解集,共歸結(jié)為下面四種基本情況:
【注意】①其中第(4)個不等式組,實質(zhì)上是矛盾不等式組,任何數(shù)都不能使兩個不等式同時成立。所以說這個不等式組無解或說其解集為空集。②從上面列出的表中,我們可以概括出來不等式組公共解的一規(guī)律:同大取大,同小取小,一大一小中間找。
三、教法建議
1.解本節(jié)的引例及例1、例2、例3時,注意把解不等式組的思路講清楚,即先分別解每一個不等式,求出解集,再求這些解集的公共部分.求公共部分的過程一定要結(jié)合數(shù)軸來講。
2.這節(jié)課的講解自始至終要突出解不等式組的基本思想以及解一元一次不等式組的步驟這兩個重點.準(zhǔn)確熟練地解一元一次不等式以及用數(shù)軸上的點表示不等式的解集是這節(jié)課的基礎(chǔ),因此講新課之前要復(fù)習(xí)提問這些內(nèi)容。
3.求公共解集是這節(jié)課的新授內(nèi)容,教師要充分利用數(shù)軸表示不等式解集具有形象、直觀、易于說明問題這些優(yōu)點.解集的公共部分教師可用彩筆在數(shù)軸的相應(yīng)部分描畫出來,使學(xué)生感到醒目,便于理解記憶。
4.每組不等式不要超過三個,關(guān)鍵是使學(xué)生理解和掌握解不等式組的基本思想和兩個步驟,不宜做過于難、過于多、重復(fù)的機(jī)械計算。
不等式課件 篇5
(一)復(fù)習(xí)提問:
三角形的三邊關(guān)系?
(二)列一元一次不等式組
問題:現(xiàn)有兩根木條a和b,a長10cm,b長3cm.如果要再找一根木條c,用這三根木條釘成一個三角形木框,那么對木條c的長度有什么要求?
注:這個問題是本節(jié)的'引入問題,三角形木框的形狀不唯一確定,只要能成為三角形即可.
探究:用三根長度分別為14cm,9cm,6cm的木條c1,c2,c3分別試試,其中哪根木條能與木條a和b一起釘成三角形木框?
可以發(fā)現(xiàn),當(dāng)木條a和b的長度確定后,木條c太長或太短,都不能與a和b一起釘成三角形.
由于“三角形中兩邊之和大于第三邊,兩邊之差小于第三邊”,設(shè)木條c長xcm,則x必須同時滿足不等式x10+3①和x10-3②
注:木條c必須同時滿足兩個條件,即ca+b,ca-b.
類似于方程組,把這兩個不等式合起來,組成一個一元一次不等式組記作注:這里并未正式給一元一次不等式組下定義,只是說這兩個不等式合起來,組成一個一元一次不等式組.實際上,兩個或更多的一元一次不等式組合起來,都組成一個一元一次不等式組.
(三)一元一次不等式組的解集
類比方程組的解,怎樣確定不等式組中x的可取值的范圍呢?
不等式組中的各不等式解集的公共部分,就是不等式組中x可以取值的范圍.
注:這里還未正式出現(xiàn)不等式組的解集的概念,但已點出各不等式的解集的公共部分即不等式組中未知數(shù)的可取值范圍.
由不等式①解得x13.
由不等式②解得x7.
從圖9.3—2容易看出,x可以取值的范圍為713.
注:利用數(shù)軸可以直觀形象地認(rèn)識公共部分.這個公共部分是兩端有界的開區(qū)間.
這就是說,當(dāng)木條c比7cm長并且比13cm短時,它能與木條a和b一起釘成三角形木框.
一般地,幾個不等式的解集的公共部分,叫做由它們所組成的不等式組的解集.解不等式組就是求它的解集.
注:這里正式給出不等式組的解集以及解不等式組的定義13.注:利用數(shù)軸可以直觀形象地認(rèn)識公共部分.這個公共部分是兩端有界的開區(qū)間.這就是說,當(dāng)木條c比7cm長并且比13cm短時,它能與木條a和b一起釘成三角形木框.一般地,幾個不等式的解集的公共部分,叫做由它們所組成的不等式組的解集.解不等式組就是求它的解集.注:這里正式給出不等式組的解集以及解不等式組的定義。
不等式課件 篇6
一元一次不等式組(2)
文星中學(xué)唐波
一、教學(xué)目標(biāo)
(一)知識與技能目標(biāo)
1、熟練掌握一元一次不等式組的解法,會用一元一次不等式組解決有關(guān)的實際問題。
2、理解一元一次不等式組應(yīng)用題的一般解題步驟,逐步形成分析問題和解決問題的能力。
(二)過程與方法目標(biāo)
通過利用列一元一次不等式組解答實際問題,初步學(xué)會從數(shù)學(xué)的角度提出問題、理解問題、并能綜合運(yùn)用所學(xué)的知識解決問題,發(fā)展應(yīng)用意識。
(三)情感態(tài)度與價值觀
通過解決實際問題,體驗數(shù)學(xué)學(xué)習(xí)的樂趣,初步認(rèn)識數(shù)學(xué)與人類生活的密切聯(lián)系。
二、教學(xué)重難點
(一)重點:建立用不等式組解決實際問題的數(shù)學(xué)模型。
(二)難點:正確分析實際問題中的不等關(guān)系,根據(jù)具體信息列出不等式組。
三、學(xué)法引導(dǎo)
(一)教師教法:直觀演示、引導(dǎo)探究相結(jié)合。
(二)學(xué)生學(xué)法:觀察發(fā)現(xiàn)、交流探究、練習(xí)鞏固相結(jié)合。
四、教具準(zhǔn)備:多媒體演示
五、教學(xué)過程
(一)、設(shè)問激趣,引入新課
猜一猜:我屬狗,請同學(xué)們根據(jù)我的實際情況來猜測我的年齡。(學(xué)生大膽猜想,利用不等關(guān)系分析得出答案。)
(二)、觀察發(fā)現(xiàn),競賽闖關(guān)
1、比一比:填表找規(guī)律
(學(xué)生搶答,教師補(bǔ)充。)2利用發(fā)現(xiàn)的規(guī)律解不等式組 ?(學(xué)生解答,抽生演板。)你可以得到它的整數(shù)解嗎?
(抽生回答:因為大于11小于14的整數(shù)有12和13,所以整數(shù)解為12和13。)3填空:三角形三邊長分別為2、7、c,則 c的取值范圍是__________。如果c是一個偶
數(shù),則 c=__________。
(學(xué)生回答,教師補(bǔ)充更正。)
(三)、欣賞圖片,探究新知
1、欣賞“五岳看山”。
2、利用欣賞引出例題(教科書P139例2仿編)
例:3名同學(xué)計劃在10天內(nèi)到嵩山拍照500張(每天拍照數(shù)量相同),按原來的計劃,不能完成任務(wù);如果每人每天比原計劃多拍1張,就能提前完成任務(wù),每個同學(xué)原計劃每天............拍多少張?
生齊讀,找出題中的已知條件和未知條件;再默讀,找一找表示數(shù)量關(guān)系的句子。師引導(dǎo)分析,并提出問題:
(1)你是怎樣理解“不能完成任務(wù)”的數(shù)量含義的?你是怎樣理解“提前完成任務(wù)”的數(shù)量含義的?
(2)解決這個問題,你打算怎樣設(shè)未知數(shù)?
(3)在本題中,可以找出幾個不等關(guān)系,可以列出幾個不等式?(學(xué)生交流討論,教師指導(dǎo)。)
?7x?98
?7(x?3)?98
解答完成后,學(xué)生自學(xué)課本例2。
3、由例解題答過程,類比列二元一次方程組解應(yīng)用題的步驟,總結(jié)列一元一次不等式組的解題步驟:
(1)、分析題意,設(shè)未知數(shù); .(2)、利用不等關(guān)系,列不等式組; .(3)、解不等式組; .
(4)、檢驗,根據(jù)題意寫出答案。.(學(xué)生總結(jié),抽生回答,教師補(bǔ)充。)
(四)、闖關(guān)練習(xí),鞏固新知
1練一練:為紀(jì)念“5·12”大地震一周年,“五一”部分同學(xué)到青城山拍照留念,如果每人拍8張則多于如果每人拍9張則不夠問共有多少個同學(xué)參加青城山旅游? ..150張;..180張。
教師引導(dǎo):抓住重點詞語,找到不等關(guān)系,列出不等式組。學(xué)生獨立完成,抽生回答。
比較列二元一次方程組和列一元一次不等式組解應(yīng)用題的區(qū)別:
(學(xué)生類比找區(qū)別,教師補(bǔ)充。)2練一練(教科書P140練習(xí)第2題):一本英語書共98頁,張力讀了一周(7天)還沒讀完,而李永不到一周就已讀完。李永平均每天比張力多讀3頁,張力平均每天讀多少頁(答案取整數(shù))?
學(xué)生分析列出不等式組,教師指導(dǎo)。(前面的練習(xí)已解出不等式組。)
(五)、暢所欲言,歸納小結(jié) 學(xué)生暢所欲言,談收獲體會 多媒體展示,本課內(nèi)容小結(jié):
1、解一元一次不等式組的秘笈:同大取大,同小取小,大小小大中間找,大大小小解不了。
2、具有多種不等關(guān)系的問題,可通過不等式組解決。
3、列一元一次不等式組解應(yīng)用題的步驟是:(1)、分析題意,設(shè)未知數(shù);(2)、利用不等關(guān)系,列不等式組;(3)、解不等式組;
(4)、檢驗,根據(jù)題意寫出答案。
(六)、課后演練,終極挑戰(zhàn)
必做題:教材習(xí)題第4、5、6題;
選做題:一個兩位數(shù),它的十位數(shù)字比個位數(shù)字大1,而且這個兩位數(shù)大于30小于42,則這個兩位數(shù)是多少?
六、板書設(shè)計
一元一次不等式組(2)
解:設(shè)每個同學(xué)原計劃每天拍x張,得
① ?3?10x?500
?
?3?10(x?1)?500②
1、分析題意,設(shè)未知數(shù);
解得x
3根據(jù)題意,x應(yīng)為整數(shù),所以x=16 答:每個同學(xué)原計劃每天拍16張。
2??
2、找不等關(guān)系,列不等式組; ?
?
3、解不等式組; ?步驟
??
?
4、檢驗并根據(jù)題意寫出答案。?
不等式課件 篇7
科學(xué)合理的教學(xué)方法能使教學(xué)效果事半功倍,達(dá)到教與學(xué)的和諧完美統(tǒng)一。
基于此,我準(zhǔn)備采用的教法講授法、討論法。德國教育學(xué)家第斯多慧:差的教師只會奉送真理,好的教師則交給學(xué)生如何發(fā)現(xiàn)真理,老師的教是為了不教,這才是教學(xué)的最高境界,所以我采用的學(xué)法是練習(xí)法、自主合作法。
在這節(jié)課的教學(xué)過程中,我注重突出重點,條理清晰,緊湊合理。各項活動的安排也注重互動、交流,最大限度的調(diào)動學(xué)生參與課堂的積極性、主動性。
首先是導(dǎo)入環(huán)節(jié),我采用復(fù)習(xí)舊知的導(dǎo)入方法。我會讓學(xué)生回憶不等式的概念以及一元一次方程的概念,明確指出今天學(xué)習(xí)的內(nèi)容是《一元一次不等式》。
這樣的設(shè)計既可以考查學(xué)生對之前知識的掌握情況,還能夠為今天學(xué)習(xí)一元一次方程的概念打下基礎(chǔ)。而且開門見山的導(dǎo)入方式能夠快速地進(jìn)入主題。
接下來是新知探索環(huán)節(jié),首先我請學(xué)生類比不等式以及一元一次方程的概念,給一元一次不等式下定義。
能夠總結(jié)出:含有一個未知數(shù),未知數(shù)的次數(shù)是1的不等式,叫做一元一次不等式。
接下來讓學(xué)生回憶上節(jié)課學(xué)習(xí)的不等式x-7>26如何解決的,通過學(xué)生回憶總結(jié)可以得到:通過“不等式的兩邊都加7,不等號的方向不變”而得到的。
接下來提問學(xué)生有沒有更加簡便的方法解不等式?讓學(xué)生類比解一元一次方程的步驟進(jìn)行解題??梢缘玫较喈?dāng)于可以用“移項”,來解決。
在這個過程中,強(qiáng)調(diào)每一個步驟,在第二題最后一步,強(qiáng)調(diào)當(dāng)不等式的兩邊同時乘以(或除以)同一個負(fù)數(shù)時,不等號的方向改變。
解完不等式,先讓學(xué)生回憶解一元一次方程的步驟是什么?并類比解一元一次方程的步驟,總結(jié)一下解一元一次不等式的步驟是什么?
從而我們歸納:解一元一次方程,要根據(jù)等式的性質(zhì),將方程逐步化為x=a的形式;而解一元一次不等式,則要根據(jù)不等式的性質(zhì),將不等式逐步化為xa的形式。
《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者和合作者”。根據(jù)這一教學(xué)理念,在本環(huán)節(jié)中,我組織學(xué)生進(jìn)行了自主探究活動,讓學(xué)生在保持高度學(xué)習(xí)熱情和探究欲望的活動過程中,始終以愉悅的心情,親身經(jīng)歷和體驗知識的形成過程。培養(yǎng)學(xué)生的探究能力、分析思維能力,激發(fā)他們的創(chuàng)新意識、參與意識。
第三個環(huán)節(jié)是課堂練習(xí)環(huán)節(jié),出示問題,解不等式,并在數(shù)軸上表示數(shù)集:5x+15>4x-1
之所以這樣設(shè)計是因為練習(xí)是掌握知識、形成技能、發(fā)展思維的重要手段,針對本課的教學(xué)重點和難點,上述練習(xí),目的是讓學(xué)生進(jìn)一步鞏固對新知的理解。可以深化教學(xué)內(nèi)容,培養(yǎng)思維的靈活性。
最后一個環(huán)節(jié)為小結(jié)作業(yè)環(huán)節(jié),關(guān)于課堂小結(jié),我打算讓學(xué)生自己來總結(jié)今天的收獲。
這樣既發(fā)揮了學(xué)生的主體性,又可以提高學(xué)生的總結(jié)概括能力,讓我在第一時間得到學(xué)習(xí)反饋,及時加以疏導(dǎo)。
通過這樣的方式能夠為本節(jié)課學(xué)習(xí)的知識進(jìn)行進(jìn)一步的鞏固。
我的板書設(shè)計遵循簡潔明了突出重點的意圖,這是我的板書設(shè)計:
不等式課件 篇8
1、了解一元一次不等式組的概念。
2、理解一元一次不等式組的解集,能求一元一次不等式組的解集。
3、會解一元一次不等式組。
通過具體問題得到一元一次不等式組,從而了解一元一次不等式組的概念,解出每個不等式,利用數(shù)軸求出各不等式解集的公共部分,從而得到不等式組的解集,通過解幾個有代表性的一元一次不等式組,總結(jié)出求不等式組解集的法則。
運(yùn)用數(shù)軸確定不等式組的解集是行之有效的方法。這種“數(shù)形結(jié)合”的方法今后經(jīng)常用到,鍛煉同學(xué)們數(shù)形結(jié)合的能力,提高學(xué)習(xí)興趣。
一元一次不等式組的解法。
確定一元一次不等式組的解集。
一、情境導(dǎo)入,初步認(rèn)識
問題1現(xiàn)有兩根木條a和b,a長10cm,b長3cm,如果要再找一根木條c,用這三根木條釘成一個三角形木框,那么木條c的長度有什么要求?
解:由于三角形中兩邊之____大于第三邊,兩邊之____小于第三邊,設(shè)c的長為xcm,則x<____,①x>____,②合起來,組成一個__________。
由①解得_____________,由②解得_____________。
在數(shù)軸上表示就是________________。
容易看出:x的取值范圍是____________________。
這就是說,當(dāng)木條c比____cm長并且比____cm短時,它能與木條a和b一起釘成三角形木框。
問題2由上面的解不等式組的過程用自己的語言歸納出一元一次不等式組的.解法。
全班同學(xué)可獨立作業(yè),也可分組自由討論,10分鐘后交流成果,逐步得出結(jié)論。
二、思考探究,獲取新知
思考什么叫一元一次不等式組,什么叫一元一次不等式組的解集,什么叫解不等式組?
1、定義:
(1)一元一次不等式組:幾個含有相同未知數(shù)的一元一次不等式合起來組成一個一元一次不等式組。
(2)一元一次不等式組的解集:幾個不等式的解集的公共部分,叫做由它們所組成的不等式的解集。
(3)解不等式組:求一元一次不等式組的解集的過程叫解一元一次不等式組。
2、一元一次不等式組的解法:
(1)求出每個一元一次不等式的解集。
(2)求出這些解集的公共部分,便得到一元一次不等式組的解集。
不等式課件 篇9
本節(jié)教學(xué)的重點是不等式的解集的概念及在數(shù)軸上表示不等式的解集的方法.難點為不等式的解集的概念.
相同點:定義方式相同(使方程成立的未知數(shù)的值,叫做方程的解);解的表示方法也相同.
不同點:解的個數(shù)不同,一般地,一個不等式有無數(shù)多個解,而一個方程只有一個或幾個解,例如, 能使不等式 成立,那么 是不等式的一個解,類似地 等也能使不等式 成立,它們都是不等式 的解,事實上,當(dāng) 取大于 的數(shù)時,不等式 都成立,所以不等式 有無數(shù)多個解.
不等式的解與不等式的解集是兩個不同的概念,不等式的解是指滿足這個不等式的未知數(shù)的某個值,而不等式的解集,是指滿足這個不等式的未知數(shù)的所有的值,不等式的所有解組成了解集,解集中包括了每一個解.
注意:不等式的解集必須滿足兩個條件:第一,解集中的任何一個數(shù)值,都能使不等式成立;第二,解集外的任何一個數(shù)值,都不能使不等式成立.
一般地,一個含未知數(shù)的不等式有無數(shù)多個解,其解集是某個范圍,這個范圍可用一個最簡單的不等式表示出來,例如,不等式 的解集是 .
如不等式 的解集 ,可以用數(shù)軸上表示4的點的左邊部分表示,因為 包含 ,所以在表示4的點上畫實心圓.
如不等式 的解集 ,可以用數(shù)軸上表示4的點的左邊部分表示,因為 包含 ,所以在表示4的點上畫實心圈.
注意:在數(shù)軸上,右邊的點表示的數(shù)總比左邊的點表示的數(shù)大,所以在數(shù)軸上表示不等式的解集時應(yīng)牢記:大于向右畫,小于向左畫;有等號的畫實心圓點,無等號的畫空心圓圈.
1.使學(xué)生了解不等式的解集、解不等式的概念,會在數(shù)軸上表示出不等式的解集.
2.知道不等式的“解集”與方程“解”的不同點.
通過教學(xué),使學(xué)生能夠正確地在數(shù)軸上表示出不等式的解集,并且能把數(shù)軸上的某部分?jǐn)?shù)集用相應(yīng)的不等式表示.
通過講解不等式的“解集”與方程“解”的關(guān)系,向?qū)W生滲透對立統(tǒng)一的辯證觀點.
通過本節(jié)課的學(xué)習(xí),讓學(xué)生了解不等式的解集可利用圖形來表達(dá),滲透數(shù)形結(jié)合的數(shù)學(xué)美.
2.學(xué)生學(xué)法:明確不等式的解與解集的區(qū)別和聯(lián)系,并能熟練地用數(shù)軸表示不等式的解集,在數(shù)軸上表示不等式的解集時,要特別注意:大于向右畫,小于向左畫;有等號的畫實心圓點,無等號的畫空心圓圈.
不等式課件 篇10
1.了解不等式及一元一次不等式概念。
2.理解不等式的解、解集,能正確表示不等式的解集。
通過類比等式的對應(yīng)知識,探索不等式的概念和解,體會不等式與等式的異同,初步掌握類比的思想方法。
1.經(jīng)歷把實際問題抽象為不等式的過程,能夠列出不等關(guān)系式。
2.初步體會不等式(組)是刻畫現(xiàn)實世界中不等關(guān)系的一種有效數(shù)學(xué)模型,培養(yǎng)學(xué)生的建模意識。
通過對不等式概念及其解集等有關(guān)概念的探索,培養(yǎng)學(xué)生的知識遷移能力和建模意識,加強(qiáng)同學(xué)之間的使用與交流。
活動一:
感知不等關(guān)系,了解不等式的概念。
通過實例,讓學(xué)生認(rèn)識到不等關(guān)系在生活中的存在,通過問題的解答,讓學(xué)生了解不等式的概念,體會不等式是解決實際問題的有效工具。
活動二:
通過類比方程,繼續(xù)探索出不等式的解、解集及其表示方法。
通過解決上個環(huán)節(jié)的問題,得出不等式的解,再引導(dǎo)學(xué)生觀察解的特點,探索出解集的兩種表示方法(符號表示、數(shù)軸表示),并且培養(yǎng)學(xué)生用估算方法求解集的技能。
活動三:
繼續(xù)探索,歸納出一元一次不等式的意義。
針對所學(xué)的不等式,讓學(xué)生歸納出特點,得到一元一次不等式的概念,并對概念進(jìn)行辨析。
運(yùn)用本節(jié)所學(xué)的知識,解決實際問題,使學(xué)生經(jīng)歷將實際問題轉(zhuǎn)化為數(shù)學(xué)問題,再加以解決的過程,實現(xiàn)對所學(xué)知識的鞏固和深化。
讓學(xué)生通過自我反思和互相質(zhì)疑提問,歸納總結(jié)本節(jié)課的主要內(nèi)容,交流在概念、解及解集學(xué)習(xí)中的心得和體會,不斷積累數(shù)學(xué)活動經(jīng)驗,教師應(yīng)主動參與學(xué)生小結(jié)中,作好引導(dǎo)工作,布置好作業(yè),并作及時反饋。
小強(qiáng)準(zhǔn)備隨父母乘車去武當(dāng)山春游。
⑴在車上看到兒童買票所需的測身高標(biāo)識線。
①x滿足______時,他可免票。
②x滿足______時,他該買全票。
⑵已知襄樊與武當(dāng)山的距離為150千米,他們上午10點鐘從襄樊出發(fā),汽車勻速行駛。
①若該車計劃中午12點準(zhǔn)時到達(dá)武當(dāng)山,車速應(yīng)滿足什么條件?
②若該車實際上在中午12點之前已到達(dá)武當(dāng)山,車速應(yīng)滿足什么條件?
用不等式表示:
⑴a是正數(shù);⑵a是負(fù)數(shù);⑶a與5的和小于7;⑷a與2的差大于-1;
⑸a的4倍大于8;
⑹a的一半小于3。
學(xué)生回答①這兩個由實際生活情境設(shè)置的問題,應(yīng)非常容易.問題②相對①難度加大了,難在題意中的條件不象上面那樣直接明了,并且可從距離和時間兩個角度來分析、解決問題,而七年級學(xué)生恰恰缺乏閱讀分析題意、多維度思考解決問題的能力,所以采用小組討論交流的形式解決問題②
學(xué)生討論角度估計大都集中在距離這一角度,教師可深入小組討論中,認(rèn)真聽聽同學(xué)們的思路,應(yīng)鼓勵學(xué)生多發(fā)表意見,并適當(dāng)點撥,直到得出兩種不等式。
此次活動中,教師應(yīng)重點關(guān)注:討論要有足夠的時間和空間,學(xué)生在小組討論交流時,是否敢于發(fā)表自己的想法。
再給出不等式概念:
像前面式子一樣用“>”或“
教師可要求學(xué)生舉出一些表示大小的式子,學(xué)生舉出的不等式中,可能會有一些不含未知數(shù)的,如5>3等。教師此時應(yīng)總結(jié):不等式中可含有未知數(shù),也可不含未知數(shù)。
教師根據(jù)學(xué)生舉例給出表示不等關(guān)系的第三種符號“≠”,并強(qiáng)調(diào):像前面式子一樣用“≠”表示不等關(guān)系的式子也是不等式。
鞏固練習(xí)是讓學(xué)生用不等式來刻畫題中6個簡單的不等關(guān)系。學(xué)生得出答案并不難,所以該環(huán)節(jié)讓學(xué)生獨立完成、互相評價,教師可深入到學(xué)生的解題過程中,觀察指導(dǎo)學(xué)生的解題思路,傾聽學(xué)生的評價。
問題1在課本中起導(dǎo)入新課作用,考慮學(xué)生實際情況(分析應(yīng)用題能力尚欠缺)和題目難度,所以設(shè)置問題串,降低難度。這樣編排教材我認(rèn)為更能體現(xiàn)知識呈現(xiàn)的序列性,從易到難,讓學(xué)生“列不等式”能力實現(xiàn)螺旋上升。
問題3作用僅僅起鞏固上面所學(xué)的知識,所以采用書中的一組習(xí)題,讓學(xué)生獨立完成,進(jìn)一步培養(yǎng)學(xué)生列不等式能力。
采用學(xué)生熟悉的生活情境作為導(dǎo)入內(nèi)容,然后層層推進(jìn),步步設(shè)問,環(huán)環(huán)相扣,直至推出不等式的概念及概念理解中應(yīng)注意的地方。這樣實現(xiàn)了:讓學(xué)生從已有的數(shù)學(xué)經(jīng)驗出發(fā),從生活中建構(gòu)數(shù)學(xué)模型,為后面利用“不等式”這一模型解決生活中實際問題作好鋪墊,體現(xiàn)了數(shù)學(xué)生活化、生活
不等式課件 篇11
1、一元一次不等式的概念:一般地,不等式中只含有一個未知數(shù),未知數(shù)的次數(shù)是1,且不等式的兩邊都是整式,這樣的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步驟:(1)去分母(2)去括號(3)移項(4)合并同類項(5)將x項的系數(shù)化為1
1、一元一次不等式組的概念:幾個一元一次不等式合在一起,就組成了一個一元一次不等式組。
2、幾個一元一次不等式的解集的公共部分,叫做它們所組成的一元一次不等式組的解集。
3、求不等式組的解集的過程,叫做解不等式組。
4、當(dāng)任何數(shù)x都不能使不等式同時成立,我們就說這個不等式組無解或其解為空集。
3、代數(shù)式1-m的值大于-1,又不大于3,則m的取值范圍是( )
A.x≥1 B.x≥-1/2 C.x>1 D.x>-1/2
A.5+4>8 B.2x-1 C.2x-5≤1 D.1/x-3x≥0
A. a>0? B.a≥0? C.a
11、若關(guān)于x的不等式組 的解集是x>2a,則a的取值范圍是
A. a>4 B. a>2 C. a=2 D.a≥2
12、若方程組 中,若未知數(shù)x、y滿足x+y>0,則m的取值范圍是
13、不等式2(1) x>-3的解集是 。
14、用代數(shù)式表示,比x的5倍大1的數(shù)不小于x的 與4的差 。
15、若(m-3)x-1,則m .
18、某次個人象棋賽規(guī)定:贏一局得2分,平一局得0分,負(fù)一局得反扣1分。在12局比賽中,積分超過15分就可以晉升下一輪比賽,小王進(jìn)入了下一輪比賽,而且在全部12輪比賽中,沒有出現(xiàn)平局,問小王最多輸 局比賽【www.LiuxUE86.cOm 出國留學(xué)網(wǎng)】
1、定義:把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這個點對稱或中心對稱,這個點叫做對稱中心.這兩個圖形中的對應(yīng)點叫做關(guān)于中心的對稱點。
2、心對稱的兩條基本性質(zhì):
(1)關(guān)于中心對稱的兩個圖形,對稱點所連線段都經(jīng)過對稱中心,而且被對稱中心所平分。
(2)關(guān)于中心對稱的兩個圖形是全等圖形。
把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。
每上第一次課,我所講的課程內(nèi)容都和學(xué)生的錯題有關(guān)。我通常把試卷中的錯題摘抄出幾個典型題,作為課堂的例題再講一遍。而學(xué)生的反應(yīng),或是像沒有見過,或是對題目非常熟悉,但沒有思路。
這些現(xiàn)象的發(fā)生,都是學(xué)生沒有及時總結(jié)的原因。所以第一次課后我都建議我的學(xué)生做一個錯題本,像寫日記一樣,記錄下自己的錯題和感想。
成也審題敗也審題。如何審題呢?
(1)這個題目有哪些個已知條件?我能不能把已知條件分開?
(2)求解的目標(biāo)是什么?對求解有什么要求?
(3)能不能畫一個圖幫助思考?好多問題是沒有看清楚題意致錯。審題不清,你做得越多,可能錯的就越多。
(4)所給出的已知條件相互之間有什么關(guān)系?能不能從中發(fā)現(xiàn)隱含條件?
(5)已知條件與求解目標(biāo)有什么聯(lián)系?能不能從中獲得解題的思路?找到進(jìn)門的門檻?
不等式課件 篇12
1.使學(xué)生感受到生活中存在著大量的不等關(guān)系,了解不等式和一元一次不等式的意義;
2.讓學(xué)生自發(fā)地尋找不等式的解,會在數(shù)軸上正確地表示出不等式的解集;
3.能夠根據(jù)題意準(zhǔn)確迅速地列出相應(yīng)的不等式。
1.通過汽車行駛過a地這一實例的研究,使學(xué)生體會到數(shù)學(xué)來源于生活,又服務(wù)于生活,培養(yǎng)學(xué)生“學(xué)數(shù)學(xué)、用數(shù)學(xué)”的意識;
2.經(jīng)歷由具體實例建立不等模型的過程,探究不等式的解與解集的不同意義的過程,滲透數(shù)形結(jié)合的思想。
㈢情感、態(tài)度、價值觀:
1.通過對不等式、不等式的解與解集的探究,引導(dǎo)學(xué)生在獨立思考的基礎(chǔ)上積極參與對數(shù)學(xué)問題的討論,培養(yǎng)他們的合作交流意識;
2.讓學(xué)生充分體會到生活中處處有數(shù)學(xué),并能將它們應(yīng)用到生活的各個領(lǐng)域中去。
3.培養(yǎng)學(xué)生類比的思想方法、數(shù)形結(jié)合的思想。
1.教學(xué)重點:不等式、一元一次不等式、不等式解與解集的意義;在數(shù)軸上正確地表示出不等式的解集;
2.教學(xué)難點:不等式解集的意義,根據(jù)題意列出相應(yīng)的不等式。
計算機(jī)、自制cai課件、實物投影儀、三角板等。
教師創(chuàng)設(shè)情境引入,學(xué)生交流探討;師生共同歸納;教師示范畫圖,課件交互式練習(xí)。
〖創(chuàng)設(shè)情境——從生活走向數(shù)學(xué)〗
[多媒體展示]“五·一黃金周”快要到了,蕪湖市某兩個商場為了促銷商品,推行以下促銷方案:①甲商場:購物不超過50元者,不優(yōu)惠;超過50元的,超過部分折優(yōu)惠。②乙商場:購物不超過100元者,不優(yōu)惠;超過100元的,超過部分九折優(yōu)惠。親愛的同學(xué),如果五·一期間,你去購物,選擇到哪個商場,才比較合算呢?
(以上教學(xué)內(nèi)容是向?qū)W生設(shè)疑,激發(fā)學(xué)生探索問題、研究問題的積極性,可以讓學(xué)生討論一會兒)
教師:要想正確地解決這個問題,我們大家就要學(xué)習(xí)第九章《不等式和不等式組》,學(xué)完本章的內(nèi)容后,我相信,聰明的你們一定都會作出正確的選擇,真正地做到既經(jīng)濟(jì)又實惠。
首先,我們來共同學(xué)習(xí)本章的第一節(jié)課——9.1.1節(jié)《不等式及其解集》
〖新課學(xué)習(xí)〗
學(xué)習(xí)目標(biāo):
1.能感受到生活中存在著大量的不等關(guān)系,了解不等式和一元一次不等式和意義;
2.會尋找不等式的解,會在數(shù)軸上正確地表示出不等式的解集;
3.能夠根據(jù)題意準(zhǔn)確迅速地列出相應(yīng)的不等式。
[多媒體展示一段動畫]:引例:一輛勻速行駛的汽車在11:20距離a地50千米,要在12:00之前駛過a地,車速應(yīng)滿足什么條件?
設(shè)車速是x千米/小時,
(1)從時間上看,汽車要在12:00之前駛過a地,則以這個速度行駛50千米所用的時間不到 小時,即
(2)從路程上看,汽車要在12:00之前駛過a地,則以這個速度行駛 小時的路程要超過50千米,即
請同學(xué)們觀察上面的兩個式子,式子左右兩邊的大小關(guān)系是怎樣的? 左右兩邊相等嗎?
在學(xué)生充分發(fā)表自己意見的基礎(chǔ)上,師生共同歸納得出:
用“>”或“<”號表示大小關(guān)系的式子叫做不等式;
用“≠”表示不等關(guān)系的式子也是不等式。
判斷下列式子中哪些是不等式,是不等式的請在題后的括號內(nèi)劃“√”,不是的請劃“×”
(1)3> 2????? (???? ) (2)2a+1> 0?? (???? )?? (3)a+b=b+a? (???? )
(4)x< 2x+1?? (???? )???? (5)x=2x-5??? (???? ) (6)2x+4x< 3x+1 (???? )????????? (7)15≠7+9? (???? )
上面的不等式中,有些不含未知數(shù),有些含有未知數(shù),大家把(2)、(4)、(6)式與(5)式類比,(5)式是一個一元一次方程,能不能給(2)、(4)、(6)式也起個名字呢?
含有一個未知數(shù), 未知數(shù)的次數(shù)是1的不等式,叫做一元一次不等式.
問題2:車速可以是78千米/小時嗎?75千米/小時呢? 72千米/小時呢?
問題3:我們曾經(jīng)學(xué)過“使方程兩邊相等的未知數(shù)的值就是方程的解”,那么我們可以把使不等式成立的未知數(shù)的值叫做什么呢?
(師生共同歸納)使不等式成立的未知數(shù)的值叫做不等式的解。
2.課堂練習(xí)二——動一動腦,動一動手,你一定能算得對。
76, 73, 79, 80, 74.9, 75.1, 90, 60
(學(xué)生做完后,師問):你還能找出這個不等式的其他的解嗎?這個不等式有多少個解?你從中發(fā)現(xiàn)了什么規(guī)律?
(學(xué)生討論后,師生共同總結(jié)):當(dāng)x>75時,不等式 x>50總成立;而當(dāng)x<75或x=75時,不等式 x>50不成立,這就是說,任何一個大于75的數(shù)都是不等式 x>50的解,這樣的解有無數(shù)個。因此,x>75表示了能使不等式 x>50成立的x的取值范圍,叫做不等式 x>50的解的集合,簡稱解集。
我們再回到前面的問題,經(jīng)過剛才的分析,可以知道,要使汽車在12:00之前駛過a地,車速必須大于75千米/小時。
一個含有未知數(shù)的不等式的所有的解,組成了這個不等式的解集。
4.在數(shù)軸上表示不等式的解集;
注意:在表示75的點上畫空心圓圈,表示不包括這一點.
5.課堂練習(xí)三——動一動腦,動一動手,你一定能算得對。
判斷下列數(shù)中哪些是不等式x+3>6的解? 哪些不是?
-4, -2.5,? 0,? 1,? 2.5,? 3,? 3.2,? 4.8,? 8,? 12
求不等式的解集的過程叫做解不等式。
7.課堂練習(xí)四——看誰算得最快最準(zhǔn)。
直接想出不等式的解集,并在數(shù)軸上表示出不等式的解集:
(1) x+3>6;??????? (2)2x<8;?? ?(3)x-2>0
解:(1)x>3;???????? (2)x<4;??? (3)x>2。
1.例用不等式表示:
(1)x與1的和是正數(shù);??????(2)的與的的差是負(fù)數(shù);
(3)的2倍與1的和大于3;(4)的一半與4的差小于的3倍.
解:(1)x+1>0;???????? (2)+b<0;
(3)2+1>3;????? (4)-4<3;
2.課堂練習(xí)五——看誰最列得又快又準(zhǔn)。
用不等式表示:
(1)是正數(shù);??????????(2)是負(fù)數(shù);
(3)與5的和小于7;??(4)與2的差大于-1;
(5)的4倍大于8;??????(6)的一半小于3.
答案;(1)>0;??????? (2)<0;?? (3)+5>0;
學(xué)生小結(jié),師生共同完善:
2.會尋找不等式的解,會在數(shù)軸上正確地表示出不等式的解集;
3.能夠根據(jù)題意準(zhǔn)確迅速地列出相應(yīng)的不等式。
不等式課件 篇13
教學(xué)重點:掌握不等式的三條基本性質(zhì),尤其是不等式的基本性質(zhì)3.
教學(xué)難點:正確應(yīng)用不等式的三條基本性質(zhì)進(jìn)行不等式變形.
通過觀察、分析、討論,引導(dǎo)學(xué)生歸納總結(jié)出不等式的三條基本性質(zhì),從具體上升到理論,再由理論指導(dǎo)具體的練習(xí),從而強(qiáng)化學(xué)生對知識的理解與掌握.
(設(shè)計說明:設(shè)置以下習(xí)題是為了溫故而知新,為學(xué)習(xí)本節(jié)內(nèi)容提供必要的知識準(zhǔn)備.)
2、什么是不等式?
3、用“>”或“<”填空.
(教學(xué)說明: 復(fù)習(xí)等式的基本性質(zhì)后學(xué)生自然會聯(lián)想到,不等式是否有與等式相類似的性質(zhì),從而引起學(xué)生的探究欲望.接著問題3為學(xué)生探究不等式的性質(zhì)提供了載體,通過觀察,尋找規(guī)律,得出不等式的性質(zhì).)
先讓學(xué)生獨立思考,后合作交流,通過充分討論,類比等式性質(zhì)得出不等式的性質(zhì).
觀察時,引導(dǎo)學(xué)生注意不等號的方向,通過(1)題學(xué)生容易得出不等式性質(zhì)1:
不等式基本性質(zhì)1 不等式兩邊加(或減)同一個數(shù)(或式子),不等號的方向不變.
比較(2)、(3)題,注意觀察不等號方向,并思考不等號方向的改變與什么有關(guān)?由學(xué)生概括總結(jié),教師補(bǔ)充完善得出:
不等式基本性質(zhì)2 不等式兩邊乘(或除以)同一個不為零的正數(shù),不等號的方向不變.
不等式基本性質(zhì)3 不等式兩邊乘(或除以)同一個不為零的負(fù)數(shù),不等號的方向改變.
通過PPT用圖形演示不等式的基本性質(zhì),讓學(xué)生更加清楚地認(rèn)識不等式的基本性質(zhì)。
不等式有傳遞性嗎?
【學(xué)生通過討論能夠比較容易得出結(jié)論:不等式有對稱性,但要注意其不等號方向的`變化;不等式也有傳遞性,但要注意的是同向傳遞性?!?/p>
三、鞏固訓(xùn)練,熟練技能:
1、(1) a - 3____b - 3;
(3) 0.1a____0.1b;
(5) 2a+3____2b+3;
【本題目采用提問的方式,因為內(nèi)容相對簡單,所以可以迅速得到結(jié)論。要讓提問者說清楚答案,并說明利用不等式的性質(zhì)幾來進(jìn)行判定的?!?/p>
(1)因為7.5>5.7,所以-7.5<-5.7;
(2)因為a+8>4,所以a>-4;
(3)因為4a>4b,所以a>b;
(4)因為-1>-2,所以-a-1>-a-2;
(5)因為3>2,所以3a>2a.
【學(xué)生口答,并說明為什么。本題重點是第5小題,要引導(dǎo)學(xué)生總結(jié)出a的取值會影響到答案。當(dāng)a>0時,3a>2a.(不等式基本性質(zhì)2)
當(dāng) a=0時,3a=2a.當(dāng)a<0時,3a<2a.(不等式基本性質(zhì)3) 】
學(xué)生自己完成以下題目,之后進(jìn)行集體講解。
(1)如果x-5>-1,那么______________________,得:x>4
(2)如果-2x>3,那么那么______________________,得X=______
師生共同小結(jié)本節(jié)課所學(xué)重點,不等式的基本性質(zhì)的具體內(nèi)容。
不等式課件 篇14
基本不等式是數(shù)學(xué)中重要的一個概念,它與不等式的證明和應(yīng)用有著密切的關(guān)系。基本不等式的解法和思維方法不僅能讓我們更好地掌握不等式的性質(zhì)和應(yīng)用,同時也能讓我們更好地解決數(shù)學(xué)中的其他問題。下面,讓我們就基本不等式這一主題展開更加深入的探討。
一、基本不等式的定義、證明和性質(zhì)
基本不等式定義:對于任意實數(shù)$x$,$y$,有$(x^2+y^2)\geq 2xy$,等號成立當(dāng)且僅當(dāng)$x=y$時成立。
基本不等式的證明:我們可以通過平方展開和配方進(jìn)行證明,即:
$(x-y)^2\geq 0$
$x^2-2xy+y^2\geq 0$
$x^2+y^2\geq 2xy$
證畢。
基本不等式的性質(zhì):基本不等式可以用于求證其他不等式和解決實際問題,例如可以用基本不等式證明算術(shù)平均數(shù)$\ge$幾何平均數(shù),可以用基本不等式求證要想最小化一個多項式,需要使其中的各項等于彼此等于基本不等式中的相等值等。
二、基本不等式的應(yīng)用及相關(guān)例題
基本不等式的應(yīng)用廣泛,其中最常見的應(yīng)用就是在證明和求解不等式問題中。下面,我們就通過例題來展示基本不等式的具體應(yīng)用。
例題一:
已知$a,b,c$均為正實數(shù),求出$abc$與$\frac{(a+b+c)^3}{27}$的大小關(guān)系。
解:由于$a,b,c$均為正實數(shù),故可運(yùn)用基本不等式進(jìn)行求解,即
$\begin{aligned}
\frac{(a+b+c)}{3}\geq\sqrt[3]{abc}\\
(a+b+c)^3\geq 27abc
\end{aligned}$
因此,
$\frac{(a+b+c)^3}{27}\geq abc$
即$\frac{(a+b+c)^3}{27}\geq abc$
得證。
例題二:
已知$a+b=3$,$a^2+b^2=5$,求出$a,b$的大小關(guān)系。
解:由已知條件可得$(a+b)^2=a^2+b^2+2ab$,即
$9=5+2ab$
$ab=\frac{4}{3}$
由基本不等式知得
$2ab=\frac{8}{3}\leq a^2+b^2=5$
即$a^2+b^2>2ab$,因此$a^2>b^2$,
又因為$a+b=3$,所以$b=3-a$,
所以$(3-a)^2
$9+a^2-6a
$a>\frac{3}{2}$
因此,
$a>b>\frac{3}{2}-a$
即$0
例題三:
已知$a,b,c>0$,求證$\frac{(a+b)^2}{c}+\frac{(b+c)^2}{a}+\frac{(c+a)^2}\geq 12(a+b+c)$
解:由基本不等式得
$(a+b)^2\geq 4ab,(b+c)^2\geq 4bc,(c+a)^2\geq 4ac$
將以上三個式子代入原式變化得
$\frac{4ab}{c}+\frac{4bc}{a}+\frac{4ac}\geq 12(a+b+c)$
即$4(ab^2+bc^2+ca^2)\geq 12abc(a+b+c)$
即$(ab^2+bc^2+ca^2)\geq 3abc$
由于$a,b,c>0$,故得證。
三、基本不等式的擴(kuò)展
除了基本不等式外,還有一些基本不等式的擴(kuò)展形式,例如平均值不等式和柯西施瓦茲不等式等。這些擴(kuò)展形式大大豐富了不等式的證明和應(yīng)用,并為數(shù)學(xué)研究提供了更加廣泛的空間。下面,我們就來簡單介紹一下平均值不等式和柯西施瓦茲不等式的相關(guān)內(nèi)容。
平均值不等式:對于$n$個非負(fù)實數(shù)$x_1,x_2,\cdots,x_n$,有
$\frac{x_1+x_2+\cdots+x_n}{n}\geq\sqrt[n]{x_1x_2\cdots x_n}$
其中等號成立當(dāng)且僅當(dāng)$x_1=x_2=\cdots=x_n$時成立。
柯西施瓦茲不等式:對于任意實數(shù)$x_1,x_2,\cdots,x_n$和$y_1,y_2,\cdots,y_n$,有
$(x_1^2+x_2^2+\cdots+x_n^2)(y_1^2+y_2^2+\cdots+y_n^2)\geq(x_1y_1+x_2y_2+\cdots+x_ny_n)^2$
其中等號成立當(dāng)且僅當(dāng)$\frac{x_1}{y_1}=\frac{x_2}{y_2}=\cdots=\frac{x_n}{y_n}$時成立。
四、總結(jié)
綜上所述,基本不等式是數(shù)學(xué)中重要的一個概念,它與不等式的證明和應(yīng)用有著密切的關(guān)系。基本不等式的解法和思維方法不僅能讓我們更好地掌握不等式的性質(zhì)和應(yīng)用,同時也能讓我們更好地解決數(shù)學(xué)中的其他問題。在學(xué)習(xí)和應(yīng)用基本不等式時,我們還需掌握其相關(guān)的擴(kuò)展形式,如平均值不等式和柯西施瓦茲不等式等。只有充分掌握了這些知識點,我們才能更加深入地理解并應(yīng)用不等式的知識。
Yjs21.coM更多幼師資料延伸讀
不等式的課件
老師在開學(xué)前需要把教案課件準(zhǔn)備好,每個人都要計劃自己的教案課件了。教案是實現(xiàn)高效教學(xué)的不可或缺要素之一。如果您想深入理解這一話題不妨看看“不等式的課件”,本文的內(nèi)容必將給您帶來很多有用的收獲!
不等式的課件 篇1
【教學(xué)目標(biāo)】
1、知識與技能目標(biāo)
(1)掌握基本不等式 ,認(rèn)識其運(yùn)算結(jié)構(gòu);
(2)了解基本不等式的幾何意義及代數(shù)意義;
(3)能夠利用基本不等式求簡單的最值。
2、過程與方法目標(biāo)
(1)經(jīng)歷由幾何圖形抽象出基本不等式的過程;
(2)體驗數(shù)形結(jié)合思想。
3、情感、態(tài)度和價值觀目標(biāo)
(1)感悟數(shù)學(xué)的發(fā)展過程,學(xué)會用數(shù)學(xué)的眼光觀察、分析事物;
(2)體會多角度探索、解決問題。
【能力培養(yǎng)】
培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、規(guī)范的學(xué)習(xí)能力,辯證地分析問題的能力,學(xué)以致用的能力,分析問題、解決問題的能力。
【教學(xué)重點】
應(yīng)用數(shù)形結(jié)合的思想理解不等式,并從不同角度探索不等式 的證明過程。
【教學(xué)難點】
基本不等式 等號成立條件。
【教學(xué)方法】
教師啟發(fā)引導(dǎo)與學(xué)生自主探索相結(jié)合
【教學(xué)工具】
課件輔助教學(xué)、實物演示實驗
【教學(xué)流程】
SHAPE MERGEFORMAT
【教學(xué)過程設(shè)計】
創(chuàng)設(shè)情景,引入新課
如圖是在北京召開的第24屆國際數(shù)學(xué)家大會的會標(biāo), 這是根據(jù)趙爽弦圖而設(shè)計的。用課前折好的趙爽弦圖示范,比較 4個直角三角形的面積和與大正方形的面積,你會得到怎樣的相 等和不等關(guān)系?
趙爽弦圖
1.探究圖形中的不等關(guān)系
將圖中的“風(fēng)車”抽象成如圖,在正方形ABCD中右個全等的直角三角形。
設(shè)直角三角形的兩條直角邊長為a,b那么正方形的邊長為 。這樣,4個直角三角形的面積的和是2ab,正方形的面積為 。由于4個直角三角形的面積小于正方形的面積,我們就得到了一個不等式: 。
當(dāng)直角三角形變?yōu)榈妊苯侨切?,即a=b時,正方形EFGH縮為一個點,這時有 。
2.得到結(jié)論:一般的,如果
3.思考證明:你能給出它的證明嗎?
證明:因為
當(dāng)
所以, ,即
4.基本不等式
1)特別的,如果a>0,b>0,我們用分別代替a、b ,可得 ,通常我們把上式寫作:
2)從不等式的性質(zhì)推導(dǎo)基本不等式
用分析法證明:
要證 (1)
只要證 (2)
要證(2),只要證 a+b- 0 (3)
要證(3),只要證 ( - ) (4)
顯然,(4)是成立的。當(dāng)且僅當(dāng)a=b時,(4)中的等號成立。
3)理解基本不等式 的幾何意義
不等式的課件 篇2
基本不等式教學(xué)設(shè)計
數(shù)學(xué)與應(yīng)用數(shù)學(xué) 鐘林
課題:人教A版必修5第3章4節(jié),基本不等式
【教學(xué)目標(biāo)】
1.通過兩個探究實例,引導(dǎo)學(xué)生從幾何圖形中獲得兩個基本不等式,了解基本不等式的幾何背景,體會數(shù)形結(jié)合的思想。
2.進(jìn)一步提煉、完善基本不等式,并從代數(shù)角度給出不等式的證明,組織學(xué)生分析證明方法,加深對基本不等式的認(rèn)識,提高邏輯推理論證能力。 3.結(jié)合課本的探究圖形,引導(dǎo)學(xué)生進(jìn)一步探究基本不等式的幾何解釋,強(qiáng)化數(shù)形結(jié)合的思想。
4.借助例1嘗試用基本不等式解決簡單的最值問題,通過例2及其變式引導(dǎo)學(xué)生
a?b領(lǐng)會運(yùn)用基本不等式ab?的三個限制條件(一正二定三相等)在解決最
2值中的作用,提升解決問題的能力,體會方法與策略。
【重點難點】
重點:應(yīng)用數(shù)形結(jié)合的思想理解基本不等式,并從不同角度探索不等式a?bab?的證明過程。
2難點:在幾何背景下抽象出基本不等式,并理解基本不等式。
【教學(xué)設(shè)計】
(一)問題導(dǎo)入
欣賞2002年國際數(shù)學(xué)家大會會徽,會徽是根據(jù)中國古代數(shù)學(xué)家趙爽的弦圖設(shè)計的,顏色的明暗使它看上去象一個風(fēng)車,代表中國人民熱情好客。你能發(fā)現(xiàn)它是什么圖形構(gòu)成的嗎?請根據(jù)會徽探索一些常見相等或不等關(guān)系。
探究一:在這張“弦圖”中能找出一些相等關(guān)系和不等關(guān)系嗎? 在正方形ABCD中有4個全等的直角三角形.設(shè)直角三角形兩條直角邊長為,a,b。
22a?b那么正方形的邊長為。
于是,4個直角三角形的面積之和S1?2ab。 正方形的面積S2?a2?b2。 由圖可知S2?S1,即a2?b2?2ab。
當(dāng)直角三角形變?yōu)榈妊苯侨切危磿r,正方形EFGH縮為一個點,這時 a2?b2?2ab
所以a2?b2?2ab。
探究二:如下圖所示的梯形中,EF是梯形ABCD的中位線,梯形ABGH相似于梯 形GHDC。
梯形ABCD的上底是a,下底是b。讓同學(xué)們自主研究GH和EF的大小關(guān)系。
a?b因為EF是中位線,所以EF?,
2由相似,可以得出GH?ab, 同樣因為相似,有
AGABa, ??GDGHb又因為a?b,所以AG?GD,即AG?AE,
a?b。 2顯然,當(dāng)AB逐漸趨近CD的時候,GH也逐漸向EF靠近, 當(dāng)AB=CD的時候,即ABCD是矩形的時候,GH與EF重合。
a?b即,當(dāng)且僅當(dāng)a?b時,ab?。
2a?b所以,ab?,當(dāng)且僅當(dāng)a?b時,等號成立。
2所以GH?EF,即ab?
(二)概念深入
根據(jù)上述兩個幾何背景,初步形成不等式結(jié)論:
若a,b?R?,則a2?b2?2ab。(當(dāng)且僅當(dāng)a=b時,等號成立)
a?b。(當(dāng)且僅當(dāng)a=b時,等號成立) 2請同學(xué)們運(yùn)用代數(shù)法證明: 作法一(作差法): 若a,b?R?,則ab?a2?b2?2ab?(a?b)2?0a?b?2ab22
當(dāng)且僅當(dāng)a=b時,等號成立。且發(fā)現(xiàn)這里且a和b可以是全體實數(shù)、單項式、多項式。
作法二(分析法):
要證明a?b?ab, 2只需證明a?b?2ab, 即證a?b-2ab?0, 即為?a-b?2?0,該式顯然成立,所以,當(dāng)a?b時取等號。
于是有這樣的結(jié)論:
稱ab為a,b的幾何平均數(shù);稱基本不等式ab?a?b為a,b的算術(shù)平均數(shù), 2a?b又可敘述為: 2兩個正數(shù)的幾何平均數(shù)不大于它們的算術(shù)平均數(shù)
作法三(幾何法):
如圖,AB是圓O的直徑,點C是AB上一點,AC=a,BC=b.過點C作 垂直于AB的弦DE,連接AD,BD。 從而有CD?ab,OD?a?b。 2a?b。 2a?b當(dāng)且僅當(dāng)C點與圓心O點重合時,即a=b時,ab?
2故再次證明:
a?ba?0,b?0,ab?,當(dāng)且僅當(dāng)a=b時,等號成立。
2a?b也說明了ab?的幾何意義:半徑不小于半弦。
2由于直角三角形COD中,直角邊CD
(三)例題講解
例1.(1)用籬笆圍一個面積為100平方米的矩形菜園,問這個矩形的長、寬各為多少時,所用籬笆最短,最短的籬笆是多少?
(2)一段長為36米的籬笆圍成一個矩形菜園,問這個矩形的長、寬為多少時,菜園的面積最大,最大面積是多少?
(通過例1的講解,總結(jié)歸納利用基本不等式求最值問題的特征,實現(xiàn)積與和的轉(zhuǎn)化)
對于x,y?R?,
(1)若xy?p(定值),則當(dāng)且僅當(dāng)x?y時,x?y有最小值2p;
s2(2)若x?y?s(定值),則當(dāng)且僅當(dāng)x?y時,xy有最大值。
4(鼓勵學(xué)生自己探索推導(dǎo),不但可使他們加深基本不等式的理解,還鍛煉了他們的思維,培養(yǎng)了勇于探索的精神。)
1例2.求y?x?(x?0)的值域。
x1變式1.若x?2,求x?的最小值.
x?21在運(yùn)用基本不等式解題的基礎(chǔ)上,利用幾何畫板展示y?x?(x?0)的函數(shù)
x圖象,使學(xué)生再次感受數(shù)形結(jié)合的數(shù)學(xué)思想。
a?b并通過例2及其變式引導(dǎo)學(xué)生領(lǐng)會運(yùn)用基本不等式ab?的三個限制
2條件(一正二定三相等)在解決最值問題中的作用,提升解決問題的能力,體會方法與策略。
(四)歸納小結(jié)&課后作業(yè) 基本不等式:
若a,b?R?,則a2?b2?2ab。(當(dāng)且僅當(dāng)a=b時,等號成立)
a?b。(當(dāng)且僅當(dāng)a=b時,等號成立) 2(1)基本不等式的幾何解釋(數(shù)形結(jié)合思想); (2)運(yùn)用基本不等式解決簡單最值問題的基本方法。
作業(yè):A組第4題,B組第1題,第2題
若a,b?R?,則ab?
不等式的課件 篇3
課題:3.4.3 基本不等式 的應(yīng)用(二) 科目:數(shù)學(xué) 教學(xué)對象:高二(290)學(xué)生 課時:1課時 提供者:劉和安 單位: 姚安一中 一、教學(xué)內(nèi)容分析 本節(jié)課的研究是起到了對學(xué)生以前所學(xué)知識與方法的復(fù)習(xí)、應(yīng)用,進(jìn)而構(gòu)建他們更完善的知識網(wǎng)絡(luò)。數(shù)學(xué)建模能力的培養(yǎng)與鍛煉是數(shù)學(xué)教學(xué)的一項長期而艱苦的任務(wù),這一點,在本節(jié)課是真正得到了體現(xiàn)和落實。?
根據(jù)本節(jié)課的教學(xué)內(nèi)容,應(yīng)用觀察、閱讀、歸納、邏輯分析、思考、合作交流、探究,對基本不等式展開實際應(yīng)用,進(jìn)行啟發(fā)、探究式教學(xué)并使用投影儀輔助。? 二、教學(xué)目標(biāo) (一)知識目標(biāo):構(gòu)建基本不等式解決函數(shù)的值域、最值問題;
(二)能力目標(biāo):讓學(xué)生探究用基本不等式解決實際問題
(三)情感、態(tài)度和價值觀目標(biāo):
通過具體問題的解決,讓學(xué)生去感受、體驗現(xiàn)實世界和日常生活中存在著大量的不等量關(guān)系并需要從理性的角度去思考,鼓勵學(xué)生用數(shù)學(xué)觀點進(jìn)行類比、歸納、抽象,使學(xué)生感受數(shù) 學(xué)、走進(jìn)數(shù)學(xué)、培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)學(xué)習(xí)習(xí)慣和良好的思維習(xí)慣;? 三、學(xué)習(xí)者特征分析 在本節(jié)課的教學(xué)過程中,仍應(yīng)強(qiáng)調(diào)不等式的現(xiàn)實背景和實際應(yīng)用,真正地把不等式作為刻畫現(xiàn)實世界中不等關(guān)系的工具。通過實際問題的分析解決,讓學(xué)生去體會基本不等式所具有的廣泛的實用價值,同時,也讓學(xué)生去感受數(shù)學(xué)的應(yīng)用價值,從而激發(fā)學(xué)生去熱愛數(shù)學(xué)、研究數(shù)學(xué)。而不是覺得數(shù)學(xué)只是一門枯燥無味的推理學(xué)科。在解決實際問題的過程中,既要求學(xué)生能用數(shù)學(xué)的眼光、觀點去看待現(xiàn)實生活中的許多問題,又會涉及與函數(shù)、方程、三角等許多數(shù)學(xué)本身的知識與方法的處理 四、教學(xué)策略選擇與設(shè)計 1.采用探究法,按照觀察、閱讀、歸納、思考、交流、邏輯分析、抽象應(yīng)用的方法進(jìn)行啟發(fā)式教學(xué);?
2.教師提供問題、素材,并及時點撥,發(fā)揮老師的主導(dǎo)作用和學(xué)生的主體作用;?
3.設(shè)計較典型的具有挑戰(zhàn)性的問題,激發(fā)學(xué)生去積極思考,從而培養(yǎng)他們的數(shù)學(xué)學(xué)習(xí)興趣。?? 五、教學(xué)重點及難點 教學(xué)重點:1.構(gòu)建基本不等式解決函數(shù)的值域、最值問題。?
2.讓學(xué)生探究用基本不等式解決實際問題;?
教學(xué)難點:1.讓學(xué)生探究用基本不等式解決實際問題;?
2.基本不等式應(yīng)用時等號成立條件的考查;?
六、教學(xué)過程 教師活動 學(xué)生活動 設(shè)計意圖 (一)導(dǎo)入新課
(二)推進(jìn)新課
已知 ,若ab為常數(shù)k,那么a+b的值如何變化?
若a+b為常數(shù)s,那么ab的值如何變化?
老師用投影儀給出本節(jié)課的第一組問題
(1)求函數(shù)y=2x2+ (x>0)的最小值。?
(2)求函數(shù)y=x2+ (x>0)的最小值。?
(3)求函數(shù)y=3x2-2x3(0
(4)求函數(shù)y=x(1-x2)(0
(5)設(shè)a>0,b>0,且a2+ =1,求 的最大值。?
(三)合作探究 我們來考慮運(yùn)用正數(shù)的算術(shù)平均數(shù)與幾何平均數(shù)之間的關(guān)系來解答這些問題。根據(jù)函數(shù)最值的含義,我們不難發(fā)現(xiàn)若平均值不等式的某一端為常數(shù),則當(dāng)?shù)忍柲軌蛉〉綍r,這個常數(shù)即為另一端的一個最值。 ?
(四)例題精析?
【例】某工廠要建造一個長方體形無蓋貯水池,其容積為4 800 m3,深為 3 m.如果池底每平方米的造價為150元,池壁每平方米的造價為120元,怎樣設(shè)計水池能使總造價最低?最低總造價是多少?
當(dāng)且僅當(dāng)a=b時,a+b就有最小值為2k.?
當(dāng)且僅當(dāng)a=b時,ab就有最大值 (或ab有 最大值 ).?
學(xué)生完成
留五分鐘的時間讓學(xué)生思考,合作交流
(根據(jù)學(xué)生完成的典型情況,找五位學(xué)生到黑板板演,然后老師根據(jù)學(xué)生到黑板板演的完成情況再一次作點評)?
學(xué)生思考、回答,
不等式的課件 篇4
不等式
教材分析:本課由實際問題中的不等關(guān)系引出不等式的概念;類比方程的解,明確不等式解和解集的概念,以及不等式解集的兩種表示方法。
教學(xué)目標(biāo):了解不等式概念,理解不等式的解和解集。 教學(xué)重難點:不等式及解集概念的理解。 教學(xué)過程: 一:引出新知。
現(xiàn)實世界中存在大量的數(shù)量關(guān)系,包括相等關(guān)系和不等關(guān)系。用等式(包括方程),我們可以研究相等關(guān)系,而研究不等關(guān)系需要用本章的不等式,如引言中選擇購物商場問題.二:探索新知。
問題1 一輛勻速行駛的汽車在11:20距離A地50 km,要在12:00之前駛過A地.你能用式子表示出車速應(yīng)滿足的條件嗎?
1、汽車在12:00之前駛過A地的意思是什么? 從時間上看,汽車要在12:00之前駛過A地,則 以這個速度行駛50 km所用的時間不到。
從路程上看,汽車要在12:00之前駛過A地,則以這個速度行駛的路程要超過50 km。
2、如何用式子表示以上不等關(guān)系? 設(shè):車速為x km/h. 從時間上看: 從路程上看:
(1)對于不等式 而言,車速可以是80 km/h嗎?78 km/h呢?75 km/h呢?72 km/h呢?
(2)類比方程的解,什么叫不等式的解?
使不等式成立的未知數(shù)的值.(3)不等式還有其他解嗎?如果有,這些解應(yīng)滿足什么條件?
一般地,一個含有未知數(shù)的不等式的所有的解,組成這個不等式的解集.求不等式的解集的過程叫做解不等式. (4)除了用不等式表示取值范圍,還有其他表示方法嗎? 數(shù)軸
三、運(yùn)用新知。 例1 請用不等式表示:
(1) 是負(fù)數(shù);
(2) 與5的和小于-7;
(3) 的一半大于3.例2 直接說出不等式的解集,并在數(shù)軸上表
示出來.
四、歸納總結(jié) (1)什么叫不等式?
(2)什么叫不等式的解?不等式的解和方程的解的區(qū)別? (3)什么叫不等式的解集?不等式的解和不等式的解集的區(qū)別?
五、布置作業(yè)
教科書 習(xí)題 第
1、
2、3題。
不等式的課件 篇5
[教學(xué)目標(biāo)]
依據(jù)《新標(biāo)準(zhǔn)》對《不等式》學(xué)段的目標(biāo)要求和本班學(xué)生實際情況,特確定如下目標(biāo):
1、知識與能力目標(biāo):理解掌握基本不等式,并能運(yùn)用基本不等式解決一些簡單問題(求最值、證明不等式);培養(yǎng)學(xué)生探究能力以及分析問題解決問題的能力。
2、過程與方法目標(biāo):按照創(chuàng)設(shè)情景,提出問題→ 剖析歸納證明→ 幾何解釋→ 應(yīng)用(最值的求法、不等式的證明)的過程呈現(xiàn)。啟動觀察、分析、歸納、總結(jié)、抽象概括等思維活動,培養(yǎng)學(xué)生的思維能力,體會數(shù)學(xué)概念的學(xué)習(xí)方法,通過運(yùn)用多媒體的教學(xué)手段,引領(lǐng)學(xué)生主動探索基本不等式性質(zhì),體會學(xué)習(xí)數(shù)學(xué)規(guī)律的方法,體驗成功的樂趣。
3、情感與態(tài)度目標(biāo):通過問題情境的設(shè)置,使學(xué)生認(rèn)識到數(shù)學(xué)是從實際中來,培養(yǎng)學(xué)生用數(shù)學(xué)的眼光看世界,通過數(shù)學(xué)思維認(rèn)知世界,從而培養(yǎng)學(xué)生善于思考、勤于動手的良好品質(zhì)。
二、 [教學(xué)重點]
基本不等式 的證明過程及應(yīng)用。
三、 [教學(xué)難點]
1、基本不等式成立時的三個限制條件(簡稱一正、二定、三相等)的正確理解;
2、靈活利用基本不等式求解實際問題中的最大值和最小值。
四、 [教學(xué)方法]
本節(jié)課采啟發(fā)誘導(dǎo)、講練結(jié)合的教學(xué)方法,結(jié)合現(xiàn)代信息技術(shù)多媒體課件、幾何畫板作為教學(xué)輔助手段,加深學(xué)生對基本不等式的理解。
[教學(xué)用具]
多媒體、幾何畫板
六、 [教學(xué)過程]
教學(xué)過程設(shè)計以問題為中心,以探究解決問題的方法為主線展開。這種安排強(qiáng)調(diào)過程,符合學(xué)生的認(rèn)知規(guī)律,使數(shù)學(xué)教學(xué)過程成為學(xué)生對知識的再創(chuàng)造、再發(fā)現(xiàn)的過程,從而培養(yǎng)學(xué)生的創(chuàng)新意識。
具體過程安排如下:
(一)、創(chuàng)設(shè)情景,提出問題;
上圖是在北京召開的第24屆國際數(shù)學(xué)家大會的會標(biāo),會標(biāo)是根據(jù)中國古代數(shù)學(xué)家趙爽的弦圖設(shè)計的,顏色的明暗使它看上去像一個風(fēng)車,代表中國人民熱情好客。
[問]你能在這個圖中找出一些相等關(guān)系或不等關(guān)系嗎?
利用圖中相關(guān)面積間存在的數(shù)量關(guān)系,抽象出不等式 。在此基礎(chǔ)上,引導(dǎo)學(xué)生認(rèn)識基本不等式。
同時,(幾何畫板輔助教學(xué))通過幾何畫板演示,
讓學(xué)生更直觀的抽象、歸納出結(jié)論:
(二)、抽象歸納:
一般地,對于任意實數(shù) ,有 ,當(dāng)且僅當(dāng) 時,等號成立。
[問] 你能給出它的證明嗎?
學(xué)生在黑板上板書。
特別地,當(dāng) 時,在不等式 中,以 、 分別代替 ,得到什么?
答案: 。
【歸納總結(jié)】
如果 都是正數(shù),那么 ,當(dāng)且僅當(dāng) 時,等號成立。
我們稱此不等式為基本不等式。 其中 稱為 的算術(shù)平均數(shù), 稱為 的幾何平均數(shù)。
(三)、理解升華:
1、文字語言敘述:
兩個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)。
2、符號語言敘述:
若 ,則有 ,當(dāng)且僅當(dāng) 時, 。
[問] 怎樣理解“當(dāng)且僅當(dāng)”?
3、探究基本不等式證明方法:
[問] 如何證明基本不等式?
方法一:作差比較或由 展開證明。
方法二:分析法。
分析法,實際上是尋找結(jié)論的充分條件,執(zhí)果索因的一種思維方法。
4、探究基本不等式的幾何意義:
讀書破萬卷下筆如有神,以上就是一米范文范文為大家?guī)淼?篇《2023高中數(shù)學(xué)基本不等式教學(xué)教案》,希望對您有一些參考價值。
不等式的課件 篇6
不等式和不等式組復(fù)習(xí)課教學(xué)設(shè)計
一、設(shè)計思想:
“不等式”是初中數(shù)學(xué)核心內(nèi)容之一。就不等式的解法來說,它是一種重要的數(shù)學(xué)技能;而就不等式的廣泛作用來說,不管是與實際相關(guān)的問題,還是純粹的數(shù)學(xué)問題,不管是代數(shù)方面的問題,還是幾何圖形方面的問題,乃至更為一般化的問題,只要是求未知數(shù)的值或范圍的問題,經(jīng)常要借助于不等式,可見學(xué)好不等式具有非常重要的意義。
這節(jié)課是中考前的專題復(fù)習(xí)課,知識點不多。由于學(xué)生已經(jīng)學(xué)過本章內(nèi)容,因此在本節(jié)復(fù)習(xí)中主要以提問的形式進(jìn)行知識要點的復(fù)習(xí),以學(xué)生自主探索和合作探究的學(xué)習(xí)方法學(xué)習(xí)本節(jié)內(nèi)容。教師主要在習(xí)題的設(shè)計上選好典型例題,復(fù)習(xí)的知識盡量全面。教學(xué)效果上使不同的學(xué)生有不同的收獲。
二、教學(xué)內(nèi)容分析:
1.《課程標(biāo)準(zhǔn)》對本專題教學(xué)內(nèi)容的要求:
(1)結(jié)合具體問題,了解不等式的意義,探索不等式的基本性質(zhì)。 (2)能解簡單的一元一次不等式,并能在數(shù)軸上表示出解集;會用數(shù)軸確定由兩個一元一次不等式組成的不等式組的解集。
(3)能根據(jù)具體問題中的數(shù)量關(guān)系,列出一元一次不等式,解決簡單的問題。 2.本節(jié)內(nèi)容在中考中的地位和作用。
本部分內(nèi)容在中考中大約6~12分,約占全卷分?jǐn)?shù)的5%~8%左右。而且,近幾年考試中,經(jīng)常與方程、函數(shù)三角函數(shù)、幾何等內(nèi)容一起綜合考查,因此學(xué)好本節(jié)內(nèi)容對于解決這些綜合問題起著舉足輕重的作用。
三、教學(xué)目標(biāo):
1、知識技能:
①掌握不等式的概念和性質(zhì),能根據(jù)不等式的性質(zhì)解決有關(guān)問題;
②掌握不等式(組)的解法,會求不等式(組)的解集,特別是不等式組的整數(shù)解;
③能根據(jù)不等式組的解集確定字母系數(shù)的范圍;
④會列不等式(組)解決簡單的實際問題,特別是方案設(shè)計問題。
2、數(shù)學(xué)思考:通過列不等式或不等式組解決具有不等關(guān)系的實際問題,讓學(xué)生體會不等式是解決實際問題的有效的數(shù)學(xué)模型。
3、解決問題:通過不等式(組)描述不等關(guān)系解決實際問題,發(fā)展學(xué)生由實際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力。
4、情感態(tài)度:①通過復(fù)習(xí)教學(xué),繼續(xù)強(qiáng)化用數(shù)學(xué)的意識,從而使學(xué)生樂于接觸社會環(huán)境中的數(shù)學(xué)信息,愿意談?wù)撃承?shù)學(xué)話題,能夠在數(shù)學(xué)活動中發(fā)揮積極作用。
②.通過探索,增進(jìn)學(xué)生之間的配合,使學(xué)生敢于面對數(shù)學(xué)活動中的困難,并有克服困難和運(yùn)用知識解決問題的成功體驗,樹立學(xué)好數(shù)學(xué)的自信心。
教學(xué)重點:不等式(組)的解法的規(guī)范性及實際應(yīng)用
教學(xué)難點:不等式組有無解的問題中字母系數(shù)的確定和實際問題中不等式(組)的列出
教學(xué)方法:依托多媒體平臺,啟發(fā)、談?wù)摗⒒犹骄糠ǎ▽W(xué)生討論、教師點撥)、講練結(jié)合。
教學(xué)手段:計算機(jī)多媒體輔助教學(xué)。 教學(xué)時間:1課時
教學(xué)準(zhǔn)備:1.學(xué)生準(zhǔn)備:預(yù)習(xí)教材,了解本節(jié)的知識要點。
2.教師準(zhǔn)備:將學(xué)生分組,選好組長;制作多媒體課件。
教學(xué)設(shè)計
一 情境設(shè)計
導(dǎo)入新課
出示多媒體課件
1、問題情境:問題:某化妝品店老板到廠家選購A、B兩種品牌的化妝品,若銷售1套A品牌的化妝品可獲利30元,銷售1套B品牌的化妝品可獲利20元,根據(jù)市場需求,化妝品店老板決定,購進(jìn)B品牌化妝品的數(shù)量比購進(jìn)A品牌化妝品數(shù)量的2倍還多4套,且B品牌化妝品最多可購進(jìn)40套,這樣化妝品全部售出后,可使總的獲利不少于1200元,問有幾種進(jìn)貨方案?如何進(jìn)貨? 教師:同學(xué)們,如果你是這個化妝品店的老板,你怎么解決進(jìn)貨方案問題? (學(xué)生思考):
教師:如何用數(shù)學(xué)符號表示標(biāo)有下劃線的詞語?應(yīng)該考查我們哪部分知識? 學(xué)生:最多 —— ≤;不少于—— -≥。 教師:我們學(xué)過的哪章知識與它們聯(lián)系最密切?由此我們想到了哪部分知識? 學(xué)生:不等式和不等式組
教師:下面我們就來復(fù)習(xí)有關(guān)這方面的內(nèi)容,“專題復(fù)習(xí)
(二)方程和不等式-----------不等式和不等式”。 (板書課題)
(多媒體出示教學(xué)目標(biāo)。圖略)
二、展示教學(xué)目標(biāo)、教學(xué)重點和難點:(讓學(xué)生學(xué)有目的,學(xué)有依據(jù))
三、回顧知識要點:
1.知識網(wǎng)絡(luò)出示;(使學(xué)生對本節(jié)知識的復(fù)習(xí)內(nèi)容一目了然,從總體把握知識間的內(nèi)在聯(lián)系)
實際問題
3、知識要點復(fù)習(xí)不等關(guān)系不等式不等式的性質(zhì)解不等式解集一元一次不等式一元一次不等式組解法解法數(shù)軸表示解集數(shù)軸表示實際應(yīng)用解集數(shù)軸表示 2.知識要點復(fù)習(xí):(通過提問由學(xué)生回答) ①基本概念復(fù)習(xí)
(澄清基本概念,對知識間的內(nèi)在聯(lián)系更明確。)
3、知識要點復(fù)習(xí)
一、基本概念:
1、不等式:
2、不等號:
3、不等式的解:
4、不等式的解集:
5、解不等式:
6、一元一次不等式:
7、一元一次不等式組:
8、一元一次不等式組的解集:
9、解一元一次不等式組: ②不等式性質(zhì)復(fù)習(xí):(它是解不等式和不等式組的重要依據(jù),特別注意第3條性質(zhì),不等號方向改變問題,提醒學(xué)生,此處易錯,提起注意)
3、知識要點復(fù)習(xí)
二、不等式的性質(zhì):(1)如果a>b,那么a+c>b+c,a-c>b-c不等式的兩邊都加上(或減去)同一個數(shù)或同一個整式,不等號的方向不變。ab?(2)如果a>b,并且c>0,那么ac>bc,cc不等式兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變。(3)如果a>b,并且c
3、知識要點復(fù)習(xí)三,規(guī)律與方法:1,不等式的解法:2,解不等式組的方法:3,不等式的解集在數(shù)軸上的表示:大向右,小向左,有等號是實心,無等號是空心.4,求幾個不等式的解的公共部分的方法和規(guī)律:(1)數(shù)軸法(2)口訣法同大取大同小取小一大一小中間找 ④用一元一次不等式組解決實際問題的步驟:(為解決實際問題提供依據(jù),這是本節(jié)的重點知識,學(xué)生可能會類比前邊復(fù)習(xí)的方程和方程組的知識說出。)
3、知識要點復(fù)習(xí)
5、用一元一次不等式組解決實際問題的步驟:實際問題設(shè)未知數(shù),列不等式(組)數(shù)學(xué)問題(不等式或不等式組)解不等式組實際問題的解答檢驗數(shù)學(xué)問題的解(不等式(組)的解集)
四、典型例題解析:(這一環(huán)節(jié)也是學(xué)生要達(dá)到的知識技能目標(biāo)的重要一環(huán),學(xué)生解題的順利與否,是教師關(guān)注的重點。學(xué)生能夠獨立解出的,關(guān)注其過程是否規(guī)范,思路是否清晰,方法是否得當(dāng)。不能解出的,先由小組合作探究,看是否能找到解題的思路,得出問題的答案;如果仍不能得出,教師加以點撥,引導(dǎo),幫助學(xué)生找到解題思路,得出問題的答案。)
例1.(本題是一元一次不等式的解法的考查,是本節(jié)的基本題型,估計學(xué)生都能獨立解出,可讓中游的學(xué)生板演,這樣解題步驟展現(xiàn)在大家面前,如果規(guī)范,起個示范作用;不規(guī)范,示范改正,起警示作用。把重點放在解題步驟是否規(guī)范上。)
4、典型例題:例1.解一元一次不等式解:3 (x-1) ≤6 –2(x-2)3x –3 ≤6 –2x+43x+2x ≤6+4+35x ≤13x ≤135自然數(shù)解非負(fù)整數(shù)解正整數(shù)解最大解最大整數(shù)解 (右邊的云形圖中是在學(xué)生解完不等式后先后出示的五種特殊情況,這樣進(jìn)
行變式教學(xué),展示了一題多解的典型題目,同時又使學(xué)生鍛煉了仔細(xì)審題的能力。)
4、典型例題:例1.解一元一次不等式解一元一次方程一元一次不解:3 (x-1) = 6 –2(x-2)解:3 (x-1) ≤6 –2(x-2)3x –3 = 6 –2x+43x –3 ≤6 –2x+4等式和一元一次3x+2x =6+4+3方程有何共同點3x+2x ≤6+4+35x =13和不同點?5x ≤x =x≤55 (通過這種一元一次不等式和一元一次方程解法的類比,使學(xué)生明確知識間的內(nèi)在聯(lián)系,同時發(fā)現(xiàn)其中的異同,對兩者的區(qū)別更加清晰)
例2.(考查不等式的變形,解決問題的關(guān)鍵是正確理解不等式的概念和基本性質(zhì)。重點關(guān)注基本性質(zhì)的靈活掌握)
例3.(把平面直角坐標(biāo)系的象限問題轉(zhuǎn)化成不等式組問題,既體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想方法,又見識了不等式組的廣泛應(yīng)用??梢詭蛯W(xué)生回憶坐標(biāo)系的有關(guān)知識。)
4、典型例題:a例2.若a1;b1a③a+b
3、在直角坐標(biāo)系中,P(2x-6,x-5)在第四象限,則x的取值范圍是3
例4.(把不等式中的相等問題出示,體現(xiàn)了相等和不等可以互相轉(zhuǎn)化的數(shù)學(xué)思想。并與數(shù)與式中的乘方問題相聯(lián)系,具有一定的綜合性。)
例5.(借助數(shù)軸確定不等式組的解集,對于解這類題非常有效,學(xué)生容易做錯,特別是是否包括界點問題,有一定難度,讓學(xué)生小組合作探究,共同尋找問題的答案。教師巡視,給有困難小組點撥,指導(dǎo)。)
4、典型例題:x?a?2例
4、(2009涼山)若不等式組集是-1
例題分析:問題5問題分析:本題存在兩個不等關(guān)系,一是購買B品牌化妝品不超過40套;二是兩種化妝品的獲利不少于1200元。根據(jù)這兩個不等關(guān)系,可列不等式組求解。 (學(xué)生寫出解題過程后,教師可出示規(guī)范的解題過程,體現(xiàn)數(shù)學(xué)學(xué)科的嚴(yán)謹(jǐn)性。)
4例題講解:、典型例題:解:設(shè)A品牌化妝品購進(jìn)m套,則B品牌化妝品購進(jìn)(2m+4)套。根據(jù)題意得:解得:16≤m≤18.因為m為正整數(shù),所以m=16,17,18,所以2m+4=
36、
38、40.所以有三種進(jìn)貨方案:(1)A種品牌的化妝品的購進(jìn)16套,B種品牌的化妝品購進(jìn)36套;(1)A種品牌的化妝品的購進(jìn)16套,B種品牌的化妝品購進(jìn)36套;(1)A種品牌的化妝品的購進(jìn)16套,B種品牌的化妝品購進(jìn)36套; (通過方案設(shè)計題的解決,使學(xué)生能夠由實際問題建立數(shù)學(xué)模型,從而增強(qiáng)解決實際問題的能力。)
五、
歸納小結(jié)(先由學(xué)生自己歸納總結(jié)本節(jié)課的收獲,從而把課堂傳授的知識盡快化為學(xué)生的素質(zhì),以培養(yǎng)和增強(qiáng)學(xué)生的歸納總結(jié)能力;然后老師予以補(bǔ)充和歸納,為學(xué)生良好學(xué)習(xí)習(xí)慣的養(yǎng)成繼續(xù)進(jìn)行指導(dǎo)。)
5、歸納小結(jié)你會了嗎?這節(jié)課你學(xué)到了什么?你有什么收獲?你還有什么問題?
六、達(dá)標(biāo)檢測:(在這一環(huán)節(jié),我設(shè)計了幾個有梯度的題目,這樣可使不同層次的學(xué)生都能有所收獲,都能感受到成功的喜悅,使他們“在數(shù)學(xué)上都能有不同的發(fā)展”。)
6.達(dá)標(biāo)檢測(1)若2x=3+k的解集是負(fù)數(shù),那么k的取值范圍是______.K
3、不等式組數(shù)解為(A的最小整)A,-1 B,0 C,2 D,3 9
6.達(dá)標(biāo)檢測
4、躍壯五金商店準(zhǔn)備從寧云機(jī)械廠購進(jìn)甲、乙兩種零件進(jìn)行銷售。若每個甲種零件的進(jìn)價比每個乙種零件的進(jìn)價少2元,且用80元購進(jìn)甲種零件的數(shù)量與用100元購進(jìn)乙種零件的數(shù)量相同。(1)求每個甲種零件、每個乙種零件的進(jìn)價分別為多少元?(2)若該五金商店本次購進(jìn)甲種零件的數(shù)量比購進(jìn)乙種零件的數(shù)量的3倍還少5個,購進(jìn)兩種零件的總數(shù)量不超過95個,該五金商店每個甲種零件的銷售價格為12元,每個乙種零件的銷售價格為15元,則將本次購進(jìn)的甲、乙兩種零件全部售出后,可使銷售兩種零件的總利潤(利潤=售價-進(jìn)價超過371元,通過計算求出躍壯五金商店本次從寧云機(jī)械廠購進(jìn)甲、乙兩種零件有幾種方案?請你設(shè)計出來。 6.達(dá)標(biāo)檢測選做題?若不等式組x?a?01?2x?x?2有解,則a的取?值范圍是(A)。?>-1 ≥-1 ≤1 <1
七、教學(xué)設(shè)計的理論依據(jù)
1.“理論聯(lián)系實際”的原則,聯(lián)系學(xué)生身邊的生活,引導(dǎo)學(xué)生學(xué)習(xí)運(yùn)用理論知識分析、解決實際問題。
2.新課程標(biāo)準(zhǔn)中的“學(xué)生是學(xué)習(xí)的主人”的主體教育思想。
本節(jié)課努力構(gòu)建師生互動、生生互動的新的教學(xué)模式,創(chuàng)設(shè)情境引領(lǐng)教學(xué),引導(dǎo)學(xué)生的合作學(xué)習(xí),讓其在思考討論中自主學(xué)習(xí),真正落實以學(xué)生為中心、以學(xué)生發(fā)展為根本,注重學(xué)生道德和能力的培養(yǎng)。
不等式的課件 篇7
《基本不等式》教學(xué)設(shè)計
基本不等式
開江中學(xué) 魏江蘭
目標(biāo)分析
依據(jù)《新課程標(biāo)準(zhǔn)》對《不等式》學(xué)段的目標(biāo)要求和學(xué)生的實際情況,特確定如下目標(biāo):
1、知識與能力目標(biāo):理解掌握基本不等式,并能運(yùn)用基本不等式解決一些簡單的求最值問題;理解算數(shù)平均數(shù)與幾何平均數(shù)的概念,學(xué)會構(gòu)造條件使用基本不等式;培養(yǎng)學(xué)生探究能力以及分析問題解決問題的能力。
2、過程與方法目標(biāo):按照創(chuàng)設(shè)情景,提出問題→ 剖析歸納證明→ 幾何解釋→ 應(yīng)用(最值的求法、實際問題的解決)的過程呈現(xiàn)。啟動觀察、分析、歸納、總結(jié)、抽象概括等思維活動,培養(yǎng)學(xué)生的思維能力,體會數(shù)學(xué)概念的學(xué)習(xí)方法,通過運(yùn)用多媒體的教學(xué)手段,引領(lǐng)學(xué)生主動探索基本不等式性質(zhì),體會學(xué)習(xí)數(shù)學(xué)規(guī)律的方法,體驗成功的樂趣。
3、情感與態(tài)度目標(biāo):通過問題情境的設(shè)置,使學(xué)生認(rèn)識到數(shù)學(xué)是從實際中來,培養(yǎng)學(xué)生用數(shù)學(xué)的眼光看世界,通過數(shù)學(xué)思維認(rèn)知世界,從而培養(yǎng)學(xué)生善于思考、勤于動手的良好品質(zhì)。
教學(xué)重、難點分析
重點:應(yīng)用數(shù)形結(jié)合的思想理解基本不等式,并從不同角度探索基本不等式ab?a?b的證明過程及應(yīng)用。 2難點:
1、基本不等式成立時的三個限制條件(簡稱一正、二定、三相等);
2、利用基本不等式求解實際問題中的最大值和最小值。
教法分析
本節(jié)課采用觀察——感知——抽象——歸納——探究;啟發(fā)誘導(dǎo)、講練結(jié)合的教學(xué)方法,以學(xué)生為主體,以基本不等式為主線,從實際問題出發(fā),放手讓學(xué)生探究思索。以現(xiàn)代信息技術(shù)多媒體課件作為教學(xué)輔助手段,加深學(xué)生對基本不等式的理解。
《基本不等式》教學(xué)設(shè)計
教學(xué)準(zhǔn)備
多媒體課件、板書
教學(xué)過程
教學(xué)過程設(shè)計以問題為中心,以探究解決問題的方法為主線展開。這種安排強(qiáng)調(diào)過程,符合學(xué)生的認(rèn)知規(guī)律,使數(shù)學(xué)教學(xué)過程成為學(xué)生對知識的再創(chuàng)造、再發(fā)現(xiàn)的過程,從而培養(yǎng)學(xué)生的創(chuàng)新意識。 具體過程安排如下:
一、創(chuàng)設(shè)情景,提出問題;
設(shè)計意圖:數(shù)學(xué)教育必須基于學(xué)生的“數(shù)學(xué)現(xiàn)實”,現(xiàn)實情境問題是數(shù)學(xué)教學(xué)的平臺,數(shù)學(xué)教師的任務(wù)之一就是幫助學(xué)生構(gòu)造數(shù)學(xué)現(xiàn)實,并在此基礎(chǔ)上發(fā)展他們的數(shù)學(xué)現(xiàn)實.基于此,設(shè)置如下情境: 上圖是在北京召開的第24屆國際數(shù)學(xué)家大會的會標(biāo),會標(biāo)是根據(jù)中國古代數(shù)學(xué)家趙爽的弦圖設(shè)計的,顏色的明暗使它看上去像一個風(fēng)車,代表中國人民熱情好客。
[問]你能在這個圖中找出一些相等關(guān)系或不等關(guān)系嗎?
本背景意圖在于利用圖中相關(guān)面積間存在的數(shù)量關(guān)系,抽象出不等式a2?b2?2ab。在此基礎(chǔ)上,引導(dǎo)學(xué)生認(rèn)識基本不等式。
二、抽象歸納:
一般地,對于任意實數(shù)a,b,有a2?b2?2ab,當(dāng)且僅當(dāng)a=b時,等號成立。 [問] 你能給出它的證明嗎?
證明:因為a2?b2?2ab?(a?b)2?0,即a2?b2?2ab.(當(dāng)a?b時取等號)
特別地,當(dāng)a>0,b>0時,在不等式a2?b2?2ab中,以a、b分別代替a、b,得到什么?
設(shè)計依據(jù):類比是學(xué)習(xí)數(shù)學(xué)的一種重要方法,此環(huán)節(jié)不僅讓學(xué)生理解了基本不等式不等式的來源,突破了重點和難點,而且感受了其中的函數(shù)思想,為今后學(xué)習(xí)奠定基礎(chǔ).
《基本不等式》教學(xué)設(shè)計
答案: ab?a?b(a,b?0)。 2你能用不等式的性質(zhì)直接推導(dǎo)這個不等式嗎? 證明:(分析法):由于a,b?R?,于是要證明 a?b?2ab,
只要證明 a?b?2即證
2ab,
a?b?2ab?0,即 (a?b)2?0,
所以a?b?ab,(當(dāng)a?b時取等號)
【歸納總結(jié)】
如果a,b都是正數(shù),那么ab?a?b,當(dāng)且僅當(dāng)a=b時,等號成立。 2a?b稱為a,b的算術(shù)平均數(shù),ab稱2我們稱此不等式為基本不等式。 其中為a,b的幾何平均數(shù)。
文字語言敘述:兩個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)。
探究基本不等式的幾何意義:借助初中階段學(xué)生熟知的幾何圖形,引導(dǎo)學(xué)生探究ab?a?b(a,b?0)2的幾何解釋,通過數(shù)形結(jié)合,賦予不等式不等式ab?a?b(a,b?0)2幾何直觀。進(jìn)一步領(lǐng)悟不等式中等號成立的條件。
如圖:AB是圓的直徑,點C是AB上一點,CD⊥AB,AC=a,CB=b,CD
D?ab
aba?b2abOCAB幾何解釋實質(zhì)可認(rèn)為是:在同一半圓中,半徑不小于半弦(直徑是最長的弦);或者認(rèn)為是,直角三角形斜邊的一半不小于斜邊上的高。
《基本不等式》教學(xué)設(shè)計
4.應(yīng)用舉例,鞏固提高
我們可以用兩個重要不等式來解決什么樣的問題呢?
例1(1)用籬笆圍一個面積為100平方米的矩形菜園,問這個矩形的長、寬各為多少時,所用籬笆最短,最短的籬笆是多少? (2)一段長為36米的籬笆圍成一個矩形菜園,問這個矩形的長、寬為多少時,菜園的面積最大,最大面積是多少?
(通過例1的講解,總結(jié)歸納利用基本不等式求最值問題的特征,實現(xiàn)積與和的轉(zhuǎn)化) 對于(1)若(2)若,
(定值),則當(dāng)且僅當(dāng)(定值),則當(dāng)且僅當(dāng)
時,時,
有最小值有最大值
; .
(鼓勵學(xué)生自己探索推導(dǎo),不但可使他們加深基本不等式的理解,還鍛煉了他們的思維,培養(yǎng)了勇于探索的精神.)
1例 2:當(dāng)x?0時,求y?x?的最小值?x1變式1:當(dāng)x?0時,y?x?有最值嗎?
x1變式2:當(dāng)x?1時,y?x?有最值嗎?
x通過例2及其變式引導(dǎo)學(xué)生領(lǐng)會運(yùn)用基本不等式的三個限制條件(一正二定三相等)在解決最值問題中的作用,提升解決問題的能力,體會方法與策略.
練一練(自主練習(xí)):課本練習(xí) 5.歸納小結(jié),反思提高
《基本不等式》教學(xué)設(shè)計
基本不等式:若若
,則,則
(當(dāng)且僅當(dāng)(當(dāng)且僅當(dāng)
時,等號成立) 時,等號成立)
(1)基本不等式的幾何解釋(數(shù)形結(jié)合思想);(2)運(yùn)用基本不等式解決簡單最值問題的基本方法(一正二定三相等). 6.布置作業(yè),課后延拓
(1)基本作業(yè):課本P100習(xí)題組
1、
2、3題
(2)拓展作業(yè):請同學(xué)們課外到閱覽室或網(wǎng)上查找基本不等式的其他幾何解釋,整理并相互交流.
基本不等式教學(xué)設(shè)計
《等式的性質(zhì)》教學(xué)設(shè)計
《等式的性質(zhì)》教學(xué)設(shè)計
等式性質(zhì)教學(xué)設(shè)計(共8篇)
等式的基本性質(zhì)的課后教學(xué)反思
不等式的課件 篇8
一、教學(xué)目標(biāo):
(一)知識與能力目標(biāo):(課件第2張)
1.體會解不等式的步驟,體會比較、轉(zhuǎn)化的作用。
2.學(xué)生理解、鞏固一元一次不等式的解法.
3.用數(shù)軸表示解集,加深對數(shù)形結(jié)合思想的進(jìn)一步理解和掌握。
4.在解決實際問題中能夠體會將文字語言轉(zhuǎn)化成數(shù)學(xué)語言,學(xué)會用數(shù)學(xué)語言表示實際的數(shù)量關(guān)系。
(二)過程與方法目標(biāo):
1.介紹一元一次不等式的概念。
2.通過對一元一次方程的解法的復(fù)習(xí)和對不等式性質(zhì)的利用,導(dǎo)入對解不等式的討論。
3.學(xué)生體會通過綜合利用不等式的概念和基本性質(zhì)解不等式的方法。
4.學(xué)生將文字表達(dá)轉(zhuǎn)化為數(shù)學(xué)語言,從而解決實際問題。
5.練習(xí)鞏固,將本節(jié)和上節(jié)內(nèi)容聯(lián)系起來。
(三)情感、態(tài)度與價值目標(biāo):(課件第3張)
1.在教學(xué)過程中,學(xué)生體會數(shù)學(xué)中的比較和轉(zhuǎn)化思想。
2.通過類比一元一次方程的解法,從而更好的掌握一元一次不等式的解法,樹立辯證統(tǒng)一思想。
3.通過學(xué)生的討論,學(xué)生進(jìn)一步體會集體的作用,培養(yǎng)其集體合作的精神。
4.通過本節(jié)的學(xué)習(xí),學(xué)生體會不等式解集的奇異的數(shù)學(xué)美。
二、教學(xué)重、難點:
1.掌握一元一次不等式的解法。
2.掌握解一元一次不等式的階梯步驟,并能準(zhǔn)確求出解集。
3.能將文字?jǐn)⑹鲛D(zhuǎn)化為數(shù)學(xué)語言,從而完成對應(yīng)用問題的解決。
三、教學(xué)突破:
教材中沒有給出解法的一般步驟,所以在教學(xué)中要注意讓學(xué)生經(jīng)歷將所給的不等式轉(zhuǎn)化為簡單不等式的過程,并通過學(xué)生的討論交流使學(xué)生經(jīng)歷知識的形成和鞏固過程。在解不等式的過程中,與上節(jié)課聯(lián)系起來,重視將解集表示在數(shù)軸上,從而指導(dǎo)學(xué)生體會用數(shù)形結(jié)合的方法解決問題。在研究中,鼓勵學(xué)生用多種方法求解,從而鍛煉他們活躍的思維。
四、教 具:計算機(jī)輔助教學(xué).
五、教學(xué)流程:
(一)、復(fù)習(xí):
教學(xué)環(huán)節(jié)
教 師 活 動
學(xué) 生 活 動
設(shè) 計 意 圖
2023一元二次不等式課件
今天筆者為大家?guī)砹艘黄P(guān)于一元二次不等式課件的精彩文章,歡迎保存本網(wǎng)站,并時刻關(guān)注我們的最新動態(tài)。每位教師都應(yīng)該在授課前準(zhǔn)備充分的教案課件,只要在課前認(rèn)真編寫好教案,便可以有效地促進(jìn)學(xué)校的不斷發(fā)展。教案是推進(jìn)教育教學(xué)創(chuàng)新的有力工具。
一元二次不等式課件 篇1
《一元二次不等式及其解法》
教 學(xué) 設(shè) 計 說 明
《一元二次不等式及其解法》教學(xué)設(shè)計說明
一.教學(xué)內(nèi)容分析:
1.本節(jié)課內(nèi)容在整個教材中的地位和作用.
必修五第三章不等式第二節(jié)一元二次不等式及其解法共有三個課時,本節(jié)課是第一課時,教學(xué)內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性.一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續(xù)和深化,對已學(xué)習(xí)過的集合知識的鞏固和運(yùn)用具有重要的作用.許多問題的解決都會借助一元二次不等式的解法.因此,一元二次不等式的解法在整個高中數(shù)學(xué)教學(xué)中具有很強(qiáng)的基礎(chǔ)性,體現(xiàn)出很大的工具作用. 2.教學(xué)目標(biāo)定位.
根據(jù)教學(xué)大綱要求、高考考試大綱說明、新課程標(biāo)準(zhǔn)精神、高一學(xué)生已有的知識儲備狀況和學(xué)生心理認(rèn)知特征,我確定了四個層面的教學(xué)目標(biāo).第一層面是面向全體學(xué)生的知識目標(biāo):熟練掌握一元二次不等式的解法,正確理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系.第二層面是能力目標(biāo),培養(yǎng)學(xué)生運(yùn)用數(shù)形結(jié)合與分類討論等數(shù)學(xué)思想方法解決問題的能力,提高運(yùn)算和作圖能力.第三層面是德育目標(biāo),通過對解不等式過程中等與不等對立統(tǒng)一關(guān)系的認(rèn)識,向?qū)W生逐步滲透辨證唯物主義思想.第四層面是情感目標(biāo),在教師的啟發(fā)引導(dǎo)下,學(xué)生自主探究,交流討論,培養(yǎng)學(xué)生的合作意識和創(chuàng)新精神. 3.教學(xué)重點、難點確定.
本節(jié)課是在復(fù)習(xí)了一元二次方程和二次函數(shù)之后,利用二次函數(shù)的圖象研究一元二次不等式的解法.只要學(xué)生能夠理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系,并利用其關(guān)系解不等式即可.因此,我確定本節(jié)課的教學(xué)重點為一元二次不等式的解法,關(guān)鍵是一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系. 二.教法學(xué)法分析:
數(shù)學(xué)是發(fā)展學(xué)生思維、培養(yǎng)學(xué)生良好意志品質(zhì)和美好情感的重要學(xué)科,在教學(xué)中,我們不僅要使學(xué)生獲得知識、提高解題能力,還要讓學(xué)生在教師的啟發(fā)引導(dǎo)下學(xué)會學(xué)習(xí)、樂于學(xué)習(xí),感受數(shù)學(xué)學(xué)科的人文思想,使學(xué)生在學(xué)習(xí)中培養(yǎng)堅強(qiáng)的意志品質(zhì)、形成良好的道德情感.為了更好地體現(xiàn)課堂教學(xué)中“教師為主導(dǎo),學(xué)生為主體”的教學(xué)關(guān)系和“以人為本,以學(xué)定教”的教學(xué)理念,在本節(jié)課的教學(xué)過程中,將緊緊圍繞教師組織——啟發(fā)引導(dǎo),學(xué)生探究——交流發(fā)現(xiàn),組織開展教學(xué)活動.我設(shè)計了①回憶舊知,服務(wù)新知,②創(chuàng)設(shè)情境,提出問題,③合作交流,探究新知,④數(shù)學(xué)運(yùn)用,深化認(rèn)知,⑤練習(xí)檢測,反饋新知,⑥談?wù)勈斋@,強(qiáng)化思想,⑦布置作業(yè),實踐新知,環(huán)環(huán)相扣、層層深入的教學(xué)環(huán)節(jié),在教學(xué)中注意關(guān)注整個過程和全體學(xué)生,充分調(diào)動學(xué)生積極參與教學(xué)過程的每個環(huán)節(jié). 三.教學(xué)過程分析:
(一)聯(lián)系舊知,構(gòu)建新知
設(shè)置一系列的問題喚起學(xué)生對舊知識的回憶. 問題1:一元二次方程的解法有哪些呢?
(意圖:讓學(xué)生回顧一元二次方程的解法,為解一元二次不等式做準(zhǔn)備.)
問題2:同學(xué)們還記得二次函數(shù)嗎?二次函數(shù)的形式是怎樣的?你記得二次函數(shù)的性質(zhì)嗎?
(意圖:引導(dǎo)學(xué)生從圖象的角度出發(fā),并啟發(fā)學(xué)生二次函數(shù)的圖象是一條拋物線,其開口方向由二次項系數(shù)決定,為突出重點做準(zhǔn)備)
(二)創(chuàng)設(shè)情景,提出問題
1、讓學(xué)生動手畫直角坐標(biāo)系,然后沿x軸方向上下對折這張紙,觀察它們的值有什么特點?
22、請在剛才的坐標(biāo)系中畫出y=x-7x+6的圖像 問題1:
(1)x軸上方有無圖像?若有請用紅線描出。這部分圖像對應(yīng)的y值如何?(2)x軸下方有無圖像?若有請用藍(lán)線描出。這部分圖像對應(yīng)的y值如何?(3)紅線與藍(lán)線有無交點?若有請用綠色標(biāo)出。
(4)你能找出上述各種情況的x的取值范圍嗎?請在圖中寫出。
問題2:你能說一說這兩個不等式有何共同特點么?(1)含有一個未知數(shù)x;
(2)未知數(shù)的最高次數(shù)為2。通過兩問題得出一元二次不等式的概念:一般地,只含有一個未知數(shù),且未知數(shù)的最高次數(shù)為2的不等式,叫做一元二次不等式。
問題3:判斷下列式子是不是一元二次不等式?
問題4:一元二次函數(shù)、一元二次方程之間有何聯(lián)系呢?
一元二次方程的解即一元二次函數(shù)圖象與x軸交點的橫坐標(biāo),也就是說方程的解即對應(yīng)函數(shù)的零點。
問題5:一元二次不等式如何求解呢?
(三)合作交流,探究新知
1. 探究一元二次不等式x2?x?2?0的解.
容易知道:一元二次方程x2?x?2?0的有兩個實數(shù)根:x1??1或x2?2. 二次函數(shù)y?x2?x?2與x軸有兩個交點:??1,0?和?2,0?. 思考1:觀察圖象一元二次方程的根與二次函數(shù)之間有什么關(guān)系? 思考2:觀察圖象,當(dāng)x為何值時,y?0;
當(dāng)x為何值時,y?0; 當(dāng)x為何值時,y?0.
(設(shè)計意圖 : ①體現(xiàn)學(xué)生的主體性;②有利于加強(qiáng)對圖象的認(rèn)識,從而加強(qiáng)數(shù)形結(jié)合的數(shù)學(xué)思想 ;③有利于加強(qiáng)學(xué)生理解一元二次不等式的解相關(guān)的三個因素;④為歸納解一元二次不等式做好準(zhǔn)備.根據(jù)前面探討的問題引導(dǎo)學(xué)生歸納一元二次不等式的解.)
2. 探究一元二次不等式ax2?bx?c?0或ax2?bx?c?0?a?0?的解法. 組織討論:從上面的例子出發(fā),綜合學(xué)生的意見,可以歸納出確定一元二次不等式的解集,關(guān)鍵要考慮:
2拋物線y?ax?bx?c與x軸的相關(guān)位置的情況,也就是一元二次方程2ax2?bx?c=0的根的情況,而一元二次方程根的情況是由判別式??b?4ac三 3 種取值情況(??0,??0,??0)來確定.
(設(shè)計意圖:這里我將運(yùn)用多媒體圖標(biāo)的形式來展現(xiàn)出其解法思路,學(xué)生有一個完整的邏輯思維,讓學(xué)生在探究中建立知識間的聯(lián)系,體會數(shù)形結(jié)合,強(qiáng)調(diào)突出本節(jié)的難點.)
(四)數(shù)學(xué)運(yùn)用,深化認(rèn)知.
2例1.求不等式2x?3x?2?0的解集. 2變式為:求不等式2x?3x?2?0的解集.
2例2.解不等式?x?2x?3?0.
(設(shè)計意圖:先讓學(xué)生來解答例題,若教師巡視、指導(dǎo),講評學(xué)生完成情況,尋找學(xué)生中的閃光點,給予熱情表揚(yáng).)總結(jié):
解一元二次不等式的步驟:
一化:化二次項前的系數(shù)為正(a>0).二判:判斷對應(yīng)方程的根.三求:求對應(yīng)方程的根.四畫:畫出對應(yīng)函數(shù)的圖象.五解集:根據(jù)圖象寫出不等式的解集.(五)練習(xí)檢測,鞏固收獲
(設(shè)計意圖:為了鞏固和加深一元二次不等式的解法,讓學(xué)生學(xué)以致用,接下來及時組織學(xué)生進(jìn)行課堂練習(xí).然后就學(xué)生在解題中出現(xiàn)的問題共同糾正.)
(六)歸納小結(jié),強(qiáng)化思想
設(shè)計意圖:梳理本節(jié)課的知識點,總結(jié)一元二次不等式解法的步驟:“一化,二判,三求根,四畫圖,五寫解集”的口訣來幫助學(xué)生記憶和歸納,讓學(xué)生掌握嚴(yán)謹(jǐn)?shù)淖鲱}方法,知曉本節(jié)課的重難點.
(七)布置作業(yè),拓展延伸
必做題:課本第80頁習(xí)題A組 1,2.選做題:(1)若關(guān)于m的一元二次方程x
2?(m?1)x?m?0有兩個不相 等的實數(shù)根,求m的取值范圍.2(2)已知不等式x?ax?b?0的解集為x2?x?3?,求a,b的
?值.(設(shè)計意圖:以作業(yè)的鞏固性和發(fā)展性為出發(fā)點,我設(shè)計了必做題和選做題,必做題是對本節(jié)課內(nèi)容的反饋,選做題是對本節(jié)課知識的延伸,整體的設(shè)計意圖是反饋教學(xué),鞏固提高.)四.教學(xué)總結(jié)
本節(jié)課的所有內(nèi)容以習(xí)題的形式展現(xiàn)給學(xué)生,學(xué)生始終在解題中探究,在解題中發(fā)現(xiàn),學(xué)生參與教學(xué)的全過程,成為課堂教學(xué)的主體和學(xué)習(xí)的主人,而老師只須時刻關(guān)注學(xué)生的活動過程,不時給予引導(dǎo),及時糾正.
一元二次不等式課件 篇2
高中數(shù)學(xué)《一元二次不等式的解法(2)》教案
一、教學(xué)目標(biāo)
【知識與技能】
掌握求解一元二次不等式的簡單方法,能正確求解一元二次不等式的解集。
【過程與方法】
在探究一元二次不等式的解法的過程中,提升邏輯推理能力。
【情感、態(tài)度與價值觀】
感受數(shù)學(xué)知識的前后聯(lián)系,提升學(xué)習(xí)數(shù)學(xué)的熱情。
二、教學(xué)重難點
【重點】一元二次不等式的解法。
【難點】一元二次不等式的解法的探究過程。
三、教學(xué)過程
(一)導(dǎo)入新課
回顧一元二次不等式的一般形式,組織學(xué)生舉例一些簡單的一元二次不等式。
提問:如何求解?引出課題。
(二)講解新知
結(jié)合課前回顧的一元二次不等式的一般形式,對比之前所學(xué)內(nèi)容,引導(dǎo)學(xué)生發(fā)現(xiàn)其與一元二次方程和二次函數(shù)的共同特點。
一元二次不等式課件 篇3
新課程理念下的教學(xué)更多的關(guān)注學(xué)生自主探究、關(guān)注學(xué)生的個性發(fā)展,鼓勵學(xué)生勇于提出問題,培養(yǎng)學(xué)生思維的批評性。在課堂上學(xué)生往往會提出讓老師感到“意外”的問題,我在平時的教學(xué)中重視對“課堂意外預(yù)案”的探索和思考,備課時盡量設(shè)想課堂中可能會出現(xiàn)的各種情況,做到有備無患,以免在課堂中學(xué)生提出讓自己出乎意料的問題,使自己陷入被動尷尬境地。結(jié)合以往經(jīng)驗,在本節(jié)課,我提出兩個“意外預(yù)案”。
1、學(xué)生在做課本練習(xí)1(x+2)(x-3)>0時,可能會問到轉(zhuǎn)化為不等式組{或{求解對不對。學(xué)生提出的問題,想法非常好,應(yīng)給予肯定和鼓勵,這與下節(jié)簡單分式不等式和高次不等式的解法有關(guān),是解不等式的另一種解法——等價轉(zhuǎn)化法,不在本節(jié)課之列。
2、根據(jù)以往的經(jīng)驗,在解(x-1)(x+2)>1一類的不等式的時候,由于受方程(x+1)(x+2)=0可轉(zhuǎn)化為x-1=0或x+2=0求解的影響,有可能會出現(xiàn)將不等式轉(zhuǎn)化為不等式組{來求解的錯誤做法,教師要關(guān)注學(xué)生,及時發(fā)現(xiàn)問題并給予糾正,指出上面的轉(zhuǎn)化不是等價轉(zhuǎn)化。
以上是我對本節(jié)課的一些粗淺的認(rèn)識和構(gòu)想,如有不妥之處,懇請各位專家、各位同仁批評指正。謝謝大家!
一元二次不等式課件 篇4
一、教材分析
1、地位和作用。本課是五年制高等師范教材南京大學(xué)出版社《數(shù)學(xué)》教材第一冊第二章第二節(jié)的教學(xué)內(nèi)容,從知識結(jié)構(gòu)看:它是一元一次不等式的延續(xù)和拓展,又是以后研究函數(shù)的定義域、值域等問題的重要工具,起到承前啟后的作用;
從思想層次上看:它涉及到數(shù)形結(jié)合、分類轉(zhuǎn)化等數(shù)學(xué)思想方法,在整個教材中有很強(qiáng)的基礎(chǔ)性。
2、教材內(nèi)容剖析。本節(jié)課的主要內(nèi)容是通過二次函數(shù)的圖像探究一元二次不等式的解法。教材中首先復(fù)習(xí)引入了“三個一次”的關(guān)系,然后依舊帶新,揭示“三個二次”的關(guān)系,其次通過變式例題討論了△=0和△
3、重難點剖析。重點:一元二次不等式的解法。難點:一元二次方程、一元二次不等式、二次函數(shù)的關(guān)系。難點突破:
(1)教師引導(dǎo),學(xué)生自主探究,分組討論。
(2)借助多媒體直觀展示,數(shù)形結(jié)合。
(3)采用由簡單到復(fù)雜,由特殊到一般的教學(xué)策略。
二、目的分析
知識目標(biāo):掌握一元二次不等式的解法,理解“三個二次”之間的關(guān)系
能力目標(biāo):培養(yǎng)學(xué)生“從形到數(shù)”的轉(zhuǎn)化能力,由具體到抽象再到具體,從特殊到一般的歸納概括能力。
情感目標(biāo):在自主探究與討論交流過程中,培養(yǎng)學(xué)生的合作意識。
三、教法分析
教法:“問題串”解決教學(xué)法
以“一串問題”為出發(fā)點,指導(dǎo)學(xué)生“動腦、動手、動眼、動口”,參與知識的形成過程,注重學(xué)生的內(nèi)在發(fā)展。
學(xué)法:合作學(xué)習(xí)(1)以問題為依托,分組探究,合作交流學(xué)習(xí)。(2)以現(xiàn)有認(rèn)知結(jié)構(gòu)為依托,指導(dǎo)學(xué)生用類比方法建構(gòu)新知,用化歸思想解決問題。
四、過程分析
本節(jié)課的教學(xué),設(shè)計了四個教學(xué)環(huán)節(jié):
創(chuàng)設(shè)情景、提出問題
問題1:用一根長為10m的繩子能圍成一個面積大于6m2的矩形嗎?“數(shù)學(xué)來源于生活,應(yīng)用于生活”,首先,以生活中的一個實際問題為背景切入,通過建立簡單的數(shù)學(xué)模型,抽象出一個一元二次不等式,引入課題。
設(shè)計意圖:激發(fā)學(xué)生學(xué)習(xí)興趣,體現(xiàn)數(shù)學(xué)的科學(xué)價值和使用價值。
自主探究,發(fā)現(xiàn)規(guī)律
問題2:解下列方程和不等式。①2x—4=0②2x—4>0③2x—4
歸納、類比法是我們發(fā)現(xiàn)問題、尋求規(guī)律,揭示問題本質(zhì)最常用的方法之一。尋求一元二次不等式的解法,首先從一元一次不等式的解法著手。展示問題2。學(xué)生:用等式和不等式的基本性質(zhì)解題。教師:還有其他的解決方法嗎?展示問題3。
問題3:畫出一次函數(shù)y=2x—4的圖像,觀察圖像,縱坐標(biāo)y=0、y>0、y
學(xué)生:發(fā)現(xiàn)可以借用圖像解題。此問題揭示了“三個一次”的關(guān)系。
設(shè)計意圖:為后面學(xué)習(xí)二次不等式的解法提供鋪墊。
問題4:用圖像法能不能解決一元二次不等式的解呢?已知二次函數(shù)y=x2—2x—8。
(1)求出此函數(shù)與x軸的交點坐標(biāo)。
(2)畫出這個二次函數(shù)的草圖。
(3)在拋物線上找到縱坐標(biāo)y>0的點。
(4)縱坐標(biāo)y>0(即:x2—2x—8>0)的點所對應(yīng)的橫坐標(biāo)x取哪些數(shù)呢?
(5)二次函數(shù)、二次方程、二次不等式的關(guān)系是什幺?
教師:展示問題4。此環(huán)節(jié),要注意下面幾個問題:
(1)啟發(fā)引導(dǎo)學(xué)生運(yùn)用歸納、類比的方法,組織學(xué)生分組討論,自主探究。(2)及時解決學(xué)生的疑點,實現(xiàn)師生合作。(3)先讓學(xué)生自己思考,最后教師和學(xué)生一起歸納步驟。(求根—畫圖—找解),抓住問題本質(zhì),畫圖可省去y軸。教師抓住時機(jī),展示例題1,鞏固方法(△>0的情況),規(guī)范步驟,板書做題步驟,起到示范的作用。設(shè)計意圖:運(yùn)用“解決問題”的教學(xué)方法,使每位學(xué)生參與知識的形成過程,體現(xiàn)了教師主導(dǎo)學(xué)生主體的地位。
變式提問,啟發(fā)誘導(dǎo)
方程:ax2+bx+c=0的解情況函數(shù):y=ax2+bx+c的圖象
不等式的解集
ax2+bx+c>0ax2+bx+c
⊿>0
⊿=0
⊿
教師:展示例題2(1)—x2+x+6≥0(2)x2—4x+40。
學(xué)生:嘗試通過畫圖求解。
此環(huán)節(jié)要注意:引導(dǎo)學(xué)生把不熟悉的問題轉(zhuǎn)化為熟悉的問題解決;對于△=0,△
設(shè)計意圖:通過探索、嘗試的過程,培養(yǎng)了學(xué)生大膽猜想,勇于探索的精神。
自我嘗試,反饋小結(jié)。
教師:展示練習(xí)題,把學(xué)生分成兩個小組,要求當(dāng)堂完成,看哪個組做的好做的快。教師對出現(xiàn)的問題及時反饋。同時,進(jìn)一步啟發(fā)引導(dǎo)學(xué)生將特殊、具體問題的結(jié)論推廣到一般化。展示表格。
學(xué)生:填寫內(nèi)容。
學(xué)生理解了“三個二次”的關(guān)系,得到一般結(jié)論應(yīng)該是水到渠成。最后,教師做本節(jié)課的小結(jié),布置作業(yè)。設(shè)計意圖:激發(fā)了學(xué)生的求知欲,培養(yǎng)了學(xué)生的主動參與意識。
五、評價分析
1、重視學(xué)生學(xué)習(xí)的結(jié)果評價,更重視過程評價。
2、本節(jié)課貫徹了新課程的理念,教學(xué)形式開放,體現(xiàn)了“教師主導(dǎo),學(xué)生主體”的教學(xué)關(guān)系。以上是我對本節(jié)課的粗淺認(rèn)識,如有不妥之處,懇求各位專家、各位同仁批評指正。
一元二次不等式課件 篇5
一元二次不等式及其解法教學(xué)反思
塘沽中專-----戚衛(wèi)民
我在13級電子班教室上了一節(jié)課,由此我進(jìn)行了深刻的反思:
我教的是一個普通中專的班,學(xué)生基礎(chǔ)比較差。因此,第一,課前組織很重要,給 學(xué)生 做思想 工 作,這 節(jié) 課很重要,是大家表現(xiàn) 自己 的好機(jī)會,同 學(xué) 們應(yīng)該遵守紀(jì)律,積極發(fā)言,展示 自己 班良好的素質(zhì)和班風(fēng)。這樣學(xué)生激情會高一些,自然課堂也會活躍一些。第二,把握本節(jié)課的難點,課前做好鋪墊。一元二次不等式及其解法看上去好像很簡單,但是它需要同學(xué)們有很好的基礎(chǔ),解一元二次方程的基礎(chǔ)。而學(xué)生在初中只是熟悉用求根公式解方程,對于十字相乘法分解因式只有極個別會,對于這種情形我在課前把一元二次方程的解法好好的補(bǔ)了一下。還有二次函數(shù)的圖象畫法,也好好的復(fù)習(xí)一下,加深鞏固,突破難點,使得這節(jié)課能順利進(jìn)行下去。
盡管這樣我的課堂效果也不是很好,這是為什么呢?我陷入迷茫之中可能是我的學(xué)生不適應(yīng)教學(xué)方式?可能是學(xué)生緊張?弄錯?后來想想可能我沒有好好地備學(xué)生。我覺得這節(jié)課的教案應(yīng)該這樣設(shè)計,可能會更好:課前引入去掉,應(yīng)該在復(fù)習(xí)時讓學(xué)生解一元二次方程,畫二次函數(shù)圖象,這樣學(xué)生容易進(jìn)入狀態(tài)。然后直接導(dǎo)入新課,有特殊到 一般,由具體到抽象,逐步揭開解一元二次不等式的方法。給出例題應(yīng)由淺入深,先給出形如這樣的:(x-2)(x-3)
讓他們好求方程的根,從而畫圖求不等式的解集,為后續(xù)例題做鋪墊。作為教師我應(yīng)該很規(guī)范的板書。以給學(xué)生榜樣。然后給出形如這樣的不等式:x2+3x-4≥0 由上道題的啟示他們自然會去驗證Δ,用十字相乘法求一元二次方程x2+3x-4=0 的根,畫函數(shù)的圖像,從而求出解集。從這兩道題讓他們自己歸納一下解一元二次不等式的步驟,再出課本習(xí)題,這樣他們一定可以解出來,此種做法可以提高他們的解興趣,把課堂氣氛變得濃烈一些。接著給出-x2-3x+4>0提醒他們要把二項式系數(shù)變?yōu)檎龜?shù)。用課本課后題做練習(xí)。再給出x2-3x+4>0這種Δ0Δ=0的情形。根據(jù)二次函數(shù)的圖像學(xué)生應(yīng)該可以解決。
一節(jié)課究竟要解決什么問題,怎樣解決這是課堂的首要。貼近學(xué)生實際,層層深入,各個擊破,幫學(xué)生排憂解難,同時發(fā)揮他們的主觀能動性,讓學(xué)感受到自己是課堂的主人,這是教師課堂的主旨。還有一點非常重要,老師必須要有很強(qiáng)的親和力。其實親和力的前提是要有愛心,有愛才會親。一個孩子在班上是六十分之一,但在一個家庭是百分百,所以我覺得我們應(yīng)該向愛我們自己的孩子一樣去愛他們,讓學(xué)生感受到我們的關(guān)懷,怎樣做到愛學(xué)生,我覺得自己以后可這樣努力 :記住每一個學(xué)生的名字,在路上和他們打招呼,下課和他們談?wù)勑?,說笑說笑,不 要說一些傷學(xué)生人 格的話語,適當(dāng)鼓勵他們,人心都是肉長的呀,他們會感覺得到的。成績差的學(xué)生其實是非常敏感的,也是很容易叛逆的,在任何時候老師都要想到自己是成年人,是長者,要站在一定的高度考慮我們的學(xué)生,設(shè)身處地為他們想象。這樣就不會有芥蒂,沖突,代溝。這節(jié)課我比較真實展現(xiàn)我的學(xué)生和我自己。無論從哪一方面,業(yè)務(wù)能力,管理能力,對學(xué)生的掌控能力,課堂的把握能力。我都有待學(xué)習(xí)提高。我會努力的!
一元二次不等式課件 篇6
《一元二次不等式解法》說課稿范文
一、 教材簡析
1、地位和價值
一元二次不等式解法是高中數(shù)學(xué)新教材第一冊(上)第一章第5節(jié)的內(nèi)容。在此之前,學(xué)生在初中已學(xué)習(xí)了一元一次不等式,一元一次不等式組,一元二次方程,二次函數(shù),絕對值不等式(高中),這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。一元二次不等式解法是解不等式的基礎(chǔ)和核心,它在高中代數(shù)中起著廣泛應(yīng)用的工具作用,蘊(yùn)藏著“數(shù)與形結(jié)合”的重要思想方法,它已成為代數(shù)、三角、解析幾何交匯綜合的重要部分,是高考綜合題的熱點。
2、教材結(jié)構(gòu)簡介
教材首先以一個一次函數(shù)圖象的應(yīng)用解一元一次不等式,引出圖象法,然后給出一個二次函數(shù),通過具體畫圖象,提出問題。再一般地給出了二次函數(shù)圖象解二次不等式的結(jié)論。課本精選了四個解不等式的例題,并配有相應(yīng)的練習(xí)和習(xí)題。它的后一小節(jié)為解可轉(zhuǎn)化為一元二次不等式的分式不等式。
二、 教育教學(xué)觀
1、 學(xué)生為主體,重學(xué)生參與學(xué)習(xí)活動。
2、 重過程。按照認(rèn)知規(guī)律及學(xué)生認(rèn)知特點,由淺入深,由表及里,設(shè)計一系列教學(xué)活動過程。體現(xiàn)由“實踐……觀察……歸納 ……猜想…… 結(jié)論…… 驗證應(yīng)用”的循環(huán)往復(fù)的認(rèn)知過程。
3、 重能力與態(tài)度的培養(yǎng),在活動中培養(yǎng)學(xué)生自主、交流合作、探究、發(fā)現(xiàn)的能力。重科學(xué)嚴(yán)謹(jǐn)?shù)膫€性品質(zhì)。重參與學(xué)習(xí)的興趣和體驗。
4、 重指導(dǎo)點撥。在學(xué)生自主探究、實踐的基礎(chǔ)上,相機(jī)啟發(fā),恰當(dāng)點撥,促進(jìn)學(xué)生知識由感性向理性提升,由具體到概括抽象,形成師生間的有效互動。
三、 教學(xué)目標(biāo)
基于上述認(rèn)識,及不等式的基本知識,同時學(xué)生在初中已學(xué)過二次函數(shù),考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征,制訂如下教學(xué)目標(biāo):
1、 知識目標(biāo):一元二次方程,一元二次不等式及二次函數(shù)間的聯(lián)系,及利用二次函數(shù)的圖象求解一元二次不等式。
2、 能力目標(biāo):數(shù)形結(jié)合的思想(應(yīng)用二次函數(shù)圖象解不等式)
3、 情感態(tài)度目標(biāo):通過問題解決,培養(yǎng)學(xué)生自主參與學(xué)習(xí),以及嚴(yán)謹(jǐn)求實的.態(tài)度。
四、 教與學(xué)重點、難點
1、重點:用圖象解一元二次不等式。
2、難點:圍繞二次函數(shù)圖象、性質(zhì)這一主線,解決三個“二次”的聯(lián)系和應(yīng)用。
五、 教法與學(xué)法
1、學(xué)情分析及學(xué)法:函數(shù)與圖象應(yīng)用是初中生數(shù)學(xué)的薄弱之處,同時剛進(jìn)入高中的學(xué)生,對高中學(xué)習(xí)還很不適應(yīng),需要加強(qiáng)主動學(xué)習(xí)的指導(dǎo)?;诖?,在學(xué)生初中知識經(jīng)驗的基礎(chǔ)上,以舊探新;以一系列問題,促進(jìn)主體的學(xué)習(xí)活動(如畫圖象、讀圖等),建構(gòu)知識;以問題情景激勵學(xué)生參與,在恰當(dāng)時機(jī)進(jìn)行點撥啟發(fā),練、導(dǎo)結(jié)合,講練結(jié)合;通過學(xué)生自己做數(shù)學(xué),教師啟發(fā)指導(dǎo),以及學(xué)生領(lǐng)悟,實現(xiàn)學(xué)生對知識的再創(chuàng)造和主動建構(gòu);具體通過教材中的問題及設(shè)計的問題情景,給予學(xué)生活動的空間,通過這些問題(“腳手架”)的解決,使學(xué)生逐步攀升,達(dá)到知識與能力的目標(biāo)。
2、教法:數(shù)學(xué)教學(xué)是數(shù)學(xué)教與學(xué)活動過程的教學(xué),學(xué)生是在探究與發(fā)現(xiàn)中建構(gòu)知識,發(fā)展能力的,因而確定以“問題解決”為教法。實現(xiàn)學(xué)生在教師指導(dǎo)下的發(fā)現(xiàn)探索。同時所學(xué)內(nèi)容適宜用“計算機(jī)高中數(shù)學(xué)問題處理系統(tǒng)”輔助教學(xué)。
六、教學(xué)手段及工具:
多媒體教學(xué)手段,高中數(shù)學(xué)問題處理系統(tǒng)。
七、教學(xué)設(shè)計及教學(xué)過程
1、復(fù)習(xí)設(shè)問,引入新課
高中數(shù)學(xué)新教材第一冊(上)《一元二次不等式解法》(第一課時)說課稿.rar
一元二次不等式課件 篇7
解一元二次不等式化為標(biāo)準(zhǔn)型。判斷△的符號。若△<0,則不等式是在R上恒成立或恒不成立。
若△>0,則求出兩根,在數(shù)軸上標(biāo)出,每個根上畫一條豎線,再從右到左相間標(biāo)正負(fù)號,不等式大于0則取標(biāo)正的范圍,小于0則取標(biāo)負(fù)的范圍。
2.解簡單一元高次不等式
a.化為標(biāo)準(zhǔn)型。
b.將不等式分解成若干個因式的積。
c.求出各個根,在數(shù)軸上標(biāo)出,每個根上畫一條豎線,再從右到左相間標(biāo)正負(fù)號,不等式大于0則取標(biāo)正的范圍,小于0則取標(biāo)負(fù)的范圍。
3.解分式不等式的解
a.化為標(biāo)準(zhǔn)型。
b.可將分式化為整式,將整式分解成若干個因式的積。
c.求出各個根,在數(shù)軸上標(biāo)出,每個根上畫一條豎線,再從右到左相間標(biāo)正負(fù)號,不等式大于0則取標(biāo)正的范圍,小于0則取標(biāo)負(fù)的范圍。(如果不等式是非嚴(yán)格不等式,則要注意分式分母不等于0。)
4.解含參數(shù)的一元二次不等式
a.對二次項系數(shù)a的討論。
若二次項系數(shù)a中含有參數(shù),則須對a的符號進(jìn)行分類討論。分為a>0,a=0,a<0。
b.對判別式△的討論
若判別式△中含有參數(shù),則須對△的符號進(jìn)行分類討論。分為△>0,△=0,△<0。
c.對根大小的討論
若不等式對應(yīng)的方程的根x1、x2中含有參數(shù),則須對x1、x2的大小進(jìn)行分類討論。分為x1>x2,x1=x2,x1<x2。
5.一元二次方程的根的分布問題
a.將方程化為標(biāo)準(zhǔn)型。(a的符號)
b.畫圖觀察,若有區(qū)間端點對應(yīng)的函數(shù)值小于0,則只須討論區(qū)間端點的函數(shù)值。
若沒有區(qū)間端點對應(yīng)的函數(shù)值小于0,則須討論區(qū)間端點的函數(shù)值、△、軸。
6.一元二次不等式的應(yīng)用
⑴在R上恒成立問題(恒不成立問題相反,在某區(qū)間恒成立可轉(zhuǎn)化為實根分布問題)
a.對二次項系數(shù)a的符號進(jìn)行討論,分為a=0與a≠0。
b.a(chǎn)=0時,把a(bǔ)=0帶入,檢驗不等式是否成立,判斷a=0是否屬于不等式解集。
a≠0時,則轉(zhuǎn)化為二次函數(shù)圖像全在x軸上方或下方。
若f(x)>0,則要求a>0,△<0。
若f(x)<0,則要求a<0,△<0。
⑵特殊題型:已知一不等式的解集(含有字母),求另一不等式的解集(與原不等式系數(shù)大小相同,位置不同)。a.寫出原不等式對應(yīng)的方程,由韋達(dá)定理得出解集字母與方程系數(shù)間的關(guān)系。
b.寫出變換后不等式對應(yīng)的方程,由由韋達(dá)定理得出解集字母與方程系數(shù)間的關(guān)系。
c.將a中得到的關(guān)系變化后帶入b的關(guān)系中,得到變換后方程的兩根。
d.判斷兩根的大小,變換后不等式二次項的系數(shù),從而寫出所求解集。
一元二次不等式課件 篇8
一、教材分析
(一)教材的地位和作用
“一元二次不等式解法”既是初中一元一次不等式解法在知識上的延伸和發(fā)展,又是本章集合知識的運(yùn)用與鞏固,也為下一章函數(shù)的定義域和值域教學(xué)作鋪墊,起著鏈條的作用。同時,這部分內(nèi)容較好地反映了方程、不等式、函數(shù)知識的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊(yùn)含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學(xué)思想方法,能較好地培養(yǎng)學(xué)生的觀察能力、概括能力、探究能力及創(chuàng)新意識。
(二)教學(xué)內(nèi)容
本節(jié)內(nèi)容分2課時學(xué)習(xí)。本課時通過二次函數(shù)的圖象探索一元二次不等式的解集。通過復(fù)習(xí)“三個一次”的關(guān)系,即一次函數(shù)與一元一次方程、一元一次不等式的關(guān)系;以舊帶新尋找“三個二次”的關(guān)系,即二次函數(shù)與一元二次方程、一元二次不等式的關(guān)系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數(shù)學(xué)中的和諧美,體驗成功的樂趣。
二、教學(xué)目標(biāo)分析
根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點和高一學(xué)生的認(rèn)知規(guī)律,本節(jié)課的教學(xué)目標(biāo)確定為:
知識目標(biāo)——理解“三個二次”的關(guān)系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。
能力目標(biāo)——通過看圖象找解集,培養(yǎng)學(xué)生“從形到數(shù)”的轉(zhuǎn)化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。
情感目標(biāo)——創(chuàng)設(shè)問題情景,激發(fā)學(xué)生觀察、分析、探求的學(xué)習(xí)激情、強(qiáng)化學(xué)生參與意識及主體作用。
三、重難點分析
一元二次不等式是高中數(shù)學(xué)中最基本的不等式之一,是解決許多數(shù)學(xué)問題的重要工具。本節(jié)課的重點確定為:一元二次不等式的解法。
要把握這個重點。關(guān)鍵在于理解并掌握利用二次函數(shù)的圖象確定一元二次不等式解集的方法——圖象法,其本質(zhì)就是要能利用數(shù)形結(jié)合的思想方法認(rèn)識方程的解,不等式的解集與函數(shù)圖象上對應(yīng)點的橫坐標(biāo)的內(nèi)在聯(lián)系。由于初中沒有專門研究過這類問題,高一學(xué)生比較陌生,要真正掌握有一定的難度。因此,本節(jié)課的難點確定為:“三個二次”的關(guān)系。要突破這個難點,讓學(xué)生歸納“三個一次”的關(guān)系作鋪墊。
四、教法與學(xué)法分析
(一)學(xué)法指導(dǎo)
教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會學(xué)是目的。因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會學(xué)習(xí)。本節(jié)課主要是教給學(xué)生“動手畫、動眼看、動腦想、動口說、善提煉、勤鉆研”的研討式學(xué)習(xí)方法,這樣做增加了學(xué)生自主參與,合作交流的機(jī)會,教給了學(xué)生獲取知識的途徑、思考問題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會逐步感受到數(shù)學(xué)的美,會產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時代特色,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。
(二)教法分析
本節(jié)課設(shè)計的指導(dǎo)思想是:現(xiàn)代認(rèn)知心理學(xué)——建構(gòu)主義學(xué)習(xí)理論。
建構(gòu)主義學(xué)習(xí)理論認(rèn)為:應(yīng)把學(xué)習(xí)看成是學(xué)生主動的建構(gòu)活動,學(xué)生應(yīng)與一定的知識背景即情景相聯(lián)系,在實際情景下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識與經(jīng)驗同化和索引出當(dāng)前要學(xué)習(xí)的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。
本節(jié)課采用“誘思引探教學(xué)法”。把問題作為出發(fā)點,指導(dǎo)學(xué)生“畫、看、說、用”。較好地探求一元二次不等式的解法。
五、課堂設(shè)計
本節(jié)課的教學(xué)設(shè)計充分體現(xiàn)以學(xué)生發(fā)展為本,培養(yǎng)學(xué)生的觀察、概括和探究能力,遵循學(xué)生的認(rèn)知規(guī)律,體現(xiàn)理論聯(lián)系實際、循序漸進(jìn)和因材施教的教學(xué)原則,通過問題情境的創(chuàng)設(shè),激發(fā)興趣,使學(xué)生在問題解決的探索過程中,由學(xué)會走向會學(xué),由被動答題走向主動探究。
(一)創(chuàng)設(shè)情景,引出“三個一次”的關(guān)系
本節(jié)課開始,先讓學(xué)生解一元二次方程x2—x—6=0,如果我把“=”改成“>”則變成一元二次不等式x2—x—6>0讓學(xué)生解,學(xué)生肯定感到很突然。但是“思維往往是從驚奇和疑問開始”,這樣直奔主題,目的在于構(gòu)造懸念,激活學(xué)生的思維興趣。
為此,我設(shè)計了以下幾個問題:
1、請同學(xué)們解以下方程和不等式:
①2x—7=0;②2x—7>0;③2x—7
一元二次不等式課件 篇9
1.創(chuàng)設(shè)情景——引入新課。我們常說“興趣是最好的老師”,長期以來,學(xué)生對學(xué)習(xí)數(shù)學(xué)缺乏興趣,甚至失去信心,一個重要的原因,是老師在教學(xué)中不重視學(xué)生對學(xué)習(xí)的情感體驗,教學(xué)應(yīng)該充分考慮學(xué)生的情感和需要,想方設(shè)法讓學(xué)生在學(xué)習(xí)中樹立信心,感受學(xué)習(xí)的樂趣。根據(jù)教材內(nèi)容的安排,我以學(xué)生熟悉的畫一次函數(shù)圖象、求一次方程和一次不等式的解為背景知識切入,設(shè)置一個練習(xí)題組,一方面讓學(xué)生總結(jié)復(fù)習(xí)已有知識,為后面學(xué)習(xí)二次不等式的解法打下基礎(chǔ),做好鋪墊,另一方面,使學(xué)生在自己熟悉的問題中首先獲得解題成功的快樂體驗,然后以20xx年江蘇省的一道高考試題為引子,引入本節(jié)課的新授內(nèi)容。對于本題,引導(dǎo)學(xué)生,利用上面解練習(xí)題組1的方法,畫出二次函數(shù)圖象來解答。二次函數(shù)是初中數(shù)學(xué)的重要內(nèi)容,本題又給出了函數(shù)圖象上許多點,相信學(xué)生畫出圖象應(yīng)該不成問題,只要教師適當(dāng)點撥,學(xué)生不難得到正確答案。以高考試題為背景引入新課,可以提高學(xué)生興趣,抓住學(xué)生眼球,吸引學(xué)生注意力,還可以讓學(xué)生實實在在感受到,高考題就在我們的課本中,就在我們平常的練習(xí)中。
2.探究交流——發(fā)現(xiàn)規(guī)律。從特殊到一般是我們發(fā)現(xiàn)問題、尋求規(guī)律、揭示問題本質(zhì)最常用的方法之一。我把課本例題1、2編為練習(xí)題組(一),交由學(xué)生用上面解高考題的方法——圖象法去解,學(xué)生由于熟知二次函數(shù)圖象,求解應(yīng)該不會有太大的問題。在這個過程中,教師要啟發(fā)引導(dǎo)學(xué)生注意對比兩題的異同,組織引導(dǎo)學(xué)生展開交流討論,探討第(2)題能不能先把二次項系數(shù)化正以后再構(gòu)造函數(shù)畫圖求解。然后達(dá)成共識,如果二次項系數(shù)為負(fù)數(shù)時,先做等價轉(zhuǎn)化,把二次項系數(shù)化為正數(shù)再解,課本19頁例3、例4作為題組(二),繼續(xù)讓學(xué)生用上面的圖象法,由學(xué)生自己求解,這時我及時提示學(xué)生注意這兩題與題組(一)中兩題的不同(例1、例2對應(yīng)方程都有兩個不等實根,例3對應(yīng)方程有兩相等實根,例4對應(yīng)方程無實根)。兩個題組的練習(xí)之后,可以尋求解二次不等式的一般規(guī)律。
3.啟發(fā)引導(dǎo)——形成結(jié)論。前面兩個題組的四個小題,基本涵蓋了一般一元二次不等式解的各種情況,進(jìn)一步啟發(fā)引導(dǎo)學(xué)生將特殊、具體題目的結(jié)論做一般化總結(jié),與學(xué)生一起就△>0,△<0,△=0的三種情況,總結(jié)二次不等式ax2+bx+c>0或ax2+bx+c<0(a>0)的解的情況應(yīng)該水到渠成。至此,學(xué)生可以感受到,解二次不等式只須①將二次項系數(shù)化為正數(shù),②求解二次方程ax2+bx+c=0的.根。③根據(jù)①后的二次不等式的符號寫出解集即可,必要時也可以結(jié)合圖象寫解集。這樣我們就得到了二次不等式的另外一種解法(可稱為“三步曲”法)。
4.訓(xùn)練小結(jié)——鞏固深化。為了鞏固和加深二次不等式的兩種解法,接下來及時組織學(xué)生進(jìn)行課堂練習(xí),完成課本21頁練習(xí)1—4題。本環(huán)節(jié)請不同層次的學(xué)生在黑板上書寫解題過程,之后師生共同糾正問題,規(guī)范解題過程的書寫。
5.延伸拓寬——提高能力。課堂教學(xué)既要面向全體學(xué)生,又應(yīng)關(guān)注學(xué)生的個體差異。體現(xiàn)分類推進(jìn),分層教學(xué)的原則。為此,我又設(shè)計了一個提高練習(xí)題組,共有三道備選題目,以供程度較好學(xué)有余力的學(xué)生能夠更好的展示自己的解題能力,取得更進(jìn)一步的提高。
一元二次不等式課件 篇10
展過程一元二次不等式教學(xué)設(shè)計
一、教學(xué)內(nèi)容分析:
1、教材地位和作用
本節(jié)課是數(shù)學(xué)(基礎(chǔ)模塊)上冊第二章第三節(jié)《一元二次不等式》。從內(nèi)容上看它是我們初中學(xué)過的一元一次不等式的延伸,同時它也與一元二次方程、二次函數(shù)之間聯(lián)系緊密,涉及的知識面較多。從思想層面看,本節(jié)課突出本現(xiàn)了數(shù)形結(jié)合思想。同時一元二次不等式是解決函數(shù)定義域、值域等問題的重要工具,因此本節(jié)課在整個中學(xué)數(shù)學(xué)中具有較重要的地位和作用。
2、教學(xué)目標(biāo)
知識目標(biāo):正確理解一元二次不等式、一元二次方程、二次函數(shù)的關(guān)系。熟練掌握一元二次不等式的解法。
能力目標(biāo):培養(yǎng)數(shù)形結(jié)合思想、抽象思維能力和形象思維能力。
思想目標(biāo):在教學(xué)中滲透由具體到抽象,由特殊到一般,類比猜想、等價轉(zhuǎn)化的數(shù)學(xué)思想方法。
情感目標(biāo):通過具體情境,使學(xué)生體驗數(shù)學(xué)與實踐的緊密聯(lián)系,感受數(shù)學(xué)魅力,激發(fā)學(xué)生求知欲望。
3、重難點
重點:一元二次不等式的解法。
難點:一元二次方程,一元二次不等式與二次函數(shù)的關(guān)系。
二、學(xué)生情況分析:
我們的學(xué)生是在學(xué)習(xí)了一元一次不等式,一元一次方程、一元一次函數(shù),一元二次方程的基礎(chǔ)上學(xué)習(xí)一元二次不等式。但大都數(shù)學(xué)生的基礎(chǔ)都不是很好,解一元二次方程有一定的困難。
三、教學(xué)環(huán)境分析:教學(xué)環(huán)境應(yīng)包括和諧的師生關(guān)系、多媒體的合理應(yīng)用、良好的課堂組織、合理的問題情境。創(chuàng)設(shè)和諧的師生關(guān)系有利于提高學(xué)習(xí)效率,我們學(xué)校要建立和諧的師生關(guān)系是需要花很多心思的,特別是就業(yè)班的同學(xué),且要有一個相當(dāng)長的適應(yīng)時間。我們學(xué)校的每位老師都有手提電腦,每間教室都有寬屏電子顯示器,老師都能熟練掌握多媒體設(shè)備的運(yùn)用。運(yùn)用多媒體教學(xué)效果好、學(xué)生容易理解、學(xué)習(xí)的積極性高。上課時比較注意創(chuàng)設(shè)合適的問題情境,效果會不錯,學(xué)生從生活實際出發(fā),回答所提的問題,不知不覺學(xué)習(xí)了新的知識,他們不會感覺到學(xué)習(xí)疲勞,反而能積極主動地學(xué)習(xí)。
四、教學(xué)目標(biāo)分析:
知識與技能:正確理解一元二次不等式、一元二次方程、二次函數(shù)的關(guān)系。熟練掌握一元二次不等式的解法。
過程與方法:通過看圖象找解集,培養(yǎng)學(xué)生從從形到數(shù)的轉(zhuǎn)化能力,從具體到抽象、從特殊到一般的歸納概括能力;通過對問題的思考、探究、交流,培養(yǎng)學(xué)生良好的數(shù)學(xué)交流能力,增強(qiáng)其數(shù)形結(jié)合的思維意識。在教學(xué)中滲透由具體到抽象,由特殊到一般,類比猜想、等價轉(zhuǎn)化的數(shù)學(xué)思想方法。
情感態(tài)度與價值觀:通過具體情境,使學(xué)生體驗數(shù)學(xué)與實踐的緊密聯(lián)系,激發(fā)學(xué)生學(xué)習(xí)研究一元二次不等式的積極性和對數(shù)學(xué)的情感,使學(xué)生充分體驗獲取知識的成功感受;在探究、討論、交流過程中培養(yǎng)學(xué)生的合作意識和團(tuán)隊精神,使其養(yǎng)成嚴(yán)謹(jǐn)?shù)闹螌W(xué)態(tài)度和良好的思維習(xí)慣。
一元二次不等式課件 篇11
《一元二次不等式及其解法(第1課時)》教學(xué)設(shè)計
Eric 一 內(nèi)容分析
本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續(xù)和深化,對已學(xué)習(xí)過的集合知識的鞏固和運(yùn)用具有重要的作用,也與后面的函數(shù)、數(shù)列、三角函數(shù)、線形規(guī)劃、直線與圓錐曲線以及導(dǎo)數(shù)等內(nèi)容密切相關(guān)。許多問題的解決都會借助一元二次不等式的解法。因此,一元二次不等式的解法在整個高中數(shù)學(xué)教學(xué)中具有很強(qiáng)的基礎(chǔ)性,體現(xiàn)出很大的工具作用。
二 學(xué)情分析
學(xué)生已經(jīng)掌握了高中所學(xué)的基本初等函數(shù)的圖象及其性質(zhì), 能利用函數(shù)的圖象及其性質(zhì)解決一些問題。學(xué)生知道不等關(guān)系, 掌握了不等式的性質(zhì), 通過這部分內(nèi)容的學(xué)習(xí), 學(xué)生將學(xué)會利用二次函數(shù)的圖象, 通過數(shù)形結(jié)合的思想, 掌握一元二次不等式的解法。
三 教學(xué)目標(biāo)
1.知識與技能目標(biāo):(1)熟練應(yīng)用二次函數(shù)圖象解一元二次不等式的方法(2)了解一元二次不等式與相應(yīng)函數(shù), 方程的聯(lián)系 2.過程與方法:(1)通過學(xué)生已學(xué)過的一元一次不等式為例引入一元二次不等式的有關(guān)概及解法(2)讓學(xué)生觀察二次函數(shù),在此基礎(chǔ)上, 找到一元二次不等式的解法并掌握此解法(3)在學(xué)生尋找一元二次不等式的過中程中培養(yǎng)學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想 3.情感與價值目標(biāo):(1)通過新舊知識的聯(lián)系獲取新知,使學(xué)生體會溫故而知新的道理
(2)通過對解不等式過程中等與不等對立統(tǒng)一關(guān)系的認(rèn)識,向?qū)W生逐步滲透辨證唯物主義思想。
(3)在教師的啟發(fā)引導(dǎo)下,學(xué)生自主探究,交流討論,培養(yǎng)學(xué)生的合作意識和創(chuàng)新精神。
四 教學(xué)重點、難點 1.重點
一元二次不等式的解法 2.難點
理解元二次方程與一元二次不等式解集的關(guān)系
五 教學(xué)方法
啟發(fā)式教學(xué)法,討論法,講授法
六 教學(xué)過程
1.創(chuàng)設(shè)情景,提出問題(約10分鐘)
師:在初中,我們解過一元一次不等式,如解不等式x – 1 > 0,現(xiàn)在請同學(xué)們先畫出函數(shù)y = x – 1 的圖象,并通過觀察圖象回答以下問題: 1)x 為何值時,y = 0;2)x 為何值時,y > 0;3)x 為何值時,y 0的解集能從函數(shù)y = x – 1上看出來嗎?
學(xué)生畫圖,思考。先把問題交給學(xué)生自主探究,過一段時間,再小組交流,此間教師巡視并指導(dǎo)。提問學(xué)生代表。
通過對上述問題的探究,學(xué)生得出以下結(jié)論:
因為上述方程x – 1 = 0以及不等式x – 1 > 0的左邊恰好是上述函數(shù)y = x3x – 2 > 0;2)4x23x – 2 = 0的解是x1 =-1/2, x2 = 2.所以2x24x + 1 = 0 的解是x1 = x2 = 1/2, 所以不等式4x22x + 3
練習(xí):課本80頁練習(xí)第1題(1)-(3)【靈活掌握】.師:今天我們這節(jié)課的內(nèi)容有兩個: 1)會一元二次不等式的解法 2)理解三個“二次”的關(guān)系
作業(yè):課本第80頁 習(xí)題 A
4.板書設(shè)計
§ 一元二次不等式及其解法
解不等式x2 – x – 6 > 0, 請先畫出二次函數(shù) y = x2 – x – 6的圖像,并回答以下問題: 1)x 為何值時,y = 0;y > 0;y 0的解集呢?
七 教學(xué)反思
組1、2題 例,解不等式:
1)2x24x + 1 > 0;3)-x2 + 2x – 3
解:1)因為Δ =(-3)2 – 4×2×(-2)= 25 > 0, 方程的2x23x – 2 > 0的解集是{x| x1 2}.2)因為Δ = 0,方程4x24x + 1 > 0的解集是{x|x ≠ 1/2}.
一元二次不等式課件 篇12
各位評委、各位老師:
大家好!
我叫,來自。今天我說課的課題是《一元二次不等式的解法》(第一課時)。下面我將圍繞本節(jié)課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個問題,從教材內(nèi)容分析、教法學(xué)法分析、教學(xué)過程分析和課堂意外預(yù)案等幾個方面逐一加以分析和說明。
一、教材內(nèi)容分析:
1、本節(jié)課內(nèi)容在整個教材中的地位和作用。
概括地講,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續(xù)和深化,對已學(xué)習(xí)過的集合知識的鞏固和運(yùn)用具有重要的作用,也與后面的函數(shù)、數(shù)列、三角函數(shù)、線形規(guī)劃、直線與圓錐曲線以及導(dǎo)數(shù)等內(nèi)容密切相關(guān)。許多問題的解決都會借助一元二次不等式的解法。因此,一元二次不等式的解法在整個高中數(shù)學(xué)教學(xué)中具有很強(qiáng)的基礎(chǔ)性,體現(xiàn)出很大的工具作用。
2、教學(xué)目標(biāo)定位。
根據(jù)教學(xué)大綱要求、高考考試大綱說明、新課程標(biāo)準(zhǔn)精神、高一學(xué)生已有的知識儲備狀況和學(xué)生心理認(rèn)知特征,我確定了四個層面的教學(xué)目標(biāo)。第一層面是面向全體學(xué)生的知識目標(biāo):熟練掌握一元二次不等式的兩種解法,正確理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系。第二層面是能力目標(biāo),培養(yǎng)學(xué)生運(yùn)用數(shù)形結(jié)合與等價轉(zhuǎn)化等數(shù)學(xué)思想方法解決問題的能力,提高運(yùn)算和作圖能力。第三層面是德育目標(biāo),通過對解不等式過程中等與不等對立統(tǒng)一關(guān)系的認(rèn)識,向?qū)W生逐步滲透辨證唯物主義思想。第四層面是情感目標(biāo),在教師的啟發(fā)引導(dǎo)下,學(xué)生自主探究,交流討論,培養(yǎng)學(xué)生的合作意識和創(chuàng)新精神。
3、教學(xué)重點、難點確定。
本節(jié)課是在復(fù)習(xí)了一次不等式的解法之后,利用二次函數(shù)的圖象研究一元二次不等式的解法。只要學(xué)生能夠理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系,并利用其關(guān)系解不等式即可。因此,我確定本節(jié)課的教學(xué)重點為一元二次不等式的解法,關(guān)鍵是一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系。
二、教法學(xué)法分析:
數(shù)學(xué)是發(fā)展學(xué)生思維、培養(yǎng)學(xué)生良好意志品質(zhì)和美好情感的重要學(xué)科,在教學(xué)中,我們不僅要使學(xué)生獲得知識、提高解題能力,還要讓學(xué)生在教師的啟發(fā)引導(dǎo)下學(xué)會學(xué)習(xí)、樂于學(xué)習(xí),感受數(shù)學(xué)學(xué)科的人文思想,使學(xué)生在學(xué)習(xí)中培養(yǎng)堅強(qiáng)的意志品質(zhì)、形成良好的道德情感。為了更好地體現(xiàn)課堂教學(xué)中“教師為主導(dǎo),學(xué)生為主體”的教學(xué)關(guān)系和“以人為本,以學(xué)定教”的教學(xué)理念,在本節(jié)課的教學(xué)過程中,我將緊緊圍繞教師組織——啟發(fā)引導(dǎo),學(xué)生探究——交流發(fā)現(xiàn),組織開展教學(xué)活動。我設(shè)計了①創(chuàng)設(shè)情景——引入新課,②交流探究——發(fā)現(xiàn)規(guī)律,③啟發(fā)引導(dǎo)——形成結(jié)論,④練習(xí)小結(jié)——深化鞏固,⑤思維拓展——提高能力,五個環(huán)環(huán)相扣、層層深入的教學(xué)環(huán)節(jié),在教學(xué)中注意關(guān)注整個過程和全體學(xué)生,充分調(diào)動學(xué)生積極參與教學(xué)過程的每個環(huán)節(jié)。
不等式課件精選九篇
為了促進(jìn)學(xué)生掌握上課知識點,老師需要提前準(zhǔn)備教案,老師在寫教案課件時還需要花點心思去寫。?教案和課件優(yōu)化可使教學(xué)任務(wù)的完成更加精細(xì)化。幼兒教師教育網(wǎng)小編特意為大家收集整理了“不等式課件”,歡迎參考愿您成為更好的自己!
不等式課件 篇1
不等式的性質(zhì) 教學(xué)設(shè)計
十六中 尚進(jìn)軍
【教學(xué)重點與難點】
教學(xué)重點:掌握不等式的三條基本性質(zhì),尤其是不等式的基本性質(zhì)3 教學(xué)難點:正確應(yīng)用不等式的三條基本性質(zhì)進(jìn)行不等式變形 【教學(xué)目標(biāo)】
1、探索并掌握不等式的基本性質(zhì)
2、會用不等式的基本性質(zhì)進(jìn)行化簡 【教學(xué)方法】
通過觀察、分析、討論,引導(dǎo)學(xué)生歸納總結(jié)出不等式的三條基本性質(zhì),從具體上升到理論,再由理論指導(dǎo)具體的練習(xí),從而強(qiáng)化學(xué)生對知識的理解與掌握.
【教學(xué)過程】
一、創(chuàng)設(shè)情境 復(fù)習(xí)引入
(設(shè)計說明:設(shè)置以下習(xí)題是為了溫故而知新,為學(xué)習(xí)本節(jié)內(nèi)容提供必要的知識準(zhǔn)備.)問題:
1、什么是等式?等式的基本性質(zhì)是什么?
2、什么是不等式?
3、用“>”或“<”填空.(1)3
2×5 3×5
2×(-1)3×(-1)3-5 7-5 2÷2 3÷2 2×(-5)3×(-5)3+a 7+a
2÷(-2)3÷(-2)(教學(xué)說明: 復(fù)習(xí)等式的基本性質(zhì)后學(xué)生自然會聯(lián)想到,不等式是否有與等式相類似的性質(zhì),從而引起學(xué)生的探究欲望.接著問題3為學(xué)生探究不等式的性質(zhì)提供了載體,通過觀察,尋找規(guī)律,得出不等式的性質(zhì).)
二、師生互動,探索新知
1、不等式的基本性質(zhì)
問題1:觀察思考問題3,猜想出不等式的性質(zhì)
先讓學(xué)生獨立思考,后合作交流,通過充分討論,類比等式性質(zhì)得出不等式的性質(zhì).觀察時,引導(dǎo)學(xué)生注意不等號的方向,通過(1)題學(xué)生容易得出不等式性質(zhì)1: 不等式基本性質(zhì)1 不等式兩邊加(或減)同一個數(shù)(或式子),不等號的方向不變. 比較(2)、(3)題,注意觀察不等號方向,并思考不等號方向的改變與什么有關(guān)?由學(xué)生概括總結(jié),教師補(bǔ)充完善得出: 不等式基本性質(zhì)2 不等式兩邊乘(或除以)同一個正數(shù),不等號的方向不變. 不等式基本性質(zhì)3 不等式兩邊乘(或除以)同一個負(fù)數(shù),不等號的方向改變.
問題2:將不等式-2<6兩邊都加上7,-9,兩邊都乘3,-3試一試,進(jìn)一步驗證上面得出的三條結(jié)論. 教師 強(qiáng)調(diào)指出:不等式的三條基本性質(zhì)實質(zhì)上是對不等式兩邊進(jìn)行“+”、“-”、“×”、“÷”四則運(yùn)算,當(dāng)進(jìn)行“+”、“-”法時,不等號方向不變;當(dāng)乘(或除以)同一個正數(shù)時,不等號方向不變;只有當(dāng)乘(或除以)同一個負(fù)數(shù)時,不等號的方向才改變.
問題3:嘗試用數(shù)學(xué)式子表示不等式的三條基本性質(zhì). 學(xué)生思考出答案,教師訂正,最后得出:(1)如果a>b,那么a±c>b±c(2)如果a>b,c>0那么ac>bc(或>)(3)如果a>b,ca” 或“x26;(2)3x50;(4)-4x>3.解:(l)根據(jù)不等式基本性質(zhì)1,不等式的兩邊都加上7,不等號的方向不變. 得 x-7+7>26 +>33(2)根據(jù)不等式基本性質(zhì)1,兩邊都減去2x,不等號的方向不變,得3x-2x75,不等號的方向不變,得(4)根據(jù)不等式基本性質(zhì)3,兩邊都除以-4,不等號的方向改變,得x(教學(xué)說明:這些不等式比較簡單,可以利用不等式的性質(zhì)直接求解,從而加深對這些性質(zhì)的認(rèn)識.教師板書(1)題解題過程.(2)(3)(4)題由學(xué)生在練習(xí)本上完成,指定三個學(xué)生板演,然后師生共同判斷板演是否正確.解題時要引導(dǎo)學(xué)生與解一元一次方程的思路進(jìn)行對比,有助于加強(qiáng)知識之間的前后聯(lián)系,突出新知識的特點,并將原題與“x>a” 或“xc, a+c>b, b+c>a 我們現(xiàn)在求的是兩邊之差與第三邊的關(guān)系,所以由不等式的性質(zhì)1將上式變形為: 由a +b>c得a>c-b, b>c-a.同理,由a+c>b, b+c>a可得c>b-a, b>a-c,c>a-b, a>b-c.這就是說,三角形中任意兩邊之差小于第三邊.(教學(xué)說明:此問題應(yīng)用不等式的性質(zhì)由“三角形的任意兩邊之和大于第三邊”得出“三角形中任意兩邊之差小于第三邊”這個與已有結(jié)論等價的新結(jié)論.“三角形的任意兩邊之和大于第三邊”對應(yīng)的是三個形式一樣的不等式,而不是一個不等式.由這三個不等式再推出“三角形中任意兩邊之差小于第三邊”.為了加深學(xué)生的感性認(rèn)識,可以通過測量的方法驗證這個結(jié)論.)三、鞏固訓(xùn)練,熟練技能:1、如果a>b,那么(1)a-3 b-3,(2)2a 2b(3)-3a-3b,(4)a-b 0(5)(6)-b_____-、在下列各題橫線上填入不等號,并說明是根據(jù)不等式的哪一條基本性質(zhì).(1)若a–3<9,則a_____12;(2)若-a<10,則a_____–10;(3)若a>–1,則a_____–4;(4)若-a>0,則a_____0.3、利用不等式的性質(zhì)解下列不等式,并在數(shù)軸上表示解集(解未知數(shù)為x的不等式,就是要使不等式逐步化為“x>a”或“x<a”的形式)(1)x-1<0;(2)x>-x+6;(3)3x>7;(4)-x<-3.(教學(xué)說明:這些練習(xí)進(jìn)一步加深了學(xué)生對不等式性質(zhì)的理解,做此練習(xí)題時,應(yīng)讓學(xué)生注意觀察它們是應(yīng)用不等式的哪條性質(zhì),是怎樣由已知變形得到的.注意應(yīng)用不等式性質(zhì)3時,不等號要改變方向.做第3題時要引導(dǎo)學(xué)生與解一元一次方程的思路進(jìn)行對比,讓學(xué)生認(rèn)識到應(yīng)用不等式的性質(zhì)1變形,相當(dāng)于移項.)四、總結(jié)反思,課堂小結(jié)1、不等式的基本性質(zhì)是什么?如何用數(shù)學(xué)式子表示?2、在本節(jié)課的學(xué)習(xí)中,你還有什么疑惑? 3.主要用到的思想方法是類比思想.4.注意的問題: 當(dāng)不等式兩邊同乘(或除以)同一個數(shù)時,一定要看清是正數(shù)還是負(fù)數(shù),若是負(fù)數(shù),要變兩個號,一個性質(zhì)符號,另一個是不等號,對于未給定范圍的字母,應(yīng)分情況討論.六、布置課后作業(yè):1、課本127頁練習(xí)2、課本128習(xí)題的5、6、7題 【評價與反思】通過具體的事例觀察并歸納出不等式的三條基本性質(zhì),引導(dǎo)學(xué)生用數(shù)學(xué)式子表示三條基本性質(zhì),同時注意將不等式的三條基本性質(zhì)與等式的基本性質(zhì)進(jìn)行比較,以加深學(xué)生的理解.在教學(xué)過程中,注重培養(yǎng)學(xué)生運(yùn)用類比方法觀察、分析、解決問題的能力及歸納總結(jié)概括的能力.同時培養(yǎng)了學(xué)生積極主動的參與意識和勇敢嘗試、探索的精神.
不等式課件 篇2
本節(jié)教學(xué)的重點是不等式的解集的概念及在數(shù)軸上表示不等式的解集的方法.難點為不等式的解集的概念.
相同點:定義方式相同(使方程成立的未知數(shù)的值,叫做方程的解);解的表示方法也相同.
不同點:解的個數(shù)不同,一般地,一個不等式有無數(shù)多個解,而一個方程只有一個或幾個解,例如, 能使不等式 成立,那么 是不等式的一個解,類似地 等也能使不等式 成立,它們都是不等式 的解,事實上,當(dāng) 取大于 的數(shù)時,不等式 都成立,所以不等式 有無數(shù)多個解.
不等式的解與不等式的解集是兩個不同的概念,不等式的解是指滿足這個不等式的未知數(shù)的某個值,而不等式的解集,是指滿足這個不等式的未知數(shù)的所有的值,不等式的所有解組成了解集,解集中包括了每一個解.
注意:不等式的解集必須滿足兩個條件:第一,解集中的任何一個數(shù)值,都能使不等式成立;第二,解集外的任何一個數(shù)值,都不能使不等式成立.
一般地,一個含未知數(shù)的不等式有無數(shù)多個解,其解集是某個范圍,這個范圍可用一個最簡單的不等式表示出來,例如,不等式 的解集是 .
如不等式 的解集 ,可以用數(shù)軸上表示4的點的左邊部分表示,因為 包含 ,所以在表示4的點上畫實心圓.
如不等式 的解集 ,可以用數(shù)軸上表示4的點的左邊部分表示,因為 包含 ,所以在表示4的點上畫實心圈.
注意:在數(shù)軸上,右邊的點表示的數(shù)總比左邊的點表示的數(shù)大,所以在數(shù)軸上表示不等式的解集時應(yīng)牢記:大于向右畫,小于向左畫;有等號的畫實心圓點,無等號的畫空心圓圈.
1.使學(xué)生了解不等式的解集、解不等式的概念,會在數(shù)軸上表示出不等式的解集.
2.知道不等式的“解集”與方程“解”的不同點.
通過教學(xué),使學(xué)生能夠正確地在數(shù)軸上表示出不等式的解集,并且能把數(shù)軸上的某部分?jǐn)?shù)集用相應(yīng)的不等式表示.
通過講解不等式的“解集”與方程“解”的關(guān)系,向?qū)W生滲透對立統(tǒng)一的辯證觀點.
通過本節(jié)課的學(xué)習(xí),讓學(xué)生了解不等式的解集可利用圖形來表達(dá),滲透數(shù)形結(jié)合的數(shù)學(xué)美.
2.學(xué)生學(xué)法:明確不等式的解與解集的區(qū)別和聯(lián)系,并能熟練地用數(shù)軸表示不等式的解集,在數(shù)軸上表示不等式的解集時,要特別注意:大于向右畫,小于向左畫;有等號的畫實心圓點,無等號的畫空心圓圈.
不等式課件 篇3
基本不等式是數(shù)學(xué)中一個重要的基礎(chǔ)公式,也是高中數(shù)學(xué)學(xué)習(xí)的重點之一。此公式廣泛應(yīng)用于各種求證、排列、組合、概率等數(shù)學(xué)問題中,具有廣泛的實際應(yīng)用價值。本文將圍繞基本不等式的定義、推導(dǎo)、應(yīng)用和解題技巧進(jìn)行講解。
一、基本不等式的定義
基本不等式又稱柯西-施瓦茨不等式,其一般形式為:
∣∣∣∣∑iaibi∣∣∣∣∣≤∣∣∣∣∑iai∣∣∣∣∣∣∣∣∣∑ibi∣∣∣∣∣
其中a1,a2,…,an和b1,b2,…,bn為任意實數(shù)。該不等式的本質(zhì)含義是,在平面直角坐標(biāo)系中,向量間的內(nèi)積不大于它們模的乘積之積,并且當(dāng)且僅當(dāng)向量線性相關(guān)時取等號。
二、基本不等式的推導(dǎo)
基本不等式的推導(dǎo)涉及到向量的概念。假設(shè)有兩個n維向量a和b,它們的內(nèi)積為∑iaibi,則它們的長度分別為:|a|=√∑iai2和|b|=√∑ibi2。
將a和b定義為Rn中的兩個向量,則它們的夾角為θ,則有:
cosθ=∑iaibi/|a||b|
通過分析cosθ的大小關(guān)系,顯然有:
?1≤cosθ≤1
進(jìn)一步得到基本不等式:
|∑iaibi|≤∣∣∣∣∑iai∣∣∣∣∣∣∣∣∑ibi∣∣∣∣∣
三、基本不等式的應(yīng)用
基本不等式廣泛應(yīng)用于各種求證、排列、組合、概率等數(shù)學(xué)問題中,下面將分別介紹它們的應(yīng)用。
1. 求證
基本不等式可以用于求證數(shù)學(xué)中的一些定理,比如互余等比數(shù)列的和定理。具體應(yīng)用時,我們可以將等比數(shù)列拆成兩個向量,然后應(yīng)用基本不等式即可得到所證定理。
2. 排列組合
在排列組合問題中,基本不等式可以幫助我們確定最優(yōu)解,以最小或最大值為目標(biāo)得到所需的數(shù)字。例如,在n個數(shù)字中有幾對數(shù)對,他們之間的差值恰好為k,可以通過將原問題轉(zhuǎn)換為求兩個向量之間的夾角,然后應(yīng)用基本不等式進(jìn)行求解。
3. 概率
在概率問題中,基本不等式可以用于推算隨機(jī)事件中不等的概率值,例如玩牌游戲中的胡牌概率等。我們可以將每個事件看作向量,然后使用基本不等式計算它們的夾角,從而得到相應(yīng)的概率值。
四、基本不等式的解題技巧
基本不等式的應(yīng)用需要掌握一些解題技巧。下面列舉一些常用的技巧:
1. 將數(shù)列表示成向量
在排列組合問題中,將數(shù)列表示成向量,有利于方便運(yùn)用基本不等式進(jìn)行計算。
2. 極小化或極大化
當(dāng)問題中要求最小或最大值時,我們可以使用極小化或極大化的思路,以求解最優(yōu)解。
3. 利用對稱性
當(dāng)有對稱條件時,可以運(yùn)用基本不等式中的對稱性質(zhì),簡化數(shù)學(xué)推理。
4. 運(yùn)用方法的差異性
在某些情況下,我們可以發(fā)現(xiàn)數(shù)列的算術(shù)平均數(shù)和幾何平均數(shù)在大小方面的差異,從而確定使用哪個方法進(jìn)行計算。
綜上所述,基本不等式是高中數(shù)學(xué)學(xué)習(xí)的重點之一,應(yīng)用范圍廣泛。掌握了基本不等式的定義、推導(dǎo)、應(yīng)用和解題技巧,能夠在數(shù)學(xué)競賽中取得更好的成績,也有利于我們理解、應(yīng)用其它數(shù)學(xué)定理。
不等式課件 篇4
《不等式的性質(zhì)(1)》教學(xué)設(shè)計
一、引入
展示任務(wù)單的數(shù)據(jù)分析,向?qū)W生明確本堂課的教學(xué)內(nèi)容。
二、預(yù)習(xí)檢測
學(xué)生回答“什么是不等式的性質(zhì)” 不等式的性質(zhì)1 不等式兩邊加(或減)同一個數(shù)(或式子),不等號的方向不變 不等式的性質(zhì)2 不等式兩邊乘(或除以)同一個正數(shù),不等號的方向不變 不等式的性質(zhì)3 不等式兩邊乘(或除以)同一個負(fù)數(shù),不等號的方向改變
三、應(yīng)用1:利用不等式的性質(zhì)比較大小
【例1】若a?b,判斷3?2a與3?2b的大小關(guān)系.小結(jié):利用不等式的性質(zhì)比較大小的一般思路: 利用不等式的性質(zhì)將“已知”逐步化成“目標(biāo)
(1)教師對任務(wù)單中錯誤率較高的題目進(jìn)行講解;
(2)設(shè)置類似的問題作為例題,并進(jìn)行鞏固訓(xùn)練和變式訓(xùn)練。
【鞏固】(1)若3a?4?3b?4,則a___b;(2)若?5a?7??5b?7,則a___?b,則: 【變式一】若 ①(k2?1)a___(k2?1)b ②1?k2a___1?k2b
【變式二】若a?b,試比較ka與kb的大小.【鞏固】(1)若a?b,且(k?1)a?(k?1)b,則k的取值范圍是______.1(2)由kx?1變形可得x?,則k的取值范圍是________.k
四、應(yīng)用2:利用不等式的性質(zhì)解不等式
(1)針對任務(wù)單中學(xué)生解不等式時在步驟中出現(xiàn)的問題,教師規(guī)范解題步驟;
(2)教師分享某位同學(xué)任務(wù)單中對“不等式的性質(zhì)與等式性質(zhì)的異同?”的回答,小組討論利用不等式的性質(zhì)解不等式步驟中需要注意的問題;(3)學(xué)生綜合范例和討論結(jié)果,進(jìn)行鞏固訓(xùn)練和變式訓(xùn)練?!纠?】利用不等式的性質(zhì)解不等式:4y?12??2?3y.【鞏固】13用不等式的性質(zhì)解不等式:y?2?y?522 【變式】13已知y?2?y?5,化簡y?3?(6?2y)
五、課堂小結(jié)
小組討論分享:通過本節(jié)課的學(xué)習(xí),“我知道了??”“我掌握了??”。
六、課堂檢測
學(xué)生獨立完成課堂檢測,由數(shù)據(jù)反饋出本堂課的達(dá)成度
七、課后思考 布置課后思考題
利用不等式性質(zhì)1,比較2a與a的大小(a?0).2,比較2a與a的大小(a?0).利用不等式性質(zhì)
不等式課件 篇5
基本不等式是中學(xué)數(shù)學(xué)中比較重要的知識點,它是一條數(shù)學(xué)公式,可以用來證明數(shù)學(xué)上的不等式問題。在中學(xué)階段,我們通常會學(xué)習(xí)到關(guān)于基本不等式的概念、性質(zhì)以及應(yīng)用等方面的知識。接下來,本篇文章將圍繞這一主題展開,詳細(xì)說明基本不等式的相關(guān)知識點和應(yīng)用場景。
一、基本不等式的概念和性質(zhì)
基本不等式實際上是針對于a、b兩個正實數(shù)而言的,它的數(shù)學(xué)表述為:(a+b)2≥4ab 。 這個公式被稱為基本不等式的“基本式”。同時,在這個式子中,等號成立的條件是a=b時。接下來,讓我們來看看基本不等式的一些性質(zhì)。
1.基本不等式的證明:
(a+b)2=a2+2ab+b2≥4ab (由于a2+b2≥2ab)
化簡得:a2+b2≥2ab,即(a-b)2≥0,結(jié)合等式左側(cè)兩邊同時加上4ab,則得到公式(a+b)2≥4ab,也就是基本不等式。
2. 基本不等式的解釋:
從式子來看,基本不等式的左邊是一個完全平方數(shù),即(a+b)2。右邊是4ab。又因為基本不等式中的變量a和b都是正實數(shù),所以無論a和b的大小關(guān)系如何,四倍的乘積4ab一定是大于等于a2+b2、即2ab的。因此,我們可以得到基本不等式的結(jié)論:(a+b)2≥4ab。
3. 基本不等式的應(yīng)用:
基本不等式有非常廣泛的應(yīng)用,其中一些典型的應(yīng)用場景包括以下幾種:
a. 使用基本不等式證明其他不等式:
比如,對于x、y兩個正實數(shù),我們可以將不等式(x-y)2≥0 化簡為x2+y2≥2xy 的形式,然后用上基本不等式,即可快速證明(x-y)2≥0 成立。
b. 使用基本不等式解決實際問題:
比如,用4米長的繩子圍成一個矩形獸欄,求獸欄能夠圍住的最大面積是多少? 我們可以將這個問題轉(zhuǎn)換為求:4m邊長的正方形對面提醒獸欄的最大面積問題。此時,我們可以利用基本不等式,推導(dǎo)出正方形的對角線最大長度即為4√2米,由此可以得出此時正方形的面積即為16平方米,也就是獸欄的最大面積。
c. 使用基本不等式驗證一些數(shù)學(xué)結(jié)論:
比如,我們可以利用基本不等式來驗證任意兩個正實數(shù)的平均數(shù)一定大于等于它們的幾何平均數(shù)。 具體的,對于兩個正實數(shù)a和b,我們可以推導(dǎo)得到:
(a+b)2≥4ab
(a+b)2/4≥ab
(√ab+√ab)2/4≥ab
(?ab) ≥ (a+b)/2
由此可得,兩個正實數(shù)的平均數(shù)一定大于等于它們的幾何平均數(shù),即( a+b)/2≥?ab。
二、基本不等式的應(yīng)用實例
1.題目描述:
小峰有若干元錢,他能夠涵蓋八天的生活物資開銷?,F(xiàn)在,他去買菜了,花掉了R元錢,求他能不能仍然用這筆錢過完余下的那幾天。
2.解題思路:
我們可以設(shè)小峰剩下的錢數(shù)為x,應(yīng)該取得一個不等式來表示這個問題。具體地,設(shè)日均消費為m(m 一定是小于R/x 和x/8之間較小數(shù)),則從第9天開始,小峰所存的錢應(yīng)數(shù)學(xué)表達(dá)式為:
x-R≥m*(8),
x≥m*(8)+R
這是一個關(guān)于x的不等式,為驗證其是否成立,我們需要對它進(jìn)行推導(dǎo)。為了推導(dǎo)方便,我們將不等式變形如下:
m*(8)+R≤x
然后,我們可以利用基本不等式將其化簡為如下形式:
(mx/?8)^2+(Rx/?8)^2≥2mRx/4
由于 x>0,所以令 t = x/?8,則上式化簡為:
(m/2)t^2+(R/2)^2≥tmR
或者
(t-R/m)^2+(m/2)^2≥R^2/ 4m^2
根據(jù)上面的式子,我們可以得出,只要 t≥R/m,即x≥m*(8)+R,則小峰就有足夠的錢過余下的幾天生活了。
3.綜述
基本不等式是非常重要的中學(xué)數(shù)學(xué)知識點,它不僅有較為實際的應(yīng)用場景,還能用于證明和推導(dǎo)其他數(shù)學(xué)結(jié)論。在學(xué)習(xí)基本不等式的時候,我們需要注意,對于不等式的變量,要理解它們所表示的實際含義和邏輯關(guān)系,從而更好地應(yīng)用基本不等式來解決實際問題。
不等式課件 篇6
本節(jié)課的研究是對初中不等式學(xué)習(xí)的延續(xù)和拓展,也是實數(shù)理論的進(jìn)一步發(fā)展.在本節(jié)課的學(xué)習(xí)過程中,將讓學(xué)生回憶實數(shù)的基本理論,并能用實數(shù)的基本理論來比較兩個代數(shù)式的大小.
通過本節(jié)課的學(xué)習(xí),讓學(xué)生從一系列的具體問題情境中,感受到在現(xiàn)實世界和日常生活中存在著大量的不等關(guān)系,并充分認(rèn)識不等關(guān)系的存在與應(yīng)用.對不等關(guān)系的相關(guān)素材,用數(shù)學(xué)觀點進(jìn)行觀察、歸納、抽象,完成量與量的比較過程.即能用不等式或不等式組把這些不等關(guān)系表示出來.
在本節(jié)課的學(xué)習(xí)過程中還安排了一些簡單的、學(xué)生易于處理的問題,其用意在于讓學(xué)生注意對數(shù)學(xué)知識和方法的應(yīng)用,同時也能激發(fā)學(xué)生的學(xué)習(xí)興趣,并由衷地產(chǎn)生用數(shù)學(xué)工具研究不等關(guān)系的愿望.根據(jù)本節(jié)課的教學(xué)內(nèi)容,應(yīng)用再現(xiàn)、回憶得出實數(shù)的基本理論,并能用實數(shù)的基本理論來比較兩個代數(shù)式的大小.
在本節(jié)教學(xué)中,教師可讓學(xué)生閱讀書中實例,充分利用數(shù)軸這一簡單的數(shù)形結(jié)合工具,直接用實數(shù)與數(shù)軸上點的一一對應(yīng)關(guān)系,從數(shù)與形兩方面建立實數(shù)的順序關(guān)系.要在溫故知新的基礎(chǔ)上提高學(xué)生對不等式的認(rèn)識.
1.在學(xué)生了解不等式產(chǎn)生的實際背景下,利用數(shù)軸回憶實數(shù)的基本理論,理解實數(shù)的大小關(guān)系,理解實數(shù)大小與數(shù)軸上對應(yīng)點位置間的關(guān)系.
2.會用作差法判斷實數(shù)與代數(shù)式的大小,會用配方法判斷二次式的大小和范圍.
3.通過溫故知新,提高學(xué)生對不等式的認(rèn)識,激發(fā)學(xué)生的學(xué)習(xí)興趣,體會數(shù)學(xué)的奧秘與數(shù)學(xué)的結(jié)構(gòu)美.
教學(xué)重點:比較實數(shù)與代數(shù)式的大小關(guān)系,判斷二次式的大小和范圍.
思路1.(章頭圖導(dǎo)入)通過多媒體展示衛(wèi)星、飛船和一幅山巒重疊起伏的壯觀畫面,它將學(xué)生帶入“橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同”的大自然和浩瀚的宇宙中,使學(xué)生在具體情境中感受到不等關(guān)系在現(xiàn)實世界和日常生活中是大量存在的,由此產(chǎn)生用數(shù)學(xué)研究不等關(guān)系的強(qiáng)烈愿望,自然地引入新課.
思路2.(情境導(dǎo)入)列舉出學(xué)生身體的高矮、身體的輕重、距離學(xué)校路程的遠(yuǎn)近、百米賽跑的時間、數(shù)學(xué)成績的多少等現(xiàn)實生活中學(xué)生身邊熟悉的事例,描述出某種客觀事物在數(shù)量上存在的不等關(guān)系.這些不等關(guān)系怎樣在數(shù)學(xué)上表示出來呢?讓學(xué)生自由地展開聯(lián)想,教師組織不等關(guān)系的相關(guān)素材,讓學(xué)生用數(shù)學(xué)的觀點進(jìn)行觀察、歸納,使學(xué)生在具體情境中感受到不等關(guān)系與相等關(guān)系一樣,在現(xiàn)實世界和日常生活中大量存在著.這樣學(xué)生會由衷地產(chǎn)生用數(shù)學(xué)工具研究不等關(guān)系的愿望,從而進(jìn)入進(jìn)一步的探究學(xué)習(xí),由此引入新課.
1回憶初中學(xué)過的不等式,讓學(xué)生說出“不等關(guān)系”與“不等式”的異同.怎樣利用不等式研究及表示不等關(guān)系?
2在現(xiàn)實世界和日常生活中,既有相等關(guān)系,又存在著大量的不等關(guān)系.你能舉出一些實際例子嗎?
3數(shù)軸上的任意兩點與對應(yīng)的兩實數(shù)具有怎樣的關(guān)系?
4任意兩個實數(shù)具有怎樣的關(guān)系?用邏輯用語怎樣表達(dá)這個關(guān)系?
活動:教師引導(dǎo)學(xué)生回憶初中學(xué)過的不等式概念,使學(xué)生明確“不等關(guān)系”與“不等式”的異同.不等關(guān)系強(qiáng)調(diào)的是關(guān)系,可用符號“>”“b”“a
教師與學(xué)生一起舉出我們?nèi)粘I钪胁坏汝P(guān)系的例子,可讓學(xué)生充分合作討論,使學(xué)生感受到現(xiàn)實世界中存在著大量的不等關(guān)系.在學(xué)生了解了一些不等式產(chǎn)生的實際背景的前提下,進(jìn)一步學(xué)習(xí)不等式的有關(guān)內(nèi)容.
實例1:某天的天氣預(yù)報報道,最高氣溫32 ℃,最低氣溫26 ℃.
實例2:對于數(shù)軸上任意不同的兩點A、B,若點A在點B的左邊,則xA
實例5:三角形兩邊之和大于第三邊,兩邊之差小于第三邊.
實例6:限速40 km/h的路標(biāo)指示司機(jī)在前方路段行駛時,應(yīng)使汽車的速度v不超過40 km/h.
實例7:某品牌酸奶的質(zhì)量檢查規(guī)定,酸奶中脂肪的含量f應(yīng)不少于2.5%,蛋白質(zhì)的含量p應(yīng)不少于2.3%.
教師進(jìn)一步點撥:能夠發(fā)現(xiàn)身邊的數(shù)學(xué)當(dāng)然很好,這說明同學(xué)們已經(jīng)走進(jìn)了數(shù)學(xué)這門學(xué)科,但作為我們研究數(shù)學(xué)的人來說,能用數(shù)學(xué)的眼光、數(shù)學(xué)的觀點進(jìn)行觀察、歸納、抽象,完成這些量與量的比較過程,這是我們每個研究數(shù)學(xué)的人必須要做的,那么,我們可以用我們所研究過的什么知識來表示這些不等關(guān)系呢?學(xué)生很容易想到,用不等式或不等式組來表示這些不等關(guān)系.那么不等式就是用不等號將兩個代數(shù)式連結(jié)起來所成的式子.如-71+4,2x≤6,a+2≥0,3≠4,0≤5等.
教師引導(dǎo)學(xué)生將上述的7個實例用不等式表示出來.實例1,若用t表示某天的氣溫,則26 ℃≤t≤32 ℃.實例3,若用x表示一個非負(fù)數(shù),則x≥0.實例5,|AC|+|BC|>|AB|,如下圖.
|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.
|AB|-|BC|
實例6,若用v表示速度,則v≤40 km/h.實例7,f≥2.5%,p≥2.3%.對于實例7,教師應(yīng)點撥學(xué)生注意酸奶中的脂肪含量與蛋白質(zhì)含量需同時滿足,避免寫成f≥2.5%或p≥2.3%,這是不對的.但可表示為f≥2.5%且p≥2.3%.
對以上問題,教師讓學(xué)生輪流回答,再用投影儀給出課本上的兩個結(jié)論.
討論結(jié)果:
(1)(2)略;(3)數(shù)軸上任意兩點中,右邊點對應(yīng)的實數(shù)比左邊點對應(yīng)的實數(shù)大.
(4)對于任意兩個實數(shù)a和b,在a=b,a>b,a0a>b;a-b=0a=b;a-b
活動:通過兩例讓學(xué)生熟悉兩個代數(shù)式的大小比較的基本方法:作差,配方法.
點評:本節(jié)兩例的求解,是借助因式分解和應(yīng)用配方法完成的,這兩種方法是代數(shù)式變形時經(jīng)常使用的方法,應(yīng)讓學(xué)生熟練掌握.
1.若f(x)=3x2-x+1,g(x)=2x2+x-1,則f(x)與g(x)的大小關(guān)系是( )
解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).
2.已知x≠0,比較(x2+1)2與x4+x2+1的大小.
解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.
∵x≠0,得x2>0.從而(x2+1)2>x4+x2+1.
例2比較下列各組數(shù)的大小(a≠b).
(1)a+b2與21a+1b(a>0,b>0);
(2)a4-b4與4a3(a-b).
活動:比較兩個實數(shù)的大小,常根據(jù)實數(shù)的運(yùn)算性質(zhì)與大小順序的關(guān)系,歸結(jié)為判斷它們的差的符號來確定.本例可由學(xué)生獨立完成,但要點撥學(xué)生在最后的符號判斷說理中,要理由充分,不可忽略這點.
解:(1)a+b2-21a+1b=a+b2-2aba+b=a+b2-4ab2a+b=a-b22a+b.
∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴a-b22a+b>0,即a+b2>21a+1b.
(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)
=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]
=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].
∵2a2+(a+b)2≥0(當(dāng)且僅當(dāng)a=b=0時取等號),
又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2]
∴a4-b4
點評:比較大小常用作差法,一般步驟是作差——變形——判斷符號.變形常用的手段是分解因式和配方,前者將“差”變?yōu)椤胺e”,后者將“差”化為一個或幾個完全平方式的“和”,也可兩者并用.
已知x>y,且y≠0,比較xy與1的大小.
活動:要比較任意兩個數(shù)或式的大小關(guān)系,只需確定它們的差與0的大小關(guān)系.
∵x>y,∴x-y>0.
當(dāng)y
當(dāng)y>0時,x-yy>0,即xy-1>0.∴xy>1.
點評:當(dāng)字母y取不同范圍的值時,差xy-1的正負(fù)情況不同,所以需對y分類討論.
例3建筑設(shè)計規(guī)定,民用住宅的窗戶面積必須小于地板面積.但按采光標(biāo)準(zhǔn),窗戶面積與地板面積的比值應(yīng)不小于10%,且這個比值越大,住宅的采光條件越好.試問:同時增加相等的窗戶面積和地板面積,住宅的采光條件是變好了,還是變壞了?請說明理由.
活動:解題關(guān)鍵首先是把文字語言轉(zhuǎn)換成數(shù)學(xué)語言,然后比較前后比值的大小,采用作差法.
解:設(shè)住宅窗戶面積和地板面積分別為a、b,同時增加的面積為m,根據(jù)問題的要求a
由于a+mb+m-ab=mb-abb+m>0,于是a+mb+m>ab.又ab≥10%,
因此a+mb+m>ab≥10%.
所以同時增加相等的窗戶面積和地板面積后,住宅的采光條件變好了.
點評:一般地,設(shè)a、b為正實數(shù),且a0,則a+mb+m>ab.
已知a1,a2,…為各項都大于零的等比數(shù)列,公比q≠1,則( )
C.a1+a8=a4+a5 D.a1+a8與a4+a5大小不確定
解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4
=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).
∵{an}各項都大于零,∴q>0,即1+q>0.
又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.
1.下列不等式:①a2+3>2a;②a2+b2>2(a-b-1);③x2+y2>2xy.其中恒成立的不等式的個數(shù)為( )
2.比較2x2+5x+9與x2+5x+6的大小.
答案:
1.C解析:∵②a2+b2-2(a-b-1)=(a-1)2+(b+1)2≥0,
③x2+y2-2xy=(x-y)2≥0.
∴只有①恒成立.
2.解:因為2x2+5x+9-(x2+5x+6)=x2+3>0,
所以2x2+5x+9>x2+5x+6.
1.教師與學(xué)生共同完成本節(jié)課的小結(jié),從實數(shù)的基本性質(zhì)的回顧,到兩個實數(shù)大小的比較方法;從例題的活動探究點評,到緊跟著的變式訓(xùn)練,讓學(xué)生去繁就簡,聯(lián)系舊知,將本節(jié)課所學(xué)納入已有的知識體系中.
2.教師畫龍點睛,點撥利用實數(shù)的基本性質(zhì)對兩個實數(shù)大小比較時易錯的地方.鼓勵學(xué)有余力的學(xué)生對節(jié)末的思考與討論在課后作進(jìn)一步的探究.
1.本節(jié)設(shè)計關(guān)注了教學(xué)方法的優(yōu)化.經(jīng)驗告訴我們:課堂上應(yīng)根據(jù)具體情況,選擇、設(shè)計最能體現(xiàn)教學(xué)規(guī)律的教學(xué)過程,不宜長期使用一種固定的教學(xué)方法,或原封不動地照搬一種實驗?zāi)J?各種教學(xué)方法中,沒有一種能很好地適應(yīng)一切教學(xué)活動.也就是說,世上沒有萬能的教學(xué)方法.針對個性,靈活變化,因材施教才是成功的施教靈藥.
2.本節(jié)設(shè)計注重了難度控制.不等式內(nèi)容應(yīng)用面廣,可以說與其他所有內(nèi)容都有交匯,歷來是高考的重點與熱點.作為本章開始,可以適當(dāng)開闊一些,算作拋磚引玉,讓學(xué)生有個自由探究聯(lián)想的平臺,但不宜過多向外拓展,以免對學(xué)生產(chǎn)生負(fù)面影響.
3.本節(jié)設(shè)計關(guān)注了學(xué)生思維能力的訓(xùn)練.訓(xùn)練學(xué)生的思維能力,提升思維的品質(zhì),是數(shù)學(xué)教師直面的重要課題,也是中學(xué)數(shù)學(xué)教育的主線.采用一題多解有助于思維的發(fā)散性及靈活性,克服思維的僵化.變式訓(xùn)練教學(xué)又可以拓展學(xué)生思維視野的廣度,解題后的點撥反思有助于學(xué)生思維批判性品質(zhì)的提升.
1.比較(x-3)2與(x-2)(x-4)的大小.
2.試判斷下列各對整式的大小:(1)m2-2m+5和-2m+5;(2)a2-4a+3和-4a+1.
5.設(shè)a>0,b>0,且a≠b,試比較aabb與abba的大小.
∴(x-3)2>(x-2)(x-4).
=m2.
∵m2≥0,∴(m2-2m+5)-(-2m+5)≥0.
∴m2-2m+5≥-2m+5.
=a2+2.
∵a2≥0,∴a2+2≥2>0.
∴a2-4a+3>-4a+1.
=x24,
又∵x>0,∴x24>0.
∴(1+x2)2>(1+x)2.
由x>0,得1+x2>1+x.
=(x-y)[(x2+y2)-(x+y)2]
=-2xy(x-y).
∵x0,x-y
∴-2xy(x-y)>0.
∴(x2+y2)(x-y)>(x2-y2)(x+y).
5.解:∵aabbabba=aa-bbb-a=(ab)a-b,且a≠b,
當(dāng)a>b>0時,ab>1,a-b>0,
則(ab)a-b>1,于是aabb>abba.
則(ab)a-b>1.
于是aabb>abb a.
綜上所述,對于不相等的正數(shù)a、b,都有aabb>abba.
不等式課件 篇7
《課題:實際問題與一元一次不等式》教學(xué)設(shè)計
【教學(xué)目標(biāo)】:
1.通過列一元一次不等式解決具有不等關(guān)系的實際問題,進(jìn)一步熟練掌握一元一次不等式的解法,體會不等式是解決實際問題的有效的數(shù)學(xué)模型。
2.通過應(yīng)用一元一次不等式解決實際問題,進(jìn)一步強(qiáng)化應(yīng)用數(shù)學(xué)的意識,從而使學(xué)生樂于接觸社會環(huán)境中的數(shù)學(xué)信息,談?wù)摂?shù)學(xué)話題,能夠在數(shù)學(xué)活動中發(fā)揮積極作用。
3.通過探究,增進(jìn)學(xué)生之間的配合,培養(yǎng)學(xué)生敢于面對困難和克服困難的勇氣,樹立學(xué)好數(shù)學(xué)的自信心。
【重點難點】:
重點:由實際問題中的不等關(guān)系列出不等式。
難點:列一元一次不等式描述實際問題中的不等關(guān)系
【教學(xué)過程】:
回顧舊知、引入新課
師:之前我們學(xué)習(xí)過利用一元一次方程解決生活中的銷售問題,現(xiàn)在李老師就來考考大家,請看第一題:
出示幻燈片1
1.一種商品標(biāo)價100元,按標(biāo)價的8折出售,若想單件商品獲利10元,設(shè)進(jìn)價為x元,則可列等式。
(學(xué)生解決并給出合理解釋)
師:那我們一起來回顧一下利用一元一次方程解決實際問題的基本步驟是什么?
學(xué)生回答后,教師總結(jié):
利用一元一次方程解決實際問題的一般步驟:
審、設(shè)、列、解、答
師:好!請看第二題:
2.一種商品標(biāo)價100元,按標(biāo)價的8折出售,若想單件商品獲利不低于10元,設(shè)進(jìn)價為x元,則。
師:相較于第一題,題目發(fā)生了什么變化?
學(xué)生抓住關(guān)鍵詞“不低于”,列出不等式。
師:找到不等關(guān)系,列一元一次不等式也是解決實際問題的常用方法。今天,我們就來學(xué)習(xí)實際問題與一元一次不等式。
出示幻燈片
2小組討論、探究新知
師:馬上就要過春節(jié)了,想要給自己準(zhǔn)備什么禮物?
師:老師也想給可愛的兒子買禮物,通過考察,已經(jīng)知道有兩家超市正在舉行優(yōu)惠活動,咱們一起去逛一逛,好不好?
出示幻燈片3
甲超市說:凡在本超市累計購買100元商品后,再購買的商品按原價的90%收費。
乙超市:凡在本超市累計購買50元商品后,再購買的商品按原價的95%收費
師:李老師覺得甲超市優(yōu)惠,因為打9折?你的意見呢?
(學(xué)生發(fā)表自己的意見)
師:剛才幾位同學(xué)表達(dá)了自己的觀點,可是這僅僅是我們的猜想,解決問題不能只靠猜想,運(yùn)用數(shù)學(xué)知識該如何解決這個問題呢?
出示幻燈片
4下面老師就把時間交給大家,4人一小組展開討論,到底該選擇哪家超市購買才能獲得更大優(yōu)惠?
(學(xué)生討論的過程中,教師主要巡視并和學(xué)生共同探究。)
經(jīng)過探討,小組形成初步想法,小組派代表分享討論結(jié)果,逐一解決列表達(dá)式、分類、建模列不等式、解不等式等題目中難點,教師以板書形式將結(jié)果呈現(xiàn)在黑板上,并引導(dǎo)學(xué)生補(bǔ)充,完善解題過程,并利用多媒體進(jìn)行展示。
學(xué)以致用 挑戰(zhàn)自我?guī)煟和瑢W(xué)們理解得非常到位!那么再碰到類似的問題你能解決了嗎?
出示幻燈片
5我校計劃在暑假期間組織學(xué)生到某地旅游,參加旅游的人數(shù)估計為10~25人,甲、乙兩家旅行社的服務(wù)質(zhì)量相同,且報價都是每人200元.經(jīng)過協(xié)商:甲旅行社表示可給予每位學(xué)生七五折優(yōu)惠;乙旅行社表示可先免去一位學(xué)生的旅游費用,其余學(xué)生八折優(yōu)惠.我校選擇哪一家旅行社支付的旅游費用較少?
學(xué)生獨立思考后進(jìn)行小組討論,選代表上黑板展示。
梳理過程 總結(jié)提高
教師引導(dǎo)學(xué)生回顧兩道題的解題過程,談?wù)劔@得的感悟,學(xué)生獨立思考片刻后進(jìn)行小組交流討論。
出示幻燈片6
回顧這個問題的解題過程,你有哪些感悟呢?
例如:我感受最深的是??
我感到最困難的是??
我發(fā)現(xiàn)生活中??
我學(xué)會了??
布置作業(yè) 測評反饋
出示幻燈片7
作業(yè):
一、在市場上收集兩種手機(jī)收費方式,幫爸爸(媽媽)選擇一種合適的消費方式.二、習(xí)題(134頁)1.(1)(2)5.
不等式課件 篇8
1.使學(xué)生感受到生活中存在著大量的不等關(guān)系,了解不等式和一元一次不等式的意義;
2.讓學(xué)生自發(fā)地尋找不等式的解,會在數(shù)軸上正確地表示出不等式的解集;
3.能夠根據(jù)題意準(zhǔn)確迅速地列出相應(yīng)的不等式。
1.通過汽車行駛過a地這一實例的研究,使學(xué)生體會到數(shù)學(xué)來源于生活,又服務(wù)于生活,培養(yǎng)學(xué)生“學(xué)數(shù)學(xué)、用數(shù)學(xué)”的意識;
2.經(jīng)歷由具體實例建立不等模型的過程,探究不等式的解與解集的不同意義的過程,滲透數(shù)形結(jié)合的思想。
㈢情感、態(tài)度、價值觀:
1.通過對不等式、不等式的解與解集的探究,引導(dǎo)學(xué)生在獨立思考的基礎(chǔ)上積極參與對數(shù)學(xué)問題的討論,培養(yǎng)他們的合作交流意識;
2.讓學(xué)生充分體會到生活中處處有數(shù)學(xué),并能將它們應(yīng)用到生活的各個領(lǐng)域中去。
3.培養(yǎng)學(xué)生類比的思想方法、數(shù)形結(jié)合的思想。
1.教學(xué)重點:不等式、一元一次不等式、不等式解與解集的意義;在數(shù)軸上正確地表示出不等式的解集;
2.教學(xué)難點:不等式解集的意義,根據(jù)題意列出相應(yīng)的不等式。
計算機(jī)、自制cai課件、實物投影儀、三角板等。
教師創(chuàng)設(shè)情境引入,學(xué)生交流探討;師生共同歸納;教師示范畫圖,課件交互式練習(xí)。
〖創(chuàng)設(shè)情境——從生活走向數(shù)學(xué)〗
[多媒體展示]“五·一黃金周”快要到了,蕪湖市某兩個商場為了促銷商品,推行以下促銷方案:①甲商場:購物不超過50元者,不優(yōu)惠;超過50元的,超過部分折優(yōu)惠。②乙商場:購物不超過100元者,不優(yōu)惠;超過100元的,超過部分九折優(yōu)惠。親愛的同學(xué),如果五·一期間,你去購物,選擇到哪個商場,才比較合算呢?
(以上教學(xué)內(nèi)容是向?qū)W生設(shè)疑,激發(fā)學(xué)生探索問題、研究問題的積極性,可以讓學(xué)生討論一會兒)
教師:要想正確地解決這個問題,我們大家就要學(xué)習(xí)第九章《不等式和不等式組》,學(xué)完本章的內(nèi)容后,我相信,聰明的你們一定都會作出正確的選擇,真正地做到既經(jīng)濟(jì)又實惠。
首先,我們來共同學(xué)習(xí)本章的第一節(jié)課——9.1.1節(jié)《不等式及其解集》
〖新課學(xué)習(xí)〗
學(xué)習(xí)目標(biāo):
1.能感受到生活中存在著大量的不等關(guān)系,了解不等式和一元一次不等式和意義;
2.會尋找不等式的解,會在數(shù)軸上正確地表示出不等式的解集;
3.能夠根據(jù)題意準(zhǔn)確迅速地列出相應(yīng)的不等式。
[多媒體展示一段動畫]:引例:一輛勻速行駛的汽車在11:20距離a地50千米,要在12:00之前駛過a地,車速應(yīng)滿足什么條件?
設(shè)車速是x千米/小時,
(1)從時間上看,汽車要在12:00之前駛過a地,則以這個速度行駛50千米所用的時間不到 小時,即
(2)從路程上看,汽車要在12:00之前駛過a地,則以這個速度行駛 小時的路程要超過50千米,即
請同學(xué)們觀察上面的兩個式子,式子左右兩邊的大小關(guān)系是怎樣的? 左右兩邊相等嗎?
在學(xué)生充分發(fā)表自己意見的基礎(chǔ)上,師生共同歸納得出:
用“>”或“<”號表示大小關(guān)系的式子叫做不等式;
用“≠”表示不等關(guān)系的式子也是不等式。
判斷下列式子中哪些是不等式,是不等式的請在題后的括號內(nèi)劃“√”,不是的請劃“×”
(1)3> 2????? (???? ) (2)2a+1> 0?? (???? )?? (3)a+b=b+a? (???? )
(4)x< 2x+1?? (???? )???? (5)x=2x-5??? (???? ) (6)2x+4x< 3x+1 (???? )????????? (7)15≠7+9? (???? )
上面的不等式中,有些不含未知數(shù),有些含有未知數(shù),大家把(2)、(4)、(6)式與(5)式類比,(5)式是一個一元一次方程,能不能給(2)、(4)、(6)式也起個名字呢?
含有一個未知數(shù), 未知數(shù)的次數(shù)是1的不等式,叫做一元一次不等式.
問題2:車速可以是78千米/小時嗎?75千米/小時呢? 72千米/小時呢?
問題3:我們曾經(jīng)學(xué)過“使方程兩邊相等的未知數(shù)的值就是方程的解”,那么我們可以把使不等式成立的未知數(shù)的值叫做什么呢?
(師生共同歸納)使不等式成立的未知數(shù)的值叫做不等式的解。
2.課堂練習(xí)二——動一動腦,動一動手,你一定能算得對。
76, 73, 79, 80, 74.9, 75.1, 90, 60
(學(xué)生做完后,師問):你還能找出這個不等式的其他的解嗎?這個不等式有多少個解?你從中發(fā)現(xiàn)了什么規(guī)律?
(學(xué)生討論后,師生共同總結(jié)):當(dāng)x>75時,不等式 x>50總成立;而當(dāng)x<75或x=75時,不等式 x>50不成立,這就是說,任何一個大于75的數(shù)都是不等式 x>50的解,這樣的解有無數(shù)個。因此,x>75表示了能使不等式 x>50成立的x的取值范圍,叫做不等式 x>50的解的集合,簡稱解集。
我們再回到前面的問題,經(jīng)過剛才的分析,可以知道,要使汽車在12:00之前駛過a地,車速必須大于75千米/小時。
一個含有未知數(shù)的不等式的所有的解,組成了這個不等式的解集。
4.在數(shù)軸上表示不等式的解集;
注意:在表示75的點上畫空心圓圈,表示不包括這一點.
5.課堂練習(xí)三——動一動腦,動一動手,你一定能算得對。
判斷下列數(shù)中哪些是不等式x+3>6的解? 哪些不是?
-4, -2.5,? 0,? 1,? 2.5,? 3,? 3.2,? 4.8,? 8,? 12
求不等式的解集的過程叫做解不等式。
7.課堂練習(xí)四——看誰算得最快最準(zhǔn)。
直接想出不等式的解集,并在數(shù)軸上表示出不等式的解集:
(1) x+3>6;??????? (2)2x<8;?? ?(3)x-2>0
解:(1)x>3;???????? (2)x<4;??? (3)x>2。
1.例用不等式表示:
(1)x與1的和是正數(shù);??????(2)的與的的差是負(fù)數(shù);
(3)的2倍與1的和大于3;(4)的一半與4的差小于的3倍.
解:(1)x+1>0;???????? (2)+b<0;
(3)2+1>3;????? (4)-4<3;
2.課堂練習(xí)五——看誰最列得又快又準(zhǔn)。
用不等式表示:
(1)是正數(shù);??????????(2)是負(fù)數(shù);
(3)與5的和小于7;??(4)與2的差大于-1;
(5)的4倍大于8;??????(6)的一半小于3.
答案;(1)>0;??????? (2)<0;?? (3)+5>0;
學(xué)生小結(jié),師生共同完善:
2.會尋找不等式的解,會在數(shù)軸上正確地表示出不等式的解集;
3.能夠根據(jù)題意準(zhǔn)確迅速地列出相應(yīng)的不等式。
不等式課件 篇9
不等式的性質(zhì)(2)教學(xué)目標(biāo)
1.知識與技能:理解不等式的性質(zhì),會解簡單的一元一次不等式,并能在數(shù)軸上表示出解集。
2.過程與方法:通過經(jīng)歷不等式性質(zhì)的簡單應(yīng)用,積累數(shù)學(xué)活動。通過獨立解題,進(jìn)一步理解不等式的性質(zhì),體會不等式性質(zhì)的價值。
3.情感態(tài)度和價值觀:認(rèn)識到通過觀察、實驗、類比可以獲得數(shù)學(xué)結(jié)論,體驗數(shù)學(xué)活動充滿著探索性和創(chuàng)造性。在獨立思考的基礎(chǔ)上,積極參與對數(shù)學(xué)問題的討論,敢于發(fā)表自己的觀點,學(xué)會分享別人的想法和結(jié)果,并重新審視自己的想法,能從交流中獲益。重點難點
1.重點:不等式的性質(zhì)及其解法. 2.難點:不等式性質(zhì)的探索及運(yùn)用.方法策略
啟發(fā)式教學(xué)法——以設(shè)問和疑問層層引導(dǎo),激發(fā)學(xué)生,啟發(fā)學(xué)生積極思考,培養(yǎng)和發(fā)展學(xué)生的抽象思維能力。
探究教學(xué)法——引導(dǎo)學(xué)生去疑;鼓勵學(xué)生去探; 激勵學(xué)生去思,培養(yǎng)學(xué)生的創(chuàng)造性思維和批判精神。教學(xué)過程:
一、梳理舊知,引出新課
問題1: 在前面的學(xué)習(xí)中,你學(xué)到了不等式的哪些性質(zhì)?(用文字語言敘述)(鼓勵學(xué)生回答問題,用電子白版顯示三條性質(zhì)的符號語言)問題2: 解一元一次方程最終的目的是把方程轉(zhuǎn)化成哪種形式?其主要的理論依據(jù)是什么?
(為問題3做鋪墊)
二、合作交流,探究新知
問題3: 利用不等式的性質(zhì)解下列不等式:
(1)x?7?26(2)3x?2x?1 2(3)x?50(4)?4x?3 3(類比著解一元一次方程的方法教師先解(1),并用數(shù)軸表示其解集,然后讓學(xué)生試解(2)(3)(4)并和同學(xué)交流,最后教師點評。)
思考1:(3)(4)的求解過程,類似于解方程的哪一步變形? 思考2:依據(jù)不等式性質(zhì)3解不等式時應(yīng)注意什么? 隨堂練習(xí):1.完成課本P119練習(xí)1 問題4: 2011年北京的最低氣溫是19℃,最高氣溫是28℃,你能把北京的氣溫用不等式表示出來嗎?
(符號“≥”讀作“大于或等于”,也可以說是“不小于”;符號“≤”讀作“小于或等于”,也可以說是“不大于”.形如a≥b或a≤b的式子也是不等式,它們具有類似前面所說的不等式的性質(zhì)).隨堂練習(xí):完成課本119頁練習(xí)2.問題5: 某長方體形狀的容器長5 cm,寬3 cm,高10 cm.容器內(nèi)原有水的高度為3cm,現(xiàn)準(zhǔn)備向它繼續(xù)注水.用V(單位:cm3)表示新注入水的體積,寫出V的取值范圍.(學(xué)生先合作探究,然后讓學(xué)生交流探究結(jié)果,最后老師講評并強(qiáng)調(diào)在解決實際問題的時候,要考慮取值的現(xiàn)實意義。)
三、歸納完善,豐富新知
1:如何利用不等式的性質(zhì)解簡單不等式? 2:依據(jù)不等式性質(zhì)3解不等式時應(yīng)注意什么? 3:請說明符號“≥”和“≤”的含義?
四、布置作業(yè)
必做題:P120第5,7,8題.選做題:P120第9題
不等式的課件收藏
經(jīng)驗時常告訴我們,做事要提前做好準(zhǔn)備。在幼兒教育工作中,我們都有會準(zhǔn)備一寫需要用到資料。資料包含著人類在社會實踐,科學(xué)實驗和研究過程中所匯集的經(jīng)驗。有了資料的協(xié)助我們的工作會變得更加順利!所以,關(guān)于幼師資料你究竟了解多少呢?小編現(xiàn)在推薦你閱讀一下不等式的課件收藏,相信能對大家有所幫助。
不等式的課件 篇1
基本不等式是初中數(shù)學(xué)比較重要的一個概念,對于求解不等式問題有非常大的作用。在教學(xué)中,老師可以通過多學(xué)示例,呈現(xiàn)形式多樣,讓學(xué)生深刻理解基本不等式的本質(zhì)和應(yīng)用,使學(xué)生在解決實際問題中靈活掌握相關(guān)知識。本文將結(jié)合基本不等式的定義、性質(zhì)和應(yīng)用,探討其相關(guān)主題。
一、基本不等式的定義和性質(zhì)
基本不等式是在解決實際問題時常用到的一種數(shù)學(xué)方法,它可以有效地幫助我們解決很多實際問題。在數(shù)學(xué)中,一般把基本不等式定義為,對于任何正整數(shù)a和b,有下列不等關(guān)系:
(a+b)^2>=4ab
這個不等式在初中數(shù)學(xué)中非常重要,我們還可以把它解釋成下面的形式:對于任何兩個正數(shù)a和b,有下列不等式:
a/b+b/a>=2
這個式子實際上就是基本不等式的一個特例,也說明了基本不等式中的a和b可以指任何兩個正數(shù)。
基本不等式的一些性質(zhì):
1、兩邊同時乘以正數(shù)或是開根號(即不改變不等關(guān)系的實質(zhì))是允許的。
2、當(dāng)a=b時等號成立。
3、當(dāng)a不等于b時,不等號成立。
這些性質(zhì)是我們用基本不等式時需要注意的幾個關(guān)鍵點。如果我們了解了這些基本的性質(zhì),就可以更加靈活地運(yùn)用基本不等式解決實際問題。
二、基本不等式的應(yīng)用
基本不等式的應(yīng)用非常廣泛,例如可以用它來解決以下問題:
1、證明
√(a^2+b^2)>=a/√2+b/√2
這個問題就可以使用基本不等式來證明,首先得到(a+b)^2>=2(a^2+b^2),將式子化簡可得√(a^2+b^2)>=a/√2+b/√2,這就是想要證明的結(jié)論。
2、解決一些最值問題。例如:如何使a+b的值最小?這個問題可以用基本不等式來解決,我們設(shè)a+b=k,那么a+b的平方就是k^2,代入基本不等式中可得出:
k^2>=4ab,即(a+b)^2>=4ab
這個不等式右邊是4ab,左邊則是(a+b)^2,因此a+b的值取得最小值時,應(yīng)當(dāng)使(a+b)^2=4ab,所以a=b,因此a+b的最小值就是2a或是2b。
3、證明一些平方和不等式的結(jié)論。例如:
(a/b)^2+(b/a)^2>=2
這個問題可以通過基本不等式進(jìn)行證明,首先我們設(shè)x=a/b,y=b/a,很顯然有x+y>=2,然后通過簡單的運(yùn)算可得:x^2+y^2>=2,也即(a/b)^2+(b/a)^2>=2。
綜上所述,基本不等式作為初中數(shù)學(xué)比較重要的一部分,其定義、性質(zhì)和應(yīng)用都與實際問題密切相關(guān)。在解決實際問題時,我們可以通過多學(xué)示例,靈活運(yùn)用基本不等式的性質(zhì)和應(yīng)用,進(jìn)而更好地理解其本質(zhì)和應(yīng)用,從而使初中數(shù)學(xué)知識更加牢固。
不等式的課件 篇2
(1)運(yùn)用問題的形式幫助學(xué)生整理全章的內(nèi)容,建立知識體系。
(2)在獨立思考的基礎(chǔ)上,鼓勵學(xué)生開展小組和全班的交流,使學(xué)生通過交流和反思加強(qiáng)對所學(xué)知識的理解和掌握,并逐步建立知識體系。
通過問題情境的設(shè)立,使學(xué)生再現(xiàn)已學(xué)知識,鍛煉抽象、概括的能力。解決問題
通過具體問題來體會知識間的聯(lián)系和學(xué)習(xí)本章所采用的主要思想方法。
通過獨立思考獲取學(xué)習(xí)的成功體驗,通過小組交流培養(yǎng)合作交流意識,通過大膽發(fā)表自己的觀點,增強(qiáng)自信心。
重點:對一元一次不等式基本性質(zhì)的掌握;理解不等式(組)解及解集的含義,會解簡單的一元一不等式(組),并會在數(shù)軸上表示其解集;會解相關(guān)的問題,建立起相關(guān)的知識體系。
不等式有哪些基本性質(zhì)?它與等式的性質(zhì)有什么相同和不同之處?
解一元一次不等式和解一元一次方程有什么異同?引導(dǎo)學(xué)生回憶解一元一次方程的步驟.比較兩者之間的不同學(xué)生舉例回答.
舉例說明在數(shù)軸上如何表示一元一不等式(組)的解集分組競賽.看哪一組出的題型好,全班一起解答.
舉例說明不等式、函數(shù)、方程的聯(lián)系.引導(dǎo)學(xué)生回憶函數(shù)的有關(guān)內(nèi)容.舉例說明三者之間的關(guān)系.小組討論,合作回答.函數(shù)性質(zhì)、圖象
小組交流、討論不等式和函數(shù)、函數(shù)和方程等之間的關(guān)系,分別舉例說明.
布置作業(yè)開動腦筋,勇于表達(dá)自己的'想法.
(1)在運(yùn)用所學(xué)知識解決具體問題的同時,加深對全章知識體系理解。
(2)發(fā)展學(xué)生抽象能力、推理能力和有條理表達(dá)自己想法的能力.
教學(xué)思考:
體會數(shù)學(xué)的應(yīng)用價值,并學(xué)會在解決問題過程中與他人合作.解決問題。在獨立思考的基礎(chǔ)上,積極參與問題的討論,從交流中學(xué)習(xí),并敢于發(fā)表自己的觀點和主張,同時尊重與理解別人的觀點。
情感態(tài)度與價值觀:
進(jìn)一步嘗試學(xué)習(xí)數(shù)學(xué)的成功體驗,認(rèn)識到不等式是解決實際問題的重要工具,逐漸形成對數(shù)學(xué)活動積極參與的意識。
重點:
對一元一次不等式基本性質(zhì)的掌握;理解不等式(組)解及解集的含義,會解簡單的一元一次不等式(組),并會在數(shù)軸上表示其解集;會解相關(guān)的問題,建立起相關(guān)的知識體系。
↓ ↓
安排一組練習(xí)讓學(xué)生充分充分討論解決.
(1)當(dāng)X取何值時,Y>0(2)當(dāng)X取何值時,Y=0(3)當(dāng)X取何值時,Y
3.某工人制造機(jī)器零件,如果每天比預(yù)定多做一件,那么8天所做零件超過100件;如果每天比預(yù)定少做一件,那么8天所做零件不到90件,這個工人預(yù)定每天做幾個零件?
不等式的課件 篇3
一元二次不等式是高中數(shù)學(xué)中的一個重要概念,是指一個帶有二次項的不等式。在數(shù)學(xué)學(xué)習(xí)中,我們經(jīng)常需要利用二次不等式來解決問題,掌握這個概念對于深入了解高中數(shù)學(xué)知識是至關(guān)重要的。因此,學(xué)習(xí)一元二次不等式是高中數(shù)學(xué)學(xué)習(xí)中的一大難點,需要認(rèn)真對待。
一元二次不等式的概念和性質(zhì)
一元二次不等式可以寫成如下形式:
ax2 + bx + c > 0
或
ax2 + bx + c
其中a、b、c都是實數(shù),a ≠ 0。
我們可以通過一些方法求出不等式的根,比如將其轉(zhuǎn)化為標(biāo)準(zhǔn)形式。將不等式變形,我們可以得到如下形式:
ax2 + bx
或
ax2 + bx > – c
然后,我們再用求一元二次方程根的方法求出不等式的解,就能夠得到它的解集。
對于不等式ax2 + bx + c > 0,其圖像為二次函數(shù)的上凸形,即開口向上的拋物線,而對于不等式ax2 + bx + c
一元二次不等式的解法
解一元二次不等式的方法有很多,下面我們介紹其中的兩種:
方法一:化為標(biāo)準(zhǔn)形式,再利用求一元二次方程根的方法求解。
方法二:利用符號法將不等式中的式子化簡,得到一系列不等式,然后將這些不等式求解即可。
實際上,解一元二次不等式還有很多其他的方法,比如絕對值法、圖形法等等。在解題時,我們要根據(jù)具體的情況選擇最合適的方法來求解。
一元二次不等式的應(yīng)用
一元二次不等式廣泛應(yīng)用于數(shù)學(xué)學(xué)習(xí)以及生活中的各個領(lǐng)域,比如物理學(xué)、經(jīng)濟(jì)學(xué)、社會學(xué)等。下面我們以生活中的一個例子來說明一元二次不等式的應(yīng)用。
假設(shè)你要購買一臺電視機(jī),商家提供了兩種方案供你選擇。方案一:首付1500元,每月還款100元;方案二:首付3500元,每月還款80元。那么,你需要比較兩個方案的總花費,來決定哪個方案更加劃算。
我們假設(shè)電視機(jī)的總價格為x元。那么,方案一的總花費為:
C1 = 1500 + 100×n
而方案二的總花費為:
C2 = 3500 + 80×n
這里n為分期的期數(shù),即你需要還款的總期數(shù)。為了比較兩種方案的劃算程度,我們可以列出一個一元二次不等式:
1500 + 100×n
經(jīng)過化簡,我們可以得到:
20n > 2000
n > 100
因此,當(dāng)還款期數(shù)大于100期時,方案一比方案二更加劃算。這個例子很好地展示了一元二次不等式的應(yīng)用,它能夠幫助我們在日常生活中做出明智的選擇,也能夠更加深入地理解數(shù)學(xué)知識。
總結(jié)
一元二次不等式是高中數(shù)學(xué)學(xué)習(xí)中的重要概念,它在數(shù)學(xué)中和生活中都有廣泛的應(yīng)用。學(xué)習(xí)一元二次不等式需要我們認(rèn)真對待,掌握其概念、性質(zhì)和解法,同時也需要我們理解其實際應(yīng)用,這樣才能夠更好地掌握高中數(shù)學(xué)的知識。
不等式的課件 篇4
本節(jié)課的研究是對初中不等式學(xué)習(xí)的延續(xù)和拓展,也是實數(shù)理論的進(jìn)一步發(fā)展.在本節(jié)課的學(xué)習(xí)過程中,將讓學(xué)生回憶實數(shù)的基本理論,并能用實數(shù)的基本理論來比較兩個代數(shù)式的大小.
通過本節(jié)課的學(xué)習(xí),讓學(xué)生從一系列的具體問題情境中,感受到在現(xiàn)實世界和日常生活中存在著大量的不等關(guān)系,并充分認(rèn)識不等關(guān)系的存在與應(yīng)用.對不等關(guān)系的相關(guān)素材,用數(shù)學(xué)觀點進(jìn)行觀察、歸納、抽象,完成量與量的比較過程.即能用不等式或不等式組把這些不等關(guān)系表示出來.
在本節(jié)課的學(xué)習(xí)過程中還安排了一些簡單的、學(xué)生易于處理的問題,其用意在于讓學(xué)生注意對數(shù)學(xué)知識和方法的應(yīng)用,同時也能激發(fā)學(xué)生的學(xué)習(xí)興趣,并由衷地產(chǎn)生用數(shù)學(xué)工具研究不等關(guān)系的愿望.根據(jù)本節(jié)課的教學(xué)內(nèi)容,應(yīng)用再現(xiàn)、回憶得出實數(shù)的基本理論,并能用實數(shù)的基本理論來比較兩個代數(shù)式的大小.
在本節(jié)教學(xué)中,教師可讓學(xué)生閱讀書中實例,充分利用數(shù)軸這一簡單的數(shù)形結(jié)合工具,直接用實數(shù)與數(shù)軸上點的一一對應(yīng)關(guān)系,從數(shù)與形兩方面建立實數(shù)的順序關(guān)系.要在溫故知新的基礎(chǔ)上提高學(xué)生對不等式的認(rèn)識.
1.在學(xué)生了解不等式產(chǎn)生的實際背景下,利用數(shù)軸回憶實數(shù)的基本理論,理解實數(shù)的大小關(guān)系,理解實數(shù)大小與數(shù)軸上對應(yīng)點位置間的關(guān)系.
2.會用作差法判斷實數(shù)與代數(shù)式的大小,會用配方法判斷二次式的大小和范圍.
3.通過溫故知新,提高學(xué)生對不等式的認(rèn)識,激發(fā)學(xué)生的學(xué)習(xí)興趣,體會數(shù)學(xué)的奧秘與數(shù)學(xué)的結(jié)構(gòu)美.
教學(xué)重點:比較實數(shù)與代數(shù)式的大小關(guān)系,判斷二次式的大小和范圍.
思路1.(章頭圖導(dǎo)入)通過多媒體展示衛(wèi)星、飛船和一幅山巒重疊起伏的壯觀畫面,它將學(xué)生帶入“橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同”的大自然和浩瀚的宇宙中,使學(xué)生在具體情境中感受到不等關(guān)系在現(xiàn)實世界和日常生活中是大量存在的,由此產(chǎn)生用數(shù)學(xué)研究不等關(guān)系的強(qiáng)烈愿望,自然地引入新課.
思路2.(情境導(dǎo)入)列舉出學(xué)生身體的高矮、身體的輕重、距離學(xué)校路程的遠(yuǎn)近、百米賽跑的時間、數(shù)學(xué)成績的多少等現(xiàn)實生活中學(xué)生身邊熟悉的事例,描述出某種客觀事物在數(shù)量上存在的不等關(guān)系.這些不等關(guān)系怎樣在數(shù)學(xué)上表示出來呢?讓學(xué)生自由地展開聯(lián)想,教師組織不等關(guān)系的相關(guān)素材,讓學(xué)生用數(shù)學(xué)的觀點進(jìn)行觀察、歸納,使學(xué)生在具體情境中感受到不等關(guān)系與相等關(guān)系一樣,在現(xiàn)實世界和日常生活中大量存在著.這樣學(xué)生會由衷地產(chǎn)生用數(shù)學(xué)工具研究不等關(guān)系的愿望,從而進(jìn)入進(jìn)一步的探究學(xué)習(xí),由此引入新課.
1回憶初中學(xué)過的不等式,讓學(xué)生說出“不等關(guān)系”與“不等式”的異同.怎樣利用不等式研究及表示不等關(guān)系?
2在現(xiàn)實世界和日常生活中,既有相等關(guān)系,又存在著大量的不等關(guān)系.你能舉出一些實際例子嗎?
3數(shù)軸上的任意兩點與對應(yīng)的兩實數(shù)具有怎樣的關(guān)系?
4任意兩個實數(shù)具有怎樣的關(guān)系?用邏輯用語怎樣表達(dá)這個關(guān)系?
活動:教師引導(dǎo)學(xué)生回憶初中學(xué)過的不等式概念,使學(xué)生明確“不等關(guān)系”與“不等式”的異同.不等關(guān)系強(qiáng)調(diào)的是關(guān)系,可用符號“>”“b”“a
教師與學(xué)生一起舉出我們?nèi)粘I钪胁坏汝P(guān)系的例子,可讓學(xué)生充分合作討論,使學(xué)生感受到現(xiàn)實世界中存在著大量的不等關(guān)系.在學(xué)生了解了一些不等式產(chǎn)生的實際背景的前提下,進(jìn)一步學(xué)習(xí)不等式的有關(guān)內(nèi)容.
實例1:某天的天氣預(yù)報報道,最高氣溫32 ℃,最低氣溫26 ℃.
實例2:對于數(shù)軸上任意不同的兩點A、B,若點A在點B的左邊,則xA
實例5:三角形兩邊之和大于第三邊,兩邊之差小于第三邊.
實例6:限速40 km/h的路標(biāo)指示司機(jī)在前方路段行駛時,應(yīng)使汽車的速度v不超過40 km/h.
實例7:某品牌酸奶的質(zhì)量檢查規(guī)定,酸奶中脂肪的含量f應(yīng)不少于2.5%,蛋白質(zhì)的含量p應(yīng)不少于2.3%.
教師進(jìn)一步點撥:能夠發(fā)現(xiàn)身邊的數(shù)學(xué)當(dāng)然很好,這說明同學(xué)們已經(jīng)走進(jìn)了數(shù)學(xué)這門學(xué)科,但作為我們研究數(shù)學(xué)的人來說,能用數(shù)學(xué)的眼光、數(shù)學(xué)的觀點進(jìn)行觀察、歸納、抽象,完成這些量與量的比較過程,這是我們每個研究數(shù)學(xué)的人必須要做的,那么,我們可以用我們所研究過的什么知識來表示這些不等關(guān)系呢?學(xué)生很容易想到,用不等式或不等式組來表示這些不等關(guān)系.那么不等式就是用不等號將兩個代數(shù)式連結(jié)起來所成的式子.如-71+4,2x≤6,a+2≥0,3≠4,0≤5等.
教師引導(dǎo)學(xué)生將上述的7個實例用不等式表示出來.實例1,若用t表示某天的氣溫,則26 ℃≤t≤32 ℃.實例3,若用x表示一個非負(fù)數(shù),則x≥0.實例5,|AC|+|BC|>|AB|,如下圖.
|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.
|AB|-|BC|
實例6,若用v表示速度,則v≤40 km/h.實例7,f≥2.5%,p≥2.3%.對于實例7,教師應(yīng)點撥學(xué)生注意酸奶中的脂肪含量與蛋白質(zhì)含量需同時滿足,避免寫成f≥2.5%或p≥2.3%,這是不對的.但可表示為f≥2.5%且p≥2.3%.
對以上問題,教師讓學(xué)生輪流回答,再用投影儀給出課本上的兩個結(jié)論.
討論結(jié)果:
(1)(2)略;(3)數(shù)軸上任意兩點中,右邊點對應(yīng)的實數(shù)比左邊點對應(yīng)的實數(shù)大.
(4)對于任意兩個實數(shù)a和b,在a=b,a>b,a0a>b;a-b=0a=b;a-b
活動:通過兩例讓學(xué)生熟悉兩個代數(shù)式的大小比較的基本方法:作差,配方法.
點評:本節(jié)兩例的求解,是借助因式分解和應(yīng)用配方法完成的,這兩種方法是代數(shù)式變形時經(jīng)常使用的方法,應(yīng)讓學(xué)生熟練掌握.
1.若f(x)=3x2-x+1,g(x)=2x2+x-1,則f(x)與g(x)的大小關(guān)系是( )
解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).
2.已知x≠0,比較(x2+1)2與x4+x2+1的大小.
解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.
∵x≠0,得x2>0.從而(x2+1)2>x4+x2+1.
例2比較下列各組數(shù)的大小(a≠b).
(1)a+b2與21a+1b(a>0,b>0);
(2)a4-b4與4a3(a-b).
活動:比較兩個實數(shù)的大小,常根據(jù)實數(shù)的運(yùn)算性質(zhì)與大小順序的關(guān)系,歸結(jié)為判斷它們的差的符號來確定.本例可由學(xué)生獨立完成,但要點撥學(xué)生在最后的符號判斷說理中,要理由充分,不可忽略這點.
解:(1)a+b2-21a+1b=a+b2-2aba+b=a+b2-4ab2a+b=a-b22a+b.
∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴a-b22a+b>0,即a+b2>21a+1b.
(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)
=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]
=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].
∵2a2+(a+b)2≥0(當(dāng)且僅當(dāng)a=b=0時取等號),
又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2]
∴a4-b4
點評:比較大小常用作差法,一般步驟是作差——變形——判斷符號.變形常用的手段是分解因式和配方,前者將“差”變?yōu)椤胺e”,后者將“差”化為一個或幾個完全平方式的“和”,也可兩者并用.
已知x>y,且y≠0,比較xy與1的大小.
活動:要比較任意兩個數(shù)或式的大小關(guān)系,只需確定它們的差與0的大小關(guān)系.
∵x>y,∴x-y>0.
當(dāng)y
當(dāng)y>0時,x-yy>0,即xy-1>0.∴xy>1.
點評:當(dāng)字母y取不同范圍的值時,差xy-1的正負(fù)情況不同,所以需對y分類討論.
例3建筑設(shè)計規(guī)定,民用住宅的窗戶面積必須小于地板面積.但按采光標(biāo)準(zhǔn),窗戶面積與地板面積的比值應(yīng)不小于10%,且這個比值越大,住宅的采光條件越好.試問:同時增加相等的窗戶面積和地板面積,住宅的采光條件是變好了,還是變壞了?請說明理由.
活動:解題關(guān)鍵首先是把文字語言轉(zhuǎn)換成數(shù)學(xué)語言,然后比較前后比值的大小,采用作差法.
解:設(shè)住宅窗戶面積和地板面積分別為a、b,同時增加的面積為m,根據(jù)問題的要求a
由于a+mb+m-ab=mb-abb+m>0,于是a+mb+m>ab.又ab≥10%,
因此a+mb+m>ab≥10%.
所以同時增加相等的窗戶面積和地板面積后,住宅的采光條件變好了.
點評:一般地,設(shè)a、b為正實數(shù),且a0,則a+mb+m>ab.
已知a1,a2,…為各項都大于零的等比數(shù)列,公比q≠1,則( )
C.a1+a8=a4+a5 D.a1+a8與a4+a5大小不確定
解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4
=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).
∵{an}各項都大于零,∴q>0,即1+q>0.
又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.
1.下列不等式:①a2+3>2a;②a2+b2>2(a-b-1);③x2+y2>2xy.其中恒成立的不等式的個數(shù)為( )
2.比較2x2+5x+9與x2+5x+6的大小.
答案:
1.C解析:∵②a2+b2-2(a-b-1)=(a-1)2+(b+1)2≥0,
③x2+y2-2xy=(x-y)2≥0.
∴只有①恒成立.
2.解:因為2x2+5x+9-(x2+5x+6)=x2+3>0,
所以2x2+5x+9>x2+5x+6.
1.教師與學(xué)生共同完成本節(jié)課的小結(jié),從實數(shù)的基本性質(zhì)的回顧,到兩個實數(shù)大小的比較方法;從例題的活動探究點評,到緊跟著的變式訓(xùn)練,讓學(xué)生去繁就簡,聯(lián)系舊知,將本節(jié)課所學(xué)納入已有的知識體系中.
2.教師畫龍點睛,點撥利用實數(shù)的基本性質(zhì)對兩個實數(shù)大小比較時易錯的地方.鼓勵學(xué)有余力的學(xué)生對節(jié)末的思考與討論在課后作進(jìn)一步的探究.
1.本節(jié)設(shè)計關(guān)注了教學(xué)方法的優(yōu)化.經(jīng)驗告訴我們:課堂上應(yīng)根據(jù)具體情況,選擇、設(shè)計最能體現(xiàn)教學(xué)規(guī)律的教學(xué)過程,不宜長期使用一種固定的教學(xué)方法,或原封不動地照搬一種實驗?zāi)J?各種教學(xué)方法中,沒有一種能很好地適應(yīng)一切教學(xué)活動.也就是說,世上沒有萬能的教學(xué)方法.針對個性,靈活變化,因材施教才是成功的施教靈藥.
2.本節(jié)設(shè)計注重了難度控制.不等式內(nèi)容應(yīng)用面廣,可以說與其他所有內(nèi)容都有交匯,歷來是高考的重點與熱點.作為本章開始,可以適當(dāng)開闊一些,算作拋磚引玉,讓學(xué)生有個自由探究聯(lián)想的平臺,但不宜過多向外拓展,以免對學(xué)生產(chǎn)生負(fù)面影響.
3.本節(jié)設(shè)計關(guān)注了學(xué)生思維能力的訓(xùn)練.訓(xùn)練學(xué)生的思維能力,提升思維的品質(zhì),是數(shù)學(xué)教師直面的重要課題,也是中學(xué)數(shù)學(xué)教育的主線.采用一題多解有助于思維的發(fā)散性及靈活性,克服思維的僵化.變式訓(xùn)練教學(xué)又可以拓展學(xué)生思維視野的廣度,解題后的點撥反思有助于學(xué)生思維批判性品質(zhì)的提升.
1.比較(x-3)2與(x-2)(x-4)的大小.
2.試判斷下列各對整式的大?。?1)m2-2m+5和-2m+5;(2)a2-4a+3和-4a+1.
5.設(shè)a>0,b>0,且a≠b,試比較aabb與abba的大小.
∴(x-3)2>(x-2)(x-4).
=m2.
∵m2≥0,∴(m2-2m+5)-(-2m+5)≥0.
∴m2-2m+5≥-2m+5.
=a2+2.
∵a2≥0,∴a2+2≥2>0.
∴a2-4a+3>-4a+1.
=x24,
又∵x>0,∴x24>0.
∴(1+x2)2>(1+x)2.
由x>0,得1+x2>1+x.
=(x-y)[(x2+y2)-(x+y)2]
=-2xy(x-y).
∵x0,x-y
∴-2xy(x-y)>0.
∴(x2+y2)(x-y)>(x2-y2)(x+y).
5.解:∵aabbabba=aa-bbb-a=(ab)a-b,且a≠b,
當(dāng)a>b>0時,ab>1,a-b>0,
則(ab)a-b>1,于是aabb>abba.
則(ab)a-b>1.
于是aabb>abb a.
綜上所述,對于不相等的正數(shù)a、b,都有aabb>abba.
不等式的課件 篇5
基本不等式是初中數(shù)學(xué)中重要的一章內(nèi)容,也是高中數(shù)學(xué)和競賽數(shù)學(xué)的基礎(chǔ)?;静坏仁降膶W(xué)習(xí)不僅有助于提高學(xué)生的數(shù)學(xué)素養(yǎng)和解題能力,同時也能幫助他們提高邏輯思維能力。本文旨在探討“基本不等式”這一主題。
一、基本不等式的定義與性質(zhì)
基本不等式是說:對于正實數(shù)x1,x2,…,xn,有
(x1+x2+…+xn)/n≥√(x1x2…xn),當(dāng)且僅當(dāng)x1=x2=…=xn時等號成立。
基本不等式的性質(zhì)有以下幾條:
(1)當(dāng)n為偶數(shù)時,等號成立;
(2)當(dāng)n為奇數(shù)時,當(dāng)且僅當(dāng)所有數(shù)相等時等號成立;
(3)兩個數(shù)的平均數(shù)不小于它們的幾何平均數(shù),即(a+b)/2≥√(ab),其中a,b均為正實數(shù)且a≠b;
(4)當(dāng)n≥3時,三個數(shù)的平均數(shù)不小于它們的幾何平均數(shù),即(a+b+c)/3≥√(abc),其中a,b,c均為正實數(shù)且a≠b≠c。
二、基本不等式的應(yīng)用
基本不等式作為一種重要的數(shù)學(xué)工具,可以應(yīng)用于眾多問題之中。以下是基本不等式的一些常見應(yīng)用。
1. 求和式的最小值
例題1:已知-x1+x2+x3+x4+x5=-18,其中x1,x2,x3,x4,x5均為正數(shù),并且x1+x2+x3+x4+x5≥5,則x1x2x3x4x5的最小值為多少?
解法:根據(jù)已知條件,設(shè)x1+x2+x3+x4+x5=5+m(其中m≥0),則有x1+x2+x3+x4+x5+m=5+2m。代入到基本不等式中可得:
(x1+x2+x3+x4+x5+m)/5≥√(x1x2x3x4x5)m/5≥√(x1x2x3x4x5)/5
移項得到x1x2x3x4x5≥1,則x1x2x3x4x5的最小值為1。
2. 比較函數(shù)大小
例題2:比較函數(shù)f(x)=√(a2+x2)+√(b2+(c-x)2)(a,b,c>0)在[0,c]上的最小和最大值。
解法:根據(jù)已知條件和基本不等式,將f(x)分解成兩個正數(shù)的平均數(shù)不小于它們的幾何平均數(shù)的形式,即
f(x)=[√(a2+x2)+√(b2+(c-x)2)]/2+1/2[√(a2+x2)+√(b2+(c-x)2)]
≥√[(√(a2+x2)×√(b2+(c-x)2)]+1/2(2c)
=√(a2+b2+c2+ab-ac-bc)+c
當(dāng)x=c/3時等號成立,即f(x)的最小值為√(a2+b2+c2+ab-ac-bc)+c,最大值為√(a2+b2+c2+ab+ac+bc)+c。
3. 求極限
例題3:已知數(shù)列{a_n}(n≥1)的通項公式為a_n=(√n+1)/(n+1),則求∑(n從1到∞)a_n的極限。
解法:根據(jù)基本不等式,有
a_1+a_2+…+a_n≥n(√(a_1a_2…a_n))^1/n
代入已知條件,可得:
a_1+a_2+…+a_n≥n[(√(1+1)×√(2+1)×…×√(n+1))/((1+1)×(2+1)×…×(n+1))]^(1/n)
= n[√(n+1)/2×1/3×…×1/(n+1)]^(1/n) =n[(n+1)/[2(n+1)]]^(1/n)
極限為1/2。
4. 求證不等式
例題4:已知a,b,c為正實數(shù),且a+b+c=1,證明∑(a/(1-a))≥3(a2+b2+c2)/(ab+bc+ca)。
解法:將不等式化簡,得:
∑(a/(1-a))≥3(a2+b2+c2)/(ab+bc+ca)
?(a/(1-a))+(b/(1-b))+(c/(1-c))≥3(a2+b2+c2)/(ab+bc+ca)
?(a/(1-a))+(b/(1-b))+(c/(1-c))≥3[(a+b+c)2-(ab+bc+ca)]/(ab+bc+ca)
由于a+b+c=1,有
(ab+bc+ca)≤a2+b2+c2,
(a/(1-a))+(b/(1-b))+(c/(1-c))≥(a+b+c)2/(a(1-a)+b(1-b)+c(1-c))≥3(a2+b2+c2)/(ab+bc+ca)
其中第一個不等式成立是因為當(dāng)a=b=c=1/3時,等號成立;第二個不等式用到了基本不等式的形式。
綜上所述,基本不等式是數(shù)學(xué)中的重要概念,掌握了基本不等式的定義、性質(zhì)和應(yīng)用方法,將有助于提高人們的數(shù)學(xué)素養(yǎng)和解題能力。在日常生活和學(xué)習(xí)中,要重視基本不等式的學(xué)習(xí)和應(yīng)用,逐步提高自己的數(shù)學(xué)水平。
不等式的課件 篇6
學(xué)生初步接觸了一點代數(shù)知識(如用字母表示定律,用符號表示數(shù)),是在學(xué)生學(xué)習(xí)了用字母表示數(shù)以后基礎(chǔ)上進(jìn)行學(xué)習(xí)。應(yīng)用方程是解決問題的基礎(chǔ),有關(guān)的幾個概念,教材只作描述不下定義。在教學(xué)設(shè)計中仍然把理念作為教學(xué)的重點,理解方程的意義,判斷“等式”和“方程”知道方程是一個“含有未知數(shù)的等式”,才有可能明確所謂解方程。
學(xué)生不夠活潑,學(xué)習(xí)積極性不是很高,學(xué)生數(shù)學(xué)基礎(chǔ)不好。方程對學(xué)生來說還是比較陌生的,在他們頭腦中還沒有過方程這樣的表象,所以授新課就要從學(xué)生原有的`基礎(chǔ)開始,因為在前面學(xué)習(xí)用字母表示數(shù)的這部分內(nèi)容時,有了基礎(chǔ),我想在學(xué)習(xí)簡易方程應(yīng)該沒什么大的問題。
1、使學(xué)生初步理解和辨析“等式”“不等式”的意義。
2、會按要求用方程表示出數(shù)量關(guān)系,
3、培養(yǎng)學(xué)生的觀察、比較、分析能力。
教學(xué)重點: 用字母表示常見的數(shù)量關(guān)系,會用方程的意義去判斷一個式子是否是方程。
教師介紹天平各部分名稱。讓學(xué)生操作當(dāng)天平兩端托盤的物體的質(zhì)量相等時,天平就會平衡,指針指向中。根據(jù)這這個原理來稱物體的質(zhì)量。(讓學(xué)生操作,激發(fā)學(xué)生的興趣,借助實物演示的優(yōu)勢。初步感受平衡與不平衡的表象)
1、實物演示,引出方程:
(1)在天平稱出100克的左邊空杯,讓學(xué)生觀察是否平衡,感受1只空杯=100克。
(2)往空杯里倒入果汁,另一邊加100克法碼,問學(xué)生發(fā)現(xiàn)了什么? (讓學(xué)生感受天平慢慢傾斜,水是未知數(shù))引出100+X>200,往右加100克法碼, 問:哪邊重些?(學(xué)生初步感受平衡和不平衡的表象) 問:怎樣用式子表示?100+X<300
(3)教學(xué)100+X=250 問:如果是天平平衡怎么辦?(讓學(xué)生討論交流平衡的方案)把100克法碼換成50克的砝碼,這時會怎樣?(引導(dǎo)學(xué)生觀察這時天平出現(xiàn)平衡), 問:現(xiàn)在兩邊的質(zhì)量怎樣?現(xiàn)在水有多重知道嗎?如果用字母X表示怎樣用式子表示?得出:100+X=250
示題:100+X<250100+X=2504X+50>10040+40=80 X÷2=45X-12=27
請學(xué)生觀察合作交流分類:
(一)引出(1)兩邊不相等,叫做不等式。(2)兩邊相等叫做等式。
(2)含有未知數(shù)的等式100+X=250 X÷2=4 揭示:(2)這樣的含有未知數(shù)等式叫做方程(通過分類,培養(yǎng)學(xué)生對方程意義的了解) 問:方程的具備條件是什么?(感知必須是等式,而一定含有未知數(shù))你能寫出一些方程嗎?(同桌交流檢查)
(三)練習(xí)判斷那些是方程?那些不是方程?
6+2X=14103+X250÷2=1256+X>251÷A=3X+Y=180 (讓學(xué)生加深對方程的意義的認(rèn)識,培養(yǎng)學(xué)生的判斷能力。)
教師:我們能夠判斷什么是方程了,方程和等式有很密切的關(guān)系,你能畫圖來表示他們的關(guān)系嗎?(小組合作討論交流)
方程 等式 (讓學(xué)生通過觀察、思考、分析、歸類,自主發(fā)現(xiàn)獲得對方程和等式的關(guān)系理解,同時初步滲透教學(xué)中的集合思想。)
不等式的課件 篇7
基本不等式作為高中數(shù)學(xué)必修內(nèi)容之一,在學(xué)生學(xué)習(xí)中扮演著極為重要的角色。本篇文章將圍繞基本不等式,探討它的概念、性質(zhì)、證明方法及應(yīng)用,并展示基本不等式的魅力和實用性。
一、基本不等式的概念
基本不等式是指對于任意正實數(shù) $a_1,a_2,\cdots,a_n$ 和任意正整數(shù) $n$,有以下不等式成立:
$\dfrac{a_1}{n}+\dfrac{a_2}{n}+\cdots+\dfrac{a_n}{n}\geq\sqrt[n]{a_1a_2\cdots a_n}$
這個不等式也被稱為均值不等式或AM-GM不等式。其中,$\dfrac{a_1}{n}+\dfrac{a_2}{n}+\cdots+\dfrac{a_n}{n}$ 表示這些數(shù)的算術(shù)平均值,而 $\sqrt[n]{a_1a_2\cdots a_n}$ 表示這些數(shù)的幾何平均值。均值不等式的意義在于,算術(shù)平均數(shù)大于等于幾何平均數(shù)。
二、基本不等式的性質(zhì)
基本不等式有以下幾個性質(zhì):
1. 當(dāng)且僅當(dāng) $a_1=a_2=\cdots=a_n$ 時等號成立。
2. 如果 $a_1,a_2,\cdots,a_n$ 中至少有一個數(shù)為 $0$,則 $\sqrt[n]{a_1a_2\cdots a_n}=0$,這時等號成立。
3. 基本不等式可以擴(kuò)展到實數(shù)范圍內(nèi)。
4. 均值不等式不等式對于大于 $0$ 的實數(shù)都成立。
三、基本不等式的證明方法
基本不等式有多種證明方法,下面列舉其中兩種:
方法一:數(shù)學(xué)歸納法
假設(shè)基本不等式對于 $n=k$ 時成立,即對于 $k$ 個正實數(shù) $a_1,a_2,\cdots,a_k$,有以下不等式成立:
$\dfrac{a_1}{k}+\dfrac{a_2}{k}+\cdots+\dfrac{a_k}{k}\geq\sqrt[k]{a_1a_2\cdots a_k}$
現(xiàn)證明它對于 $n=k+1$ 時也成立。將 $a_{k+1}$ 插入到原來的不等式中,得到:
$\dfrac{a_1}{k+1}+\dfrac{a_2}{k+1}+\cdots+\dfrac{a_k}{k+1}+\dfrac{a_{k+1}}{k+1}\geq\sqrt[k+1]{a_1a_2\cdots a_k a_{k+1}}$
由于:
$\dfrac{a_1}{k+1}+\dfrac{a_2}{k+1}+\cdots+\dfrac{a_k}{k+1}\geq\sqrt[k]{a_1a_2\cdots a_k}$
因此,我們只需證明以下不等式:
$\dfrac{(k+1)\sqrt[k]{a_1a_2\cdots a_k}\cdot a_{k+1}}{k+1}\geq\sqrt[k+1]{a_1a_2\cdots a_k a_{k+1}}$
經(jīng)過變形化簡,可以得到:
$\sqrt[k]{a_1a_2\cdots a_k} \geq \sqrt[k+1]{a_1a_2\cdots a_k a_{k+1}}$
顯然,這是成立的。
因此,按照歸納法的證明方式,基本不等式對于所有的正整數(shù) $n$ 都成立。
方法二:對數(shù)函數(shù)的應(yīng)用
對于 $a_1,a_2,\cdots,a_n$,我們可以定義函數(shù):
$f(x)=\ln{x}$
顯然,函數(shù) $f(x)$ 是連續(xù)的、單調(diào)遞增的。根據(jù)式子:
$\dfrac{a_1}{n}+\dfrac{a_2}{n}+\cdots+\dfrac{a_n}{n}\geq\sqrt[n]{a_1a_2\cdots a_n}$
可以得到:
$\ln\left(\dfrac{a_1}{n}\right)+\ln\left(\dfrac{a_2}{n}\right)+\cdots+\ln\left(\dfrac{a_n}{n}\right)\geq\dfrac{1}{n} (\ln a_1+\ln a_2+\cdots+\ln a_n)$
即:
$\ln\left(\sqrt[n]{a_1a_2\cdots a_n}\right)\leq\dfrac{\ln a_1+\ln a_2+\cdots+\ln a_n}{n}$
對于左邊的式子,有:
$\ln\left(\sqrt[n]{a_1a_2\cdots a_n}\right)=\dfrac{1}{n}\ln(a_1a_2\cdots a_n)$
對于右邊的式子,有:
$\dfrac{\ln a_1+\ln a_2+\cdots+\ln a_n}{n}=\ln\left(\sqrt[n]{a_1a_2\cdots a_n}\right)$
因此,我們可以得到:
$\ln(a_1a_2\cdots a_n)\geq n\ln\left(\sqrt[n]{a_1a_2\cdots a_n}\right)$
即:
$a_1a_2\cdots a_n\geq\left(\sqrt[n]{a_1a_2\cdots a_n}\right)^n$
這正是均值不等式的形式。因此,基本不等式得證。
四、基本不等式的應(yīng)用
基本不等式在數(shù)學(xué)和物理學(xué)中有廣泛的應(yīng)用。下面介紹幾個常見的應(yīng)用場景:
1. 最小值求解
如果有 $n$ 個正實數(shù) $a_1,a_2,\cdots,a_n$,它們的和為 $k$,求它們的積的最大值,即:
$\max(a_1a_2\cdots a_n)$
根據(jù)基本不等式,有:
$\dfrac{a_1+a_2+\cdots+a_n}{n}\geq\sqrt[n]{a_1a_2\cdots a_n}$
因此,可以得到:
$\dfrac{k}{n}\geq\sqrt[n]{a_1a_2\cdots a_n}$
兩邊同時取冪,可以得到:
$\dfrac{k^n}{n^n}\geq a_1a_2\cdots a_n$
即:
$\max(a_1a_2\cdots a_n)=\dfrac{k^n}{n^n}$
2. 凸函數(shù)的優(yōu)化問題
如果 $f(x)$ 是一個凸函數(shù),$a_1,a_2,\cdots,a_n$ 是正實數(shù),$b_1,b_2,\cdots,b_n$ 是任意實數(shù)且 $\sum_{i=1}^n b_i=1$,則有:
$f(b_1a_1+b_2a_2+\cdots+b_na_n)\leq b_1f(a_1)+b_2f(a_2)+\cdots+b_nf(a_n)$
這是凸函數(shù)的優(yōu)化問題中常用的基本不等式形式。它可以通過Jensen不等式或基本不等式證明。
3. 三角形求證
如果我們可以用 $a,b,c$ 表示一個三角形的三邊長,則有:
$\sqrt{(a+b+c)(a+b-c)(a-b+c)(-a+b+c)}\leq\dfrac{(a+b+c)^2}{4\sqrt{3}}$
這個不等式在三角形求證中也被廣泛應(yīng)用。
五、結(jié)語
基本不等式是高中數(shù)學(xué)必修內(nèi)容之一,但其實它的應(yīng)用范圍遠(yuǎn)不止于此。在實際問題中,基本不等式常常能給我們提供有效的解決方案。通過本文的介紹,希望讀者能夠更加深入地理解基本不等式的概念、性質(zhì)、證明方法及應(yīng)用,并能在實際問題中靈活運(yùn)用。
不等式的課件 篇8
關(guān)于基本不等式的主題范文:
基本不等式是數(shù)學(xué)中非常重要的一道課題,所以我們需要從以下幾個方面來對基本不等式進(jìn)行介紹。
一、基本不等式是什么
基本不等式是指數(shù)學(xué)中的一個重要定理,它表述的是任意正整數(shù)n及n個正數(shù)a1,a2,…,an的積與它們的和之間的關(guān)系。也就是說,對于任意正整數(shù)n和n個正數(shù)a1,a2,…,an,有以下不等式成立:
(a1+a2+…+an)/n ≥ (a1×a2×…×an)1/n
其中,等式成立當(dāng)且僅當(dāng)a1 = a2 = … = an。
二、基本不等式的證明
下面我們來看一下基本不等式的證明過程。
首先,如果我們令A(yù)i = nai和G = (a1 × a2 × … × an)1/n,則我們可以將原不等式轉(zhuǎn)化為:
(a1+a2+…+an)/n ≥ G
接下來,我們來看一下如果證明G ≤ (a1+a2+…+an)/n,那么我們就可以證明基本不等式,因為不等式具有對稱性,即如果G ≤ (a1+a2+…+an)/n,則(a1+a2+…+an)/n ≥ G也成立。
接下來,我們證明G ≤ (a1+a2+…+an)/n,即:
(a1+a2+…+an)/n ≥ (a1 × a2 × … × an)1/n
將不等式右邊兩邊平方,得到:
(a1+a2+…+an)/n ≥ (a1 × a2 × … × an)2/n
這時,我們來觀察右邊的式子,將式子中的每一項都乘以(n-1),得到:
(a1 × (n-1) + a2 × (n-1) + … + an × (n-1)) / n ≥ (a1 × a2 × … × an)2/n
繼續(xù)進(jìn)行簡化,得到:
[(a1 × (n-1)) + (a2 × (n-1)) + … + (an × (n-1))] / n ≥ (n-1) × a1 × a2 × … × an / n
左邊乘以1/n,右邊除以(n-1),得到:
(a1 + a2 + … + an) / n ≥ (a1 × a2 × … × an)1/n
這樣我們就完成了基本不等式的證明。
三、基本不等式在實際中的應(yīng)用
基本不等式在實際中的應(yīng)用非常廣泛,下面我們來看一下其中的幾個例子。
1. 求平均數(shù)
如果我們已知n個正數(shù)的積,需要求它們的平均數(shù),那么根據(jù)基本不等式,我們可以得到:
(a1 + a2 + … + an) / n ≥ (a1 × a2 × … × an)1/n
等式兩邊都乘以n-1,得到:
a1 + a2 + … + an ≥ (n-1) × (a1 × a2 × … × an)1/n
這樣我們就可以求得平均數(shù):
(a1 + a2 + … + an) / n ≥ (n-1) × (a1 × a2 × … × an)1/n / n
2. 求數(shù)列中n個數(shù)的積的最大值
假設(shè)我們需要從數(shù)列{a1, a2, …, an}中選取n個數(shù),求它們的積的最大值。根據(jù)基本不等式,我們有:
(a1 + a2 + … + an) / n ≥ (a1 × a2 × … × an)1/n
因為我們需要求積的最大值,所以當(dāng)?shù)仁阶筮叺暮颓『玫扔趎個數(shù)的積時,這個積才能取到最大值。因此,我們可以得到:
a1 = a2 = … = an
這樣,我們就得到了求數(shù)列中n個數(shù)的積的最大值的方法。
三、結(jié)論
通過對基本不等式的介紹,我們可以發(fā)現(xiàn)它不僅僅是一道看似簡單的數(shù)學(xué)題目,而是一個非常重要的定理,有著廣泛的應(yīng)用價值。希望大家能夠在今后的學(xué)習(xí)中更加重視基本不等式,并能夠深刻理解它的實際應(yīng)用。
不等式的課件 篇9
基本不等式是高中數(shù)學(xué)中重要的一部分,也是初學(xué)者比較難掌握的一個概念。通過學(xué)習(xí)基本不等式,可以幫助學(xué)生理解不等式的基本概念、性質(zhì)和運(yùn)算。同時,對于高中數(shù)學(xué),基本不等式還有很多相關(guān)的題型需要掌握,比如極值問題、夾逼定理等。本文將從基本不等式的定義開始,探討其相關(guān)概念、性質(zhì)和應(yīng)用。
一、基本不等式的定義
基本不等式是指對于任意正實數(shù)a、b,有以下不等式成立:
(a + b)2 ≥ 4ab
這個不等式也可以寫成:
a2 + b2 ≥ 2ab
這個不等式的含義是:對于任意兩個正實數(shù)a、b,它們的平均數(shù)一定大于等于它們的幾何平均數(shù)。
二、基本不等式的證明
對于任意實數(shù)x,y,可以用(x-y)2≥0來證明基本不等式:
(x-y)2≥0
x2-2xy+y2≥0
x2+y2≥2xy
將x換成a、y換成b,即可得到基本不等式。
三、基本不等式的相關(guān)概念
1. 等式條件:
當(dāng)且僅當(dāng)a=b時,等式成立。
2. 平均數(shù)與幾何平均數(shù):
平均數(shù)指的是兩個數(shù)的和的一半,即(a+b)/2;幾何平均數(shù)指的是兩個數(shù)的積的二分之一,即√(ab)。由于基本不等式的成立,可以得出平均數(shù)大于等于幾何平均數(shù)的結(jié)論。
3. 關(guān)于兩個數(shù)之和與兩個數(shù)的比值的關(guān)系:
從基本不等式得到如下兩個等式:
(a+b)2=4ab+(a-b)2;ab≥(a+b)/2
以上兩個式子給出了兩個關(guān)于兩個數(shù)之和與兩個數(shù)的比值的關(guān)系。
四、基本不等式的性質(zhì)
1. 交換律和結(jié)合律:基本不等式滿足交換律和結(jié)合律。
2. 反比例函數(shù):若f(x)=1/x,x>0,則f(a)+f(b)≤2f((a+b)/2)對于a,b>0成立。
3. 帶約束的基本不等式:若a,b>0,且a+b=k,則(a+b)/2≥√(ab),即k/2≥√(ab)。
五、基本不等式的應(yīng)用
1. 求證夾逼定理:如果a1≤b1≤c1,且a2≤b2≤c2,則(a1a2+b1b2+c1c2)/3≥(a1b2+b1c2+c1a2)/3≥√(a1b1c1a2b2c2)。
2. 判斷一個二次函數(shù)的最大值或最小值:由于二次函數(shù)的導(dǎo)數(shù)為一次函數(shù),可以通過求導(dǎo)得到函數(shù)的極值。而基本不等式可以用于判斷二次函數(shù)的極值點是否合理,即是否在定義域內(nèi)。
3. 算術(shù)平均數(shù)和幾何平均數(shù)之間的關(guān)系:通過基本不等式可以證明,當(dāng)兩個數(shù)的和固定時,它們的平均數(shù)越大,它們的幾何平均數(shù)就越小。
總的來說,基本不等式是高中數(shù)學(xué)不可缺少的一部分,不僅在考試中占有重要地位,而且還具有很重要的理論意義。希望本文對初學(xué)者掌握基本不等式有所幫助。
不等式的課件 篇10
教學(xué)目標(biāo):
1.一元一次不等式與一次函數(shù)的關(guān)系.
2.會根據(jù)題意列出函數(shù)關(guān)系式,畫出函數(shù)圖象,并利用不等關(guān)系進(jìn)行比較.
1.通過一元一次不等式與一次函數(shù)的圖象之間的結(jié)合,培養(yǎng)學(xué)生的數(shù)形結(jié)合意識.
2.訓(xùn)練大家能利用數(shù)學(xué)知識去解決實際問題的能力.
體驗數(shù)、圖形是有效地描述現(xiàn)實世界的重要手段,認(rèn)識到數(shù)學(xué)是解決問題和進(jìn)行交流的重要工具,了解數(shù)學(xué)對促進(jìn)社會進(jìn)步和發(fā)展人類理性精神的作用.
自己根據(jù)題意列函數(shù)關(guān)系式,并能把函數(shù)關(guān)系式與一元一次不等式聯(lián)系起來作答.
1.張大爺買了一個手機(jī),想辦理一張電話卡,開米廣場移動通訊公司業(yè)務(wù)員對張大爺介紹說:移動通訊公司開設(shè)了兩種有關(guān)神州行的通訊業(yè)務(wù):甲類使用者先繳15元基礎(chǔ)費,然后每通話1分鐘付話費0.2元;乙類不交月基礎(chǔ)費,每通話1分鐘付話費0.3元。你能幫幫張大爺選擇一種電話卡嗎?
2.展示學(xué)習(xí)目標(biāo):
(1)、理解一次函數(shù)圖象與一元一次不等式的關(guān)系。
(2)、能夠用圖像法解一元一次不等式。
(3)、理解兩種方法的關(guān)系,會選擇適當(dāng)?shù)姆椒ń庖辉淮尾坏仁健?/p>
積極思考,嘗試回答問題,導(dǎo)出本節(jié)課題。
閱讀學(xué)習(xí)目標(biāo),明確探究方向。
問題1:結(jié)合函數(shù)y=2x-5的圖象,觀察圖象回答下列問題:
問題2:如果y=-2x-5,那么當(dāng)x取何值時,y>0?當(dāng)x取何值時,y
巡回每個小組之間,鼓勵學(xué)生用不同方法進(jìn)行嘗試,尋找最佳方案。答疑展示中存在的問題。
問題3.兄弟倆賽跑,哥哥先讓弟弟跑9m,然后自己才開始跑,已知弟弟每秒跑3m,哥哥每秒跑4m,列出函數(shù)關(guān)系式,畫出函數(shù)圖象,觀察圖象回答下列問題:
(1)何時哥哥分追上弟弟?
(2)何時弟弟跑在哥哥前面?
(3)何時哥哥跑在弟弟前面?
(4)誰先跑過20m?誰先跑過100m?
你是怎樣求解的?與同伴交流。
問題4:已知y1=-x+3,y2=3x-4,當(dāng)x取何值時,y1>y2?你是怎樣做的?與同伴交流.
讓學(xué)生體會數(shù)形結(jié)合的魅力所在。理解函數(shù)和不等式的聯(lián)系。
移動通訊公司開設(shè)了兩種長途通訊業(yè)務(wù):全球通使用者先繳50元基礎(chǔ)費,然后每通話1分鐘付話費0.4元;神州行不交月基礎(chǔ)費,每通話1分鐘付話費0.6元。若設(shè)一個月內(nèi)通話x分鐘,兩種通訊方式的費用分別為y1元和y2元,那么
(1)寫出y1、y2與x之間的函數(shù)關(guān)系式;
(2)在同一直角坐標(biāo)系中畫出兩函數(shù)的圖象;
(3)求出或?qū)で蟪鲆粋€月內(nèi)通話多少分鐘,兩種通訊方式費用相同;
(4)若某人預(yù)計一個月內(nèi)使用話費200元,應(yīng)選擇哪種通訊方式較合算?
在共同探究的過程中加強(qiáng)理解,體會數(shù)學(xué)在生活中的重大應(yīng)用,進(jìn)行能力提升。
積極完成導(dǎo)學(xué)案上的檢測內(nèi)容,相互點評。
學(xué)生回顧總結(jié)學(xué)習(xí)收獲,交流學(xué)習(xí)心得。
教材P51.習(xí)題2.6知識技能1;問題解決2,3.
一、學(xué)習(xí)與探究:
1.一元一次不等式與一次函數(shù)之間的關(guān)系;
2.做一做(根據(jù)函數(shù)圖象求不等式);
四、課后作業(yè):
$,則 $\sqrt[n]{a_1a_2\cdots a_n}=0$,這時等號成立。
3. 基本不等式可以擴(kuò)展到實數(shù)范圍內(nèi)。
4. 均值不等式不等式對于大于 id="article-content1">
不等式課件
發(fā)布時間:2023-09-29 不等式課件 2023不等式課件14篇。
經(jīng)驗時常告訴我們,做事要提前做好準(zhǔn)備。在平日里的學(xué)習(xí)中,幼兒園教師時常會提前準(zhǔn)備好有用的資料。資料可以指人事物的相關(guān)多類信息、情報。有了資料才能更好地安排接下來的學(xué)習(xí)工作!你是否收藏了一些有用的幼師資料內(nèi)容呢?以下是由小編為大家整理的“2023不等式課件14篇”,僅供參考,歡迎大家閱讀。
不等式課件 篇1
七年級數(shù)學(xué)不等式課件
教學(xué)目標(biāo):
通過對具體實例的學(xué)習(xí),使學(xué)生能夠了解生活中的不等量關(guān)系,理解不等式的概念,知道什么是不等式的解,為以后學(xué)習(xí)不等式的解法奠定基礎(chǔ).
知識與能力:
1.通過對具體事例的分析和探索,得到生活中不等量的關(guān)系.
2.通過理解得到不等式的概念,從而使學(xué)生經(jīng)歷實際問題中數(shù)量的分析、抽象過程,體會現(xiàn)實中有各種各樣錯綜復(fù)雜的數(shù)量關(guān)系.
3.了解不等式的意義,知道不等式是用來刻畫生活中的數(shù)量關(guān)系的.
4.知道什么是不等式的解.
過程與方法:
1.引導(dǎo)學(xué)生分析具體事例,從對具體事例的分析中得到不等量關(guān)系.
2.引導(dǎo)并幫助學(xué)生列出不等式,分析不等式的成立條件.
3.通過分析、抽象得到不等式的概念和不等式的解的概念.
4.通過習(xí)題鞏固和加深對概念的理解.
情感、態(tài)度與價值觀:
1.通過學(xué)生的分析和抽象過程使他們體會現(xiàn)實中錯綜復(fù)雜的數(shù)量關(guān)系,然后從而培養(yǎng)其抽象思維能力.
2.通過分組討論學(xué)習(xí),體會在解決具體問題的過程中與他人合作的重要性,培養(yǎng)學(xué)生的團(tuán)體協(xié)作精神,使學(xué)生獲得合作交流的學(xué)習(xí)方式.
3.通過聯(lián)系與發(fā)展、對立與統(tǒng)一的思考方法對學(xué)生進(jìn)行辯證唯物主義教育.
4.通過創(chuàng)設(shè)問題串,讓學(xué)生仔細(xì)觀察、對比、歸納、整理,嘗試對有理數(shù)進(jìn)行分類,然后體驗教學(xué)活動充滿著探索性和創(chuàng)造性.
教學(xué)重、難點及教學(xué)突破
重點:不等式的概念和不等式的解的概念.
難點:對文字表述的數(shù)量關(guān)系能列出不等式.
教學(xué)突破:由于學(xué)生在以前已經(jīng)對數(shù)量的大小關(guān)系和含數(shù)字的不等式有所了解,但還沒有接觸過含未知數(shù)的不等式,在學(xué)生分析問題的時候注意引入現(xiàn)實中大量存在的數(shù)量間的不等關(guān)系,研究它們的變化規(guī)律,使學(xué)生知道用不等式解決實際問題的方便之處.在本節(jié)的教學(xué)中能夠在組織學(xué)生討論的過程中適當(dāng)?shù)貪B透變量的知識,讓學(xué)生感受其中的函數(shù)思想,并引導(dǎo)學(xué)生發(fā)現(xiàn)不等式的解與方程的解之間的區(qū)別.在處理本節(jié)難點時指導(dǎo)學(xué)生練習(xí)有理數(shù)和代數(shù)式的知識,準(zhǔn)確“譯出”不等式.
教學(xué)過程:
一.研究問題:
世紀(jì)公園的票價是:每人5元,一次購票滿30張可少收1元.某班有27名少先隊員去世公園進(jìn)行活動.當(dāng)領(lǐng)隊王小華準(zhǔn)備好了零錢到售票處買了27張票時,愛動腦的李敏同紀(jì)學(xué)喊住了王小華,提議買30張票.但有的同學(xué)不明白.明明只有27個人,買30張票,豈不浪費嗎?
那么,究竟李敏的提議對不對呢?是不是真的浪費呢
二.新課探究:
分析上面的問題:設(shè)有x人要進(jìn)世紀(jì)公園,①若x≥30,應(yīng)該如何買票?②若x
結(jié)論:至少要有多少人進(jìn)公園時,買30張票才合算?
概括:1、不等式的定義:表示不等關(guān)系的式子,叫做不等式.不等式用符號>,
2、不等式的解:能使不等式成立的未知數(shù)的值,叫做不等式的解.
3、不等式的分類:⑴恒不等式:-71+4,a+2>a+1.
⑵條件不等式:x+3>6,a+2>3,y-3>-5.
三、基礎(chǔ)訓(xùn)練.
例1、用不等式表示:⑴a是正數(shù);⑵b不是負(fù)數(shù);⑶c是非負(fù)數(shù);⑷x的平方是非負(fù)數(shù);⑸x的一半小于-1;⑹y與4的和不小于3.
注:⑴不等式表示代數(shù)式之間的不相等關(guān)系,與方程表示相等關(guān)系相對應(yīng);
⑵研究不等關(guān)系列不等式的重點是抓關(guān)鍵詞,弄清不等關(guān)系.
例2、用不等式表示:⑴a與1的和是正數(shù);⑵x的2倍與y的3倍的差是非負(fù)數(shù);⑶x的2倍與1的和大于—1;⑷a的一半與4的差的絕對值不小于a.
例3、當(dāng)x=2時,不等式x-1
注:⑴檢驗字母的值能否使不等式成立,只要代入不等式的左右兩邊,如果符合不等號所表示的關(guān)系,就成立,否則就不成立.⑵代入法是檢驗不等式的解的重要方法.
學(xué)生練習(xí):課本P42練習(xí)1、2、3.
四、能力拓展
學(xué)校組織學(xué)生觀看電影,某電影院票價每張12元,50人以上(含50人)的團(tuán)體票可享受8折優(yōu)惠,現(xiàn)有45名學(xué)生一起到電影院看電影,為享受8折優(yōu)惠,必須按50人購團(tuán)體票.
⑴請問他們購買團(tuán)體票是否比不打折而按45人購票便宜;
⑵若學(xué)生到該電影院人數(shù)不足50人,應(yīng)至少有多少人買團(tuán)體票比不打折而按實際人數(shù)購票便宜.
解:⑴按實際45人購票需付錢_________ 元,然后如果按50人購買團(tuán)體票則需付錢50×12×80%=480元,所以購買團(tuán)體票便宜.
⑵設(shè)有x人到電影院觀看電影,當(dāng)x_____時,按實際人數(shù)買票______張,需付款_______元,而按團(tuán)體票購票需付款________元,如果買團(tuán)體票合算,那么應(yīng)有不等式________________,
由①得,當(dāng)x=45時,上式成立,讓我們再取一些數(shù)據(jù)試一試,將結(jié)果填入下表:
x12x比較480與12x的大小48
由上表可見,至少要__________人時進(jìn)電影院,購團(tuán)體票才合算.
五、小結(jié):
⑴不等式的定義,不等式的'解.
⑵對實際問題中探索得到的不等式的解,然后不僅要滿足數(shù)學(xué)式子,而且要注意實際意義.
六、作業(yè)課本P42習(xí)題8.1第1、2、3題.
補(bǔ)充題:
1.用不等式表示:
(1)與1的和是正數(shù);(2)的與的的差是非負(fù)數(shù);
(3)的2倍與1的和大于3;(4)的一半與4的差的絕對值不小于.
(5)的2倍減去1不小于與3的和;(6)與的平方和是非負(fù)數(shù);
(7)的2倍加上3的和大于-2且小于4;(8)減去5的差的絕對值不大于
2.小李和小張決定把省下的零用錢存起來.這個月小李存了168元,然后小張存了85元.下個月開始小李每月存16元,小張每月存25元.問幾個月后小張的存款數(shù)能超過小李?(試根據(jù)題意列出不等式,并參照教科書中問題1的探索,找出所列不等式的解)
3.某公司在甲、乙兩座倉庫分別有農(nóng)用車12輛和6輛,現(xiàn)需要調(diào)往A縣10輛,調(diào)往B縣8輛,已知從甲倉庫調(diào)運(yùn)一輛農(nóng)用車到A縣和B縣的運(yùn)費分別為40元和80元,然后從乙倉庫調(diào)運(yùn)一輛農(nóng)用車到A縣和B縣的運(yùn)費分別為30元和50元,(1)設(shè)從乙倉庫調(diào)往A縣農(nóng)用車輛,用含的代數(shù)式表示總運(yùn)費W元;(2)請你用嘗試的方法,探求總運(yùn)費不超過900元,共有幾種調(diào)運(yùn)方案?你能否求出總運(yùn)費最低的調(diào)運(yùn)方案.
不等式課件 篇2
(1)本節(jié)內(nèi)容,是在學(xué)習(xí)了用方程思想解決實際問題和一元一次不等式的性質(zhì)及其解法等知識的基礎(chǔ)上,把實際問題和一元一次不等式結(jié)合在一起,既是對已學(xué)知識的運(yùn)用和深化,又為今后用不等式組解決實際問題以及更廣泛的應(yīng)用數(shù)學(xué)建模的思想方法奠定基礎(chǔ),具有在代數(shù)學(xué)中承上啟下的作用;
(2)通過本節(jié)的學(xué)習(xí),學(xué)生將繼續(xù)經(jīng)歷把生活中的數(shù)和數(shù)量關(guān)系轉(zhuǎn)化為數(shù)學(xué)符號的體驗過程,體會不等式和方程一樣都是刻畫現(xiàn)實世界數(shù)量關(guān)系的重要模型。
(3)在列不等式解決實際問題的探索過程中,引導(dǎo)學(xué)生注意估算意識,體會算式結(jié)果所對應(yīng)的實際意義,滲透建立數(shù)學(xué)模型,分類討論等數(shù)學(xué)思想,對提升學(xué)生應(yīng)用數(shù)學(xué)意識思考和解決問題的能力起到積極的作用。
對于用不等式解決實際問題,學(xué)生容易出現(xiàn)的認(rèn)知困難主要有兩個方面:①哪類的實際問題需要用一元一次不等式來解決;②如何將實際問題轉(zhuǎn)化為一元一次不等式并加以解決。
根據(jù)以上的分析和《數(shù)學(xué)課程標(biāo)準(zhǔn)》對本課內(nèi)容的教學(xué)要求,本節(jié)課的教學(xué)重點是:一元一次不等式在決策類實際問題中的應(yīng)用;難點是:如何將實際問題中的數(shù)量關(guān)系符號化,并根據(jù)解集和結(jié)合實際情況分類討論得出合理結(jié)論。
根據(jù)本課教材的特點、《數(shù)學(xué)課程標(biāo)準(zhǔn)》對本節(jié)課的教學(xué)要求以及學(xué)生的認(rèn)知水平,我從三個方面確定了以下教學(xué)目標(biāo):
1、能進(jìn)一步熟練的解一元一次不等式,能從實際問題中抽象出不等關(guān)系的數(shù)學(xué)模型,并結(jié)合解集解決簡單的實際問題。
2、通過觀察、實踐、討論等活動,積累利用一元一次不等式解決實際問題的經(jīng)驗,提高分類考慮、討論問題的能力,感知方程與不等式的內(nèi)在聯(lián)系,體會不等式和方程同樣都是刻畫現(xiàn)實世界數(shù)量關(guān)系的重要模型。
3、在積極參與數(shù)學(xué)學(xué)習(xí)活動的過程中,體會實事求是的態(tài)度和從數(shù)學(xué)的角度思考問題的習(xí)慣;學(xué)會在解決困難時,與其他同學(xué)交流,相互啟發(fā),培養(yǎng)合作精神。
根據(jù)教學(xué)內(nèi)容、教學(xué)目標(biāo)和學(xué)生的認(rèn)知水平,我主要采取教師啟發(fā)引導(dǎo),學(xué)生自主探究的教學(xué)方法.教學(xué)過程中,創(chuàng)設(shè)適當(dāng)?shù)慕虒W(xué)情境,引導(dǎo)學(xué)生獨立思考、共同探究,使學(xué)生經(jīng)歷將生活中的數(shù)和數(shù)量關(guān)系轉(zhuǎn)化為數(shù)學(xué)符號的具體建模過程,體會不等式作為刻畫現(xiàn)實世界數(shù)量關(guān)系的重要模型的價值。
教學(xué)中使用多媒體投影、計算機(jī)輔助教學(xué),目的是充分發(fā)揮其快捷、生動、形象的特點,為學(xué)生提供直觀感性的材料,有助于學(xué)生對問題的關(guān)注和理解,激發(fā)學(xué)生的學(xué)習(xí)興趣.
為了達(dá)到本節(jié)課的教學(xué)目標(biāo),突出重點,突破難點,我把教學(xué)過程通過兩個實際問題逐步深入;最后歸納小結(jié),布置作業(yè).具體過程如下:
1、課題引入:
我們以前已經(jīng)學(xué)過了一元一次方程以及二元一次方程組的解法,并在解決許多實際問題的過程中感受到:將相等關(guān)系用數(shù)學(xué)符號抽象后所得到的“方程”確實是一種有效數(shù)學(xué)工具,它能讓我們的思維過程更加準(zhǔn)確和簡明!
但是,生活中除了相等的數(shù)量關(guān)系以外,還存在著大量的不等關(guān)系,通過前幾節(jié)課的學(xué)習(xí),我們也已經(jīng)基本了解了不等式的性質(zhì)和簡單不等式的解法。今天,就讓我們通過一些帶有選擇“決策”意義的實際問題來共同探討一下一元一次不等式這種數(shù)學(xué)模型是如何解決生活中的實際問題的。
實際情景1:在為我校初一年級學(xué)生選定營養(yǎng)餐的過程中選中了有兩家公司.
這兩家公司某種適合初一學(xué)生的營養(yǎng)餐的報價均是是6.5元/份,營養(yǎng)含量和服務(wù)承諾也均相同,且都表示對學(xué)生優(yōu)惠:甲公司表示每份按報價的90%收費,乙公司表示購買100份以上的部分按報價的80%收費.
結(jié) 合新課標(biāo)對本小節(jié)的要求:會用一元一次不等式解決簡單的實際問題,我選擇的是從數(shù)量關(guān)系上與教材例題類似的收費問題,并且真實數(shù)值與所在年級事情相一致,比書上的例題更能貼近學(xué)生的實際生活,引發(fā)學(xué)生探求的`興趣。特別的,通常此類題目是不給出具體單價的,因為并不影響最后結(jié)論,考慮到學(xué)生現(xiàn)階段的數(shù)學(xué)抽象 仍以識別數(shù)量的具體含義為主,所以我在此處添加了單價,并增設(shè)了問題一,用以降低抽象思維的梯度,為后續(xù)的設(shè)未知數(shù)的“代數(shù)化抽象”作適當(dāng)?shù)匿亯|。
問題(1)請你判斷,我們年級580人用餐,應(yīng)該選擇哪家公司能讓每位學(xué)生的餐費平均算來更低呢?
預(yù)案 一:教師應(yīng)關(guān)注學(xué)生能否在討論中認(rèn)清“每位學(xué)生的餐費平均算來更低”所對應(yīng)的數(shù)量意義,將之轉(zhuǎn)化為“付給公司的總金額少”。在此處不排除學(xué)生因生活經(jīng)歷的缺乏,而對題目中所隱含的數(shù)量關(guān)系抽象能力弱。應(yīng)關(guān)注每一位同學(xué)的感受,讓同學(xué)們充分理解交流,擴(kuò)大參與思考的廣度,獲得基本抽象思維的生長點。
預(yù)案二:在進(jìn)行甲乙公司所需費用的計算時,會有分部計算和綜合計算兩種計算形式,對于那些列綜合算式的同學(xué),教師應(yīng)多給予展示機(jī)會,從而幫助其他同學(xué)整理思路,理解算式的實際含義;為后續(xù)的字母抽象做好鋪墊。具體計算學(xué)生可以合理使用計算器提高課堂速度。
預(yù)案三:學(xué)生還有可能不通過計算,直接猜測甲公司合算或者乙公司合算,對于這種有可能產(chǎn)生的聲音,教師應(yīng)從估算的角度加以引導(dǎo)。引導(dǎo)學(xué)生體會在580人的前提下,超過100人部分(480人)的甲公司是九折乙公司是八折, 10%的差距,;100人以內(nèi)(少于100人)甲公司九折,乙公司不打折10%的差距,480的10%明顯大于100的10%,所以選乙合算,并引導(dǎo)學(xué)生用計算的方法驗證估算的準(zhǔn)確性。
結(jié)論:580人時選擇乙公司能讓每位學(xué)生的餐費平均算來更低。
問題(2)你能否用以前學(xué)過的知識,在不知道具體人數(shù)的前提下制定一套方案,當(dāng)其他學(xué)校的初一年級也想在這兩家公司之間進(jìn)行選擇時,不用重復(fù)第一題的計算過程,只要知道人數(shù)就馬上能根據(jù)你方案的結(jié)論作出決策呢?
結(jié)合以前的訓(xùn)練,學(xué)生很容易想到要通過設(shè)未知數(shù)的方法進(jìn)行符號表達(dá),將非常關(guān)鍵而題目中并未給出的學(xué)生人數(shù)設(shè)為未知數(shù)。由于本題的具體分析過程仍然是由學(xué)生分析討論完成,可能出現(xiàn)的情況是:
預(yù)案一:一部分綜合能力較強(qiáng)的同學(xué)會根據(jù)實際意義直接列出綜合算式:或
此處教師應(yīng)該引導(dǎo)學(xué)生觀察,在化簡不等式的過程中單價并未影響結(jié)果(利用不等式性質(zhì)二將其作為公倍數(shù)約去),即:題目中沒有具體的單價也不會影響本題的決策。
還可以結(jié)合小學(xué)單位一的思想化簡不等式,引導(dǎo)學(xué)生體會并不是題目中出現(xiàn)的所有數(shù)量都會影響不等關(guān)系,有可能引發(fā)學(xué)生的關(guān)于數(shù)量關(guān)系的深層次思考。
預(yù)案 二:還有一部分學(xué)生會因為生活經(jīng)驗少的關(guān)系,綜合思考能力弱,無法快速的理清數(shù)量關(guān)系,列出綜合算式,思考受阻,教師應(yīng)引導(dǎo)學(xué)生體會在第一題的算式意義的提示下,如何分別列出表達(dá)甲乙公司所需總費用的過程量代數(shù)式。然后在通過將之用不等號連接的方式,來表達(dá)兩筆費用的大小,降低因綜合性所引起的思維梯度, 在過程中讓學(xué)生體會“分步建?!钡乃季S的條理性。
問題(1)如果你是該企業(yè)的高級管理人員,請你設(shè)計該企業(yè)在購買設(shè)備時兩種型號有幾種不同的組合方案;
問題(2)若按固定產(chǎn)量預(yù)算企業(yè)每月產(chǎn)生的污水量約為20xx噸,為了節(jié)約資金,應(yīng)選擇哪種購買方案?
實際情景2的選擇除涉及“角色扮演”和“環(huán)保”等人文因素的考慮以外,在在結(jié)合本節(jié)的教學(xué)目標(biāo)上還有如下考慮,
1、 本題取材于真實的實際生活問題,情景中的符號和數(shù)量關(guān)系較多,不等關(guān)系在文字語言的敘述中顯得比第一題更加隱蔽,需要學(xué)生更深化的思考才能列出算式,是在第一個情景的基礎(chǔ)上的擴(kuò)展和深化。
2、 在學(xué)生的討論過程中,教師應(yīng)注重引導(dǎo)學(xué)生體會,用圖表表示的數(shù)字信息比文字表達(dá)更便于觀察和有序思考,感受“有序表達(dá)”在實際中的價值。
3、 結(jié)合本題每一個的具體問題的分析和解決,學(xué)生必須要從表格中分析篩選相關(guān)的有用數(shù)據(jù),(例如:在第一問設(shè)計方案時未用到“處理污水量”和“年消耗費”,在第二問中未用到“價格”和“年消耗費”)這種分析和篩選的思考經(jīng)歷將有助于加強(qiáng)學(xué)生對數(shù)據(jù)關(guān)系的理解和運(yùn)用能力。
結(jié)合以前的訓(xùn)練,在思考問題(1)學(xué)生很容易想到要通過設(shè)A型或B型設(shè)備的
例如:(1)設(shè)購買污水處理設(shè)備A型 臺,則B型(10 – )臺,由題意知:
在此處,將“限額為105萬元”轉(zhuǎn)化為“≤105”是學(xué)生要突破的第一關(guān),教師應(yīng)在次處多展示同學(xué)的對“限額為105萬元”語言解釋,盡可能多的在具有不同經(jīng)歷基礎(chǔ)的同學(xué)心中將這個抽象過程生活化、自然化。
因為在實際情景中往往要根據(jù)未知數(shù)所代表的具體含義為未知數(shù)的加一個取值范圍的限定,而這個隱含的限制條件往往是學(xué)生中所不容易考慮到的,教師應(yīng)注意引導(dǎo)學(xué)生注意這一問題,
例如:本題中的 是設(shè)備的臺數(shù),應(yīng)用非負(fù)整數(shù)的限制,所以 可取0、1、2,因此有三種購買方案:
①購A型0臺,B型10臺;
②購A型1臺,B型9臺;
③購A型2臺,B型8臺。
此處細(xì)節(jié)性的思考經(jīng)歷,有助于提高學(xué)生在建模過程中更全面的考慮數(shù)值的實際意義,促進(jìn)抽象符號與具體意義在頭腦中的融合。
特別的,此處的“0”是學(xué)生最容易忽視和丟掉的,教師在此處應(yīng)重點引導(dǎo)學(xué)生思考當(dāng)“ ”時,往往是企業(yè)最可能選的方案,因為不同的設(shè)備涉及到不同的維護(hù)問題,單一品種的設(shè)備往往更便于管理,這種思考有助于發(fā)散學(xué)生的思維,促進(jìn)其結(jié)合實際作更全面的思考。
問題(2)的思維梯度較前幾個問題進(jìn)一步加大,學(xué)生必須理解“節(jié)約資金”這個目的的達(dá)成 一定是在“完成任務(wù)”的前提下的,要先通過對(1)中所得的三套方案是否能完成任務(wù)加以討論和驗證,然后再涉及計算哪個方案費用更低的問題
在驗證三套方案的可行性時,收思維方式的局限,學(xué)生往往會選擇逐一列舉計算的討論方式,并且由于數(shù)量少,很容易得出答案,教師可引導(dǎo)學(xué)生思考,如果滿足(1)的方案不是三種,而是三十種呢?三百種呢?除了逐一討論以外還有沒有什么更好的方式能幫助我們迅速縮小范圍呢?引導(dǎo)學(xué)生將所買設(shè)備能否完成任務(wù)量轉(zhuǎn)化為如下不等關(guān)系:
(2)同(1)所設(shè)購買污水處理設(shè)備A型 臺,則B型(10 – )臺,
240 +200(10 – )≥20xx;
因此為了節(jié)約資金,應(yīng)選購A型1臺,B型9臺。
此處的分析和引導(dǎo)有助于學(xué)生體會不等式在有效縮小討論范圍時的實際價值。
通過以上問題的解決,學(xué)生對不等式和方程一樣都是刻畫現(xiàn)實世界數(shù)量關(guān)系的重要模型有了進(jìn)一部的認(rèn)識,并感受到不等式確實是從實際問題中提出,又為解決實際問題提供明確的幫助有效數(shù)學(xué)工具。
本階段通過學(xué)習(xí)小結(jié)進(jìn)行課堂教學(xué)的反饋,組織和指導(dǎo)學(xué)生歸納知識、技能、方法,深化對數(shù)學(xué)思想方法的認(rèn)識,為后續(xù)學(xué)習(xí)打好基礎(chǔ)。
不等式課件 篇3
(1)本節(jié)內(nèi)容,是在學(xué)習(xí)了用方程思想解決實際問題和一元一次不等式的性質(zhì)及其解法等知識的基礎(chǔ)上,把實際問題和一元一次不等式結(jié)合在一起,既是對已學(xué)知識的運(yùn)用和深化,又為今后用不等式組解決實際問題以及更廣泛的應(yīng)用數(shù)學(xué)建模的思想方法奠定基礎(chǔ),具有在代數(shù)學(xué)中承上啟下的作用;
(2)通過本節(jié)的學(xué)習(xí),學(xué)生將繼續(xù)經(jīng)歷把生活中的數(shù)和數(shù)量關(guān)系轉(zhuǎn)化為數(shù)學(xué)符號的體驗過程,體會不等式和方程一樣都是刻畫現(xiàn)實世界數(shù)量關(guān)系的重要模型。
(3)在列不等式解決實際問題的探索過程中,引導(dǎo)學(xué)生注意估算意識,體會算式結(jié)果所對應(yīng)的實際意義,滲透建立數(shù)學(xué)模型,分類討論等數(shù)學(xué)思想,對提升學(xué)生應(yīng)用數(shù)學(xué)意識思考和解決問題的能力起到積極的作用。
對于用不等式解決實際問題,學(xué)生容易出現(xiàn)的認(rèn)知困難主要有兩個方面:①哪類的實際問題需要用一元一次不等式來解決;②如何將實際問題轉(zhuǎn)化為一元一次不等式并加以解決。
根據(jù)以上的分析和《數(shù)學(xué)課程標(biāo)準(zhǔn)》對本課內(nèi)容的教學(xué)要求,本節(jié)課的教學(xué)重點是:一元一次不等式在決策類實際問題中的應(yīng)用;難點是:如何將實際問題中的數(shù)量關(guān)系符號化,并根據(jù)解集和結(jié)合實際情況分類討論得出合理結(jié)論。
根據(jù)本課教材的特點、《數(shù)學(xué)課程標(biāo)準(zhǔn)》對本節(jié)課的教學(xué)要求以及學(xué)生的認(rèn)知水平,我從三個方面確定了以下教學(xué)目標(biāo):
1.能進(jìn)一步熟練的解一元一次不等式,能從實際問題中抽象出不等關(guān)系的數(shù)學(xué)模型,并結(jié)合解集解決簡單的實際問題。
2.通過觀察、實踐、討論等活動,積累利用一元一次不等式解決實際問題的經(jīng)驗,提高分類考慮、討論問題的能力,感知方程與不等式的內(nèi)在聯(lián)系,體會不等式和方程同樣都是刻畫現(xiàn)實世界數(shù)量關(guān)系的重要模型。
3.在積極參與數(shù)學(xué)學(xué)習(xí)活動的過程中,體會實事求是的態(tài)度和從數(shù)學(xué)的角度思考問題的習(xí)慣;學(xué)會在解決困難時,與其他同學(xué)交流,相互啟發(fā),培養(yǎng)合作精神。
三、教學(xué)方法的選擇
根據(jù)教學(xué)內(nèi)容、教學(xué)目標(biāo)和學(xué)生的認(rèn)知水平,我主要采取教師啟發(fā)引導(dǎo),學(xué)生自主探究的教學(xué)方法.教學(xué)過程中,創(chuàng)設(shè)適當(dāng)?shù)慕虒W(xué)情境,引導(dǎo)學(xué)生獨立思考、共同探究,使學(xué)生經(jīng)歷將生活中的數(shù)和數(shù)量關(guān)系轉(zhuǎn)化為數(shù)學(xué)符號的具體建模過程,體會不等式作為刻畫現(xiàn)實世界數(shù)量關(guān)系的重要模型的價值,
教學(xué)中使用多媒體投影、計算機(jī)輔助教學(xué),目的是充分發(fā)揮其快捷、生動、形象的特點,為學(xué)生提供直觀感性的材料,有助于學(xué)生對問題的.關(guān)注和理解,激發(fā)學(xué)生的學(xué)習(xí)興趣.
為了達(dá)到本節(jié)課的教學(xué)目標(biāo),突出重點,突破難點,我把教學(xué)過程通過兩個實際問題逐步深入;最后歸納小結(jié),布置作業(yè).具體過程如下:
1、課題引入:
我們以前已經(jīng)學(xué)過了一元一次方程以及二元一次方程組的解法,并在解決許多實際問題的過程中感受到:將相等關(guān)系用數(shù)學(xué)符號抽象后所得到的“方程”確實是一種有效數(shù)學(xué)工具,它能讓我們的思維過程更加準(zhǔn)確和簡明!
但是,生活中除了相等的數(shù)量關(guān)系以外,還存在著大量的不等關(guān)系,通過前幾節(jié)課的學(xué)習(xí),我們也已經(jīng)基本了解了不等式的性質(zhì)和簡單不等式的解法。今天,就讓我們通過一些帶有選擇“決策”意義的實際問題來共同探討一下一元一次不等式這種數(shù)學(xué)模型是如何解決生活中的實際問題的。
實際情景1:在為我校初一年級學(xué)生選定營養(yǎng)餐的過程中選中了有兩家公司.
這兩家公司某種適合初一學(xué)生的營養(yǎng)餐的報價均是是6.5元/份,營養(yǎng)含量和服務(wù)承諾也均相同,且都表示對學(xué)生優(yōu)惠:甲公司表示每份按報價的90%收費,乙公司表示購買100份以上的部分按報價的80%收費.
結(jié) 合新課標(biāo)對本小節(jié)的要求:會用一元一次不等式解決簡單的實際問題,我選擇的是從數(shù)量關(guān)系上與教材例題類似的收費問題,并且真實數(shù)值與所在年級事情相一致,比書上的例題更能貼近學(xué)生的實際生活,引發(fā)學(xué)生探求的興趣。特別的,通常此類題目是不給出具體單價的,因為并不影響最后結(jié)論,考慮到學(xué)生現(xiàn)階段的數(shù)學(xué)抽象 仍以識別數(shù)量的具體含義為主,所以我在此處添加了單價,并增設(shè)了問題一,用以降低抽象思維的梯度,為后續(xù)的設(shè)未知數(shù)的“代數(shù)化抽象”作適當(dāng)?shù)匿亯|。
問題(1)請你判斷,我們年級580人用餐,應(yīng)該選擇哪家公司能讓每位學(xué)生的餐費平均算來更低呢?
預(yù)案 一:教師應(yīng)關(guān)注學(xué)生能否在討論中認(rèn)清“每位學(xué)生的餐費平均算來更低”所對應(yīng)的數(shù)量意義,將之轉(zhuǎn)化為“付給公司的總金額少”。在此處不排除學(xué)生因生活經(jīng)歷的缺乏,而對題目中所隱含的數(shù)量關(guān)系抽象能力弱。應(yīng)關(guān)注每一位同學(xué)的感受,讓同學(xué)們充分理解交流,擴(kuò)大參與思考的廣度,獲得基本抽象思維的生長點。
預(yù)案二:在進(jìn)行甲乙公司所需費用的計算時,會有分部計算和綜合計算兩種計算形式,對于那些列綜合算式的同學(xué),教師應(yīng)多給予展示機(jī)會,從而幫助其他同學(xué)整理思路,理解算式的實際含義;為后續(xù)的字母抽象做好鋪墊。具體計算學(xué)生可以合理使用計算器提高課堂速度。
預(yù)案三:學(xué)生還有可能不通過計算,直接猜測甲公司合算或者乙公司合算,對于這種有可能產(chǎn)生的聲音,教師應(yīng)從估算的角度加以引導(dǎo)。引導(dǎo)學(xué)生體會在 580人的前提下,超過100人部分(480人)的甲公司是九折乙公司是八折, 10%的差距,;100人以內(nèi)(少于100人)甲公司九折,乙公司不打折10%的差距,480的10%明顯大于100的10%,所以選乙合算,并引導(dǎo)學(xué)生用計算的方法驗證估算的準(zhǔn)確性。
不等式課件 篇4
教學(xué)建議
一、知識結(jié)構(gòu)
本書首先結(jié)合實例引入一元一次不等式組的解集的概念,然后通過三個例題說明利用數(shù)軸解一元一次不等式組的方法,最后對一元一次不等式組的解法步驟進(jìn)行了總結(jié).
二、重點、難點分析
本節(jié)教學(xué)的重點是掌握一元一次不等式組的解法步驟并準(zhǔn)確地求出解集.難點是正確應(yīng)用不等式的基本性質(zhì)對不等式進(jìn)行變形、求不等式組中各個不等式解集的公共部分.不等式在中學(xué)代數(shù)中是研究問題的重要工具,例如求函數(shù)的定義域、值域、研究函數(shù)的單調(diào)性,求最大值、最小值,一元二次方程根的討論等,都要用到不等式的知識.不等式也是進(jìn)一步學(xué)習(xí)其他數(shù)學(xué)內(nèi)容的基礎(chǔ).學(xué)習(xí)和掌握不等式的求解和不等式的證明方法,對培養(yǎng)學(xué)生邏輯思維能力也有極其重要的作用.在處理解不等式的問題中,一元一次不等式組的解法,具有特別重要的意義.這是因為,解各類不等式的問題都可以歸結(jié)為解一些由簡單不等式所組成的不等式組.
1、在構(gòu)成不等式組的幾個不等式中
①這幾個一元一次不等式必須含有同一個未知數(shù);
②這里的“幾個”并未確定不等式的個數(shù),只要不是一個,兩個,三個,四個……都行.
2、當(dāng)幾個不等式的解集沒有公共部分時,我們就說這個不等式組無解.
3、由兩個一元一次不等式組成的不等式的解集,共歸結(jié)為下面四種基本情況:
【注意】①其中第(4)個不等式組,實質(zhì)上是矛盾不等式組,任何數(shù)都不能使兩個不等式同時成立。所以說這個不等式組無解或說其解集為空集。②從上面列出的表中,我們可以概括出來不等式組公共解的一規(guī)律:同大取大,同小取小,一大一小中間找。
三、教法建議
1.解本節(jié)的引例及例1、例2、例3時,注意把解不等式組的思路講清楚,即先分別解每一個不等式,求出解集,再求這些解集的公共部分.求公共部分的過程一定要結(jié)合數(shù)軸來講。
2.這節(jié)課的講解自始至終要突出解不等式組的基本思想以及解一元一次不等式組的步驟這兩個重點.準(zhǔn)確熟練地解一元一次不等式以及用數(shù)軸上的點表示不等式的解集是這節(jié)課的基礎(chǔ),因此講新課之前要復(fù)習(xí)提問這些內(nèi)容。
3.求公共解集是這節(jié)課的新授內(nèi)容,教師要充分利用數(shù)軸表示不等式解集具有形象、直觀、易于說明問題這些優(yōu)點.解集的公共部分教師可用彩筆在數(shù)軸的相應(yīng)部分描畫出來,使學(xué)生感到醒目,便于理解記憶。
4.每組不等式不要超過三個,關(guān)鍵是使學(xué)生理解和掌握解不等式組的基本思想和兩個步驟,不宜做過于難、過于多、重復(fù)的機(jī)械計算。
不等式課件 篇5
(一)復(fù)習(xí)提問:
三角形的三邊關(guān)系?
(二)列一元一次不等式組
問題:現(xiàn)有兩根木條a和b,a長10cm,b長3cm.如果要再找一根木條c,用這三根木條釘成一個三角形木框,那么對木條c的長度有什么要求?
注:這個問題是本節(jié)的'引入問題,三角形木框的形狀不唯一確定,只要能成為三角形即可.
探究:用三根長度分別為14cm,9cm,6cm的木條c1,c2,c3分別試試,其中哪根木條能與木條a和b一起釘成三角形木框?
可以發(fā)現(xiàn),當(dāng)木條a和b的長度確定后,木條c太長或太短,都不能與a和b一起釘成三角形.
由于“三角形中兩邊之和大于第三邊,兩邊之差小于第三邊”,設(shè)木條c長xcm,則x必須同時滿足不等式x10+3①和x10-3②
注:木條c必須同時滿足兩個條件,即ca+b,ca-b.
類似于方程組,把這兩個不等式合起來,組成一個一元一次不等式組記作注:這里并未正式給一元一次不等式組下定義,只是說這兩個不等式合起來,組成一個一元一次不等式組.實際上,兩個或更多的一元一次不等式組合起來,都組成一個一元一次不等式組.
(三)一元一次不等式組的解集
類比方程組的解,怎樣確定不等式組中x的可取值的范圍呢?
不等式組中的各不等式解集的公共部分,就是不等式組中x可以取值的范圍.
注:這里還未正式出現(xiàn)不等式組的解集的概念,但已點出各不等式的解集的公共部分即不等式組中未知數(shù)的可取值范圍.
由不等式①解得x13.
由不等式②解得x7.
從圖9.3—2容易看出,x可以取值的范圍為713.
注:利用數(shù)軸可以直觀形象地認(rèn)識公共部分.這個公共部分是兩端有界的開區(qū)間.
這就是說,當(dāng)木條c比7cm長并且比13cm短時,它能與木條a和b一起釘成三角形木框.
一般地,幾個不等式的解集的公共部分,叫做由它們所組成的不等式組的解集.解不等式組就是求它的解集.
注:這里正式給出不等式組的解集以及解不等式組的定義13.注:利用數(shù)軸可以直觀形象地認(rèn)識公共部分.這個公共部分是兩端有界的開區(qū)間.這就是說,當(dāng)木條c比7cm長并且比13cm短時,它能與木條a和b一起釘成三角形木框.一般地,幾個不等式的解集的公共部分,叫做由它們所組成的不等式組的解集.解不等式組就是求它的解集.注:這里正式給出不等式組的解集以及解不等式組的定義。
不等式課件 篇6
一元一次不等式組(2)
文星中學(xué)唐波
一、教學(xué)目標(biāo)
(一)知識與技能目標(biāo)
1、熟練掌握一元一次不等式組的解法,會用一元一次不等式組解決有關(guān)的實際問題。
2、理解一元一次不等式組應(yīng)用題的一般解題步驟,逐步形成分析問題和解決問題的能力。
(二)過程與方法目標(biāo)
通過利用列一元一次不等式組解答實際問題,初步學(xué)會從數(shù)學(xué)的角度提出問題、理解問題、并能綜合運(yùn)用所學(xué)的知識解決問題,發(fā)展應(yīng)用意識。
(三)情感態(tài)度與價值觀
通過解決實際問題,體驗數(shù)學(xué)學(xué)習(xí)的樂趣,初步認(rèn)識數(shù)學(xué)與人類生活的密切聯(lián)系。
二、教學(xué)重難點
(一)重點:建立用不等式組解決實際問題的數(shù)學(xué)模型。
(二)難點:正確分析實際問題中的不等關(guān)系,根據(jù)具體信息列出不等式組。
三、學(xué)法引導(dǎo)
(一)教師教法:直觀演示、引導(dǎo)探究相結(jié)合。
(二)學(xué)生學(xué)法:觀察發(fā)現(xiàn)、交流探究、練習(xí)鞏固相結(jié)合。
四、教具準(zhǔn)備:多媒體演示
五、教學(xué)過程
(一)、設(shè)問激趣,引入新課
猜一猜:我屬狗,請同學(xué)們根據(jù)我的實際情況來猜測我的年齡。(學(xué)生大膽猜想,利用不等關(guān)系分析得出答案。)
(二)、觀察發(fā)現(xiàn),競賽闖關(guān)
1、比一比:填表找規(guī)律
(學(xué)生搶答,教師補(bǔ)充。)2利用發(fā)現(xiàn)的規(guī)律解不等式組 ?(學(xué)生解答,抽生演板。)你可以得到它的整數(shù)解嗎?
(抽生回答:因為大于11小于14的整數(shù)有12和13,所以整數(shù)解為12和13。)3填空:三角形三邊長分別為2、7、c,則 c的取值范圍是__________。如果c是一個偶
數(shù),則 c=__________。
(學(xué)生回答,教師補(bǔ)充更正。)
(三)、欣賞圖片,探究新知
1、欣賞“五岳看山”。
2、利用欣賞引出例題(教科書P139例2仿編)
例:3名同學(xué)計劃在10天內(nèi)到嵩山拍照500張(每天拍照數(shù)量相同),按原來的計劃,不能完成任務(wù);如果每人每天比原計劃多拍1張,就能提前完成任務(wù),每個同學(xué)原計劃每天............拍多少張?
生齊讀,找出題中的已知條件和未知條件;再默讀,找一找表示數(shù)量關(guān)系的句子。師引導(dǎo)分析,并提出問題:
(1)你是怎樣理解“不能完成任務(wù)”的數(shù)量含義的?你是怎樣理解“提前完成任務(wù)”的數(shù)量含義的?
(2)解決這個問題,你打算怎樣設(shè)未知數(shù)?
(3)在本題中,可以找出幾個不等關(guān)系,可以列出幾個不等式?(學(xué)生交流討論,教師指導(dǎo)。)
?7x?98
?7(x?3)?98
解答完成后,學(xué)生自學(xué)課本例2。
3、由例解題答過程,類比列二元一次方程組解應(yīng)用題的步驟,總結(jié)列一元一次不等式組的解題步驟:
(1)、分析題意,設(shè)未知數(shù); .(2)、利用不等關(guān)系,列不等式組; .(3)、解不等式組; .
(4)、檢驗,根據(jù)題意寫出答案。.(學(xué)生總結(jié),抽生回答,教師補(bǔ)充。)
(四)、闖關(guān)練習(xí),鞏固新知
1練一練:為紀(jì)念“5·12”大地震一周年,“五一”部分同學(xué)到青城山拍照留念,如果每人拍8張則多于如果每人拍9張則不夠問共有多少個同學(xué)參加青城山旅游? ..150張;..180張。
教師引導(dǎo):抓住重點詞語,找到不等關(guān)系,列出不等式組。學(xué)生獨立完成,抽生回答。
比較列二元一次方程組和列一元一次不等式組解應(yīng)用題的區(qū)別:
(學(xué)生類比找區(qū)別,教師補(bǔ)充。)2練一練(教科書P140練習(xí)第2題):一本英語書共98頁,張力讀了一周(7天)還沒讀完,而李永不到一周就已讀完。李永平均每天比張力多讀3頁,張力平均每天讀多少頁(答案取整數(shù))?
學(xué)生分析列出不等式組,教師指導(dǎo)。(前面的練習(xí)已解出不等式組。)
(五)、暢所欲言,歸納小結(jié) 學(xué)生暢所欲言,談收獲體會 多媒體展示,本課內(nèi)容小結(jié):
1、解一元一次不等式組的秘笈:同大取大,同小取小,大小小大中間找,大大小小解不了。
2、具有多種不等關(guān)系的問題,可通過不等式組解決。
3、列一元一次不等式組解應(yīng)用題的步驟是:(1)、分析題意,設(shè)未知數(shù);(2)、利用不等關(guān)系,列不等式組;(3)、解不等式組;
(4)、檢驗,根據(jù)題意寫出答案。
(六)、課后演練,終極挑戰(zhàn)
必做題:教材習(xí)題第4、5、6題;
選做題:一個兩位數(shù),它的十位數(shù)字比個位數(shù)字大1,而且這個兩位數(shù)大于30小于42,則這個兩位數(shù)是多少?
六、板書設(shè)計
一元一次不等式組(2)
解:設(shè)每個同學(xué)原計劃每天拍x張,得
① ?3?10x?500
?
?3?10(x?1)?500②
1、分析題意,設(shè)未知數(shù);
解得x
3根據(jù)題意,x應(yīng)為整數(shù),所以x=16 答:每個同學(xué)原計劃每天拍16張。
2??
2、找不等關(guān)系,列不等式組; ?
?
3、解不等式組; ?步驟
??
?
4、檢驗并根據(jù)題意寫出答案。?
不等式課件 篇7
科學(xué)合理的教學(xué)方法能使教學(xué)效果事半功倍,達(dá)到教與學(xué)的和諧完美統(tǒng)一。
基于此,我準(zhǔn)備采用的教法講授法、討論法。德國教育學(xué)家第斯多慧:差的教師只會奉送真理,好的教師則交給學(xué)生如何發(fā)現(xiàn)真理,老師的教是為了不教,這才是教學(xué)的最高境界,所以我采用的學(xué)法是練習(xí)法、自主合作法。
在這節(jié)課的教學(xué)過程中,我注重突出重點,條理清晰,緊湊合理。各項活動的安排也注重互動、交流,最大限度的調(diào)動學(xué)生參與課堂的積極性、主動性。
首先是導(dǎo)入環(huán)節(jié),我采用復(fù)習(xí)舊知的導(dǎo)入方法。我會讓學(xué)生回憶不等式的概念以及一元一次方程的概念,明確指出今天學(xué)習(xí)的內(nèi)容是《一元一次不等式》。
這樣的設(shè)計既可以考查學(xué)生對之前知識的掌握情況,還能夠為今天學(xué)習(xí)一元一次方程的概念打下基礎(chǔ)。而且開門見山的導(dǎo)入方式能夠快速地進(jìn)入主題。
接下來是新知探索環(huán)節(jié),首先我請學(xué)生類比不等式以及一元一次方程的概念,給一元一次不等式下定義。
能夠總結(jié)出:含有一個未知數(shù),未知數(shù)的次數(shù)是1的不等式,叫做一元一次不等式。
接下來讓學(xué)生回憶上節(jié)課學(xué)習(xí)的不等式x-7>26如何解決的,通過學(xué)生回憶總結(jié)可以得到:通過“不等式的兩邊都加7,不等號的方向不變”而得到的。
接下來提問學(xué)生有沒有更加簡便的方法解不等式?讓學(xué)生類比解一元一次方程的步驟進(jìn)行解題??梢缘玫较喈?dāng)于可以用“移項”,來解決。
在這個過程中,強(qiáng)調(diào)每一個步驟,在第二題最后一步,強(qiáng)調(diào)當(dāng)不等式的兩邊同時乘以(或除以)同一個負(fù)數(shù)時,不等號的方向改變。
解完不等式,先讓學(xué)生回憶解一元一次方程的步驟是什么?并類比解一元一次方程的步驟,總結(jié)一下解一元一次不等式的步驟是什么?
從而我們歸納:解一元一次方程,要根據(jù)等式的性質(zhì),將方程逐步化為x=a的形式;而解一元一次不等式,則要根據(jù)不等式的性質(zhì),將不等式逐步化為xa的形式。
《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者和合作者”。根據(jù)這一教學(xué)理念,在本環(huán)節(jié)中,我組織學(xué)生進(jìn)行了自主探究活動,讓學(xué)生在保持高度學(xué)習(xí)熱情和探究欲望的活動過程中,始終以愉悅的心情,親身經(jīng)歷和體驗知識的形成過程。培養(yǎng)學(xué)生的探究能力、分析思維能力,激發(fā)他們的創(chuàng)新意識、參與意識。
第三個環(huán)節(jié)是課堂練習(xí)環(huán)節(jié),出示問題,解不等式,并在數(shù)軸上表示數(shù)集:5x+15>4x-1
之所以這樣設(shè)計是因為練習(xí)是掌握知識、形成技能、發(fā)展思維的重要手段,針對本課的教學(xué)重點和難點,上述練習(xí),目的是讓學(xué)生進(jìn)一步鞏固對新知的理解??梢陨罨虒W(xué)內(nèi)容,培養(yǎng)思維的靈活性。
最后一個環(huán)節(jié)為小結(jié)作業(yè)環(huán)節(jié),關(guān)于課堂小結(jié),我打算讓學(xué)生自己來總結(jié)今天的收獲。
這樣既發(fā)揮了學(xué)生的主體性,又可以提高學(xué)生的總結(jié)概括能力,讓我在第一時間得到學(xué)習(xí)反饋,及時加以疏導(dǎo)。
通過這樣的方式能夠為本節(jié)課學(xué)習(xí)的知識進(jìn)行進(jìn)一步的鞏固。
我的板書設(shè)計遵循簡潔明了突出重點的意圖,這是我的板書設(shè)計:
不等式課件 篇8
1、了解一元一次不等式組的概念。
2、理解一元一次不等式組的解集,能求一元一次不等式組的解集。
3、會解一元一次不等式組。
通過具體問題得到一元一次不等式組,從而了解一元一次不等式組的概念,解出每個不等式,利用數(shù)軸求出各不等式解集的公共部分,從而得到不等式組的解集,通過解幾個有代表性的一元一次不等式組,總結(jié)出求不等式組解集的法則。
運(yùn)用數(shù)軸確定不等式組的解集是行之有效的方法。這種“數(shù)形結(jié)合”的方法今后經(jīng)常用到,鍛煉同學(xué)們數(shù)形結(jié)合的能力,提高學(xué)習(xí)興趣。
一元一次不等式組的解法。
確定一元一次不等式組的解集。
一、情境導(dǎo)入,初步認(rèn)識
問題1現(xiàn)有兩根木條a和b,a長10cm,b長3cm,如果要再找一根木條c,用這三根木條釘成一個三角形木框,那么木條c的長度有什么要求?
解:由于三角形中兩邊之____大于第三邊,兩邊之____小于第三邊,設(shè)c的長為xcm,則x<____,①x>____,②合起來,組成一個__________。
由①解得_____________,由②解得_____________。
在數(shù)軸上表示就是________________。
容易看出:x的取值范圍是____________________。
這就是說,當(dāng)木條c比____cm長并且比____cm短時,它能與木條a和b一起釘成三角形木框。
問題2由上面的解不等式組的過程用自己的語言歸納出一元一次不等式組的.解法。
全班同學(xué)可獨立作業(yè),也可分組自由討論,10分鐘后交流成果,逐步得出結(jié)論。
二、思考探究,獲取新知
思考什么叫一元一次不等式組,什么叫一元一次不等式組的解集,什么叫解不等式組?
1、定義:
(1)一元一次不等式組:幾個含有相同未知數(shù)的一元一次不等式合起來組成一個一元一次不等式組。
(2)一元一次不等式組的解集:幾個不等式的解集的公共部分,叫做由它們所組成的不等式的解集。
(3)解不等式組:求一元一次不等式組的解集的過程叫解一元一次不等式組。
2、一元一次不等式組的解法:
(1)求出每個一元一次不等式的解集。
(2)求出這些解集的公共部分,便得到一元一次不等式組的解集。
不等式課件 篇9
本節(jié)教學(xué)的重點是不等式的解集的概念及在數(shù)軸上表示不等式的解集的方法.難點為不等式的解集的概念.
相同點:定義方式相同(使方程成立的未知數(shù)的值,叫做方程的解);解的表示方法也相同.
不同點:解的個數(shù)不同,一般地,一個不等式有無數(shù)多個解,而一個方程只有一個或幾個解,例如, 能使不等式 成立,那么 是不等式的一個解,類似地 等也能使不等式 成立,它們都是不等式 的解,事實上,當(dāng) 取大于 的數(shù)時,不等式 都成立,所以不等式 有無數(shù)多個解.
不等式的解與不等式的解集是兩個不同的概念,不等式的解是指滿足這個不等式的未知數(shù)的某個值,而不等式的解集,是指滿足這個不等式的未知數(shù)的所有的值,不等式的所有解組成了解集,解集中包括了每一個解.
注意:不等式的解集必須滿足兩個條件:第一,解集中的任何一個數(shù)值,都能使不等式成立;第二,解集外的任何一個數(shù)值,都不能使不等式成立.
一般地,一個含未知數(shù)的不等式有無數(shù)多個解,其解集是某個范圍,這個范圍可用一個最簡單的不等式表示出來,例如,不等式 的解集是 .
如不等式 的解集 ,可以用數(shù)軸上表示4的點的左邊部分表示,因為 包含 ,所以在表示4的點上畫實心圓.
如不等式 的解集 ,可以用數(shù)軸上表示4的點的左邊部分表示,因為 包含 ,所以在表示4的點上畫實心圈.
注意:在數(shù)軸上,右邊的點表示的數(shù)總比左邊的點表示的數(shù)大,所以在數(shù)軸上表示不等式的解集時應(yīng)牢記:大于向右畫,小于向左畫;有等號的畫實心圓點,無等號的畫空心圓圈.
1.使學(xué)生了解不等式的解集、解不等式的概念,會在數(shù)軸上表示出不等式的解集.
2.知道不等式的“解集”與方程“解”的不同點.
通過教學(xué),使學(xué)生能夠正確地在數(shù)軸上表示出不等式的解集,并且能把數(shù)軸上的某部分?jǐn)?shù)集用相應(yīng)的不等式表示.
通過講解不等式的“解集”與方程“解”的關(guān)系,向?qū)W生滲透對立統(tǒng)一的辯證觀點.
通過本節(jié)課的學(xué)習(xí),讓學(xué)生了解不等式的解集可利用圖形來表達(dá),滲透數(shù)形結(jié)合的數(shù)學(xué)美.
2.學(xué)生學(xué)法:明確不等式的解與解集的區(qū)別和聯(lián)系,并能熟練地用數(shù)軸表示不等式的解集,在數(shù)軸上表示不等式的解集時,要特別注意:大于向右畫,小于向左畫;有等號的畫實心圓點,無等號的畫空心圓圈.
不等式課件 篇10
1.了解不等式及一元一次不等式概念。
2.理解不等式的解、解集,能正確表示不等式的解集。
通過類比等式的對應(yīng)知識,探索不等式的概念和解,體會不等式與等式的異同,初步掌握類比的思想方法。
1.經(jīng)歷把實際問題抽象為不等式的過程,能夠列出不等關(guān)系式。
2.初步體會不等式(組)是刻畫現(xiàn)實世界中不等關(guān)系的一種有效數(shù)學(xué)模型,培養(yǎng)學(xué)生的建模意識。
通過對不等式概念及其解集等有關(guān)概念的探索,培養(yǎng)學(xué)生的知識遷移能力和建模意識,加強(qiáng)同學(xué)之間的使用與交流。
活動一:
感知不等關(guān)系,了解不等式的概念。
通過實例,讓學(xué)生認(rèn)識到不等關(guān)系在生活中的存在,通過問題的解答,讓學(xué)生了解不等式的概念,體會不等式是解決實際問題的有效工具。
活動二:
通過類比方程,繼續(xù)探索出不等式的解、解集及其表示方法。
通過解決上個環(huán)節(jié)的問題,得出不等式的解,再引導(dǎo)學(xué)生觀察解的特點,探索出解集的兩種表示方法(符號表示、數(shù)軸表示),并且培養(yǎng)學(xué)生用估算方法求解集的技能。
活動三:
繼續(xù)探索,歸納出一元一次不等式的意義。
針對所學(xué)的不等式,讓學(xué)生歸納出特點,得到一元一次不等式的概念,并對概念進(jìn)行辨析。
運(yùn)用本節(jié)所學(xué)的知識,解決實際問題,使學(xué)生經(jīng)歷將實際問題轉(zhuǎn)化為數(shù)學(xué)問題,再加以解決的過程,實現(xiàn)對所學(xué)知識的鞏固和深化。
讓學(xué)生通過自我反思和互相質(zhì)疑提問,歸納總結(jié)本節(jié)課的主要內(nèi)容,交流在概念、解及解集學(xué)習(xí)中的心得和體會,不斷積累數(shù)學(xué)活動經(jīng)驗,教師應(yīng)主動參與學(xué)生小結(jié)中,作好引導(dǎo)工作,布置好作業(yè),并作及時反饋。
小強(qiáng)準(zhǔn)備隨父母乘車去武當(dāng)山春游。
⑴在車上看到兒童買票所需的測身高標(biāo)識線。
①x滿足______時,他可免票。
②x滿足______時,他該買全票。
⑵已知襄樊與武當(dāng)山的距離為150千米,他們上午10點鐘從襄樊出發(fā),汽車勻速行駛。
①若該車計劃中午12點準(zhǔn)時到達(dá)武當(dāng)山,車速應(yīng)滿足什么條件?
②若該車實際上在中午12點之前已到達(dá)武當(dāng)山,車速應(yīng)滿足什么條件?
用不等式表示:
⑴a是正數(shù);⑵a是負(fù)數(shù);⑶a與5的和小于7;⑷a與2的差大于-1;
⑸a的4倍大于8;
⑹a的一半小于3。
學(xué)生回答①這兩個由實際生活情境設(shè)置的問題,應(yīng)非常容易.問題②相對①難度加大了,難在題意中的條件不象上面那樣直接明了,并且可從距離和時間兩個角度來分析、解決問題,而七年級學(xué)生恰恰缺乏閱讀分析題意、多維度思考解決問題的能力,所以采用小組討論交流的形式解決問題②
學(xué)生討論角度估計大都集中在距離這一角度,教師可深入小組討論中,認(rèn)真聽聽同學(xué)們的思路,應(yīng)鼓勵學(xué)生多發(fā)表意見,并適當(dāng)點撥,直到得出兩種不等式。
此次活動中,教師應(yīng)重點關(guān)注:討論要有足夠的時間和空間,學(xué)生在小組討論交流時,是否敢于發(fā)表自己的想法。
再給出不等式概念:
像前面式子一樣用“>”或“
教師可要求學(xué)生舉出一些表示大小的式子,學(xué)生舉出的不等式中,可能會有一些不含未知數(shù)的,如5>3等。教師此時應(yīng)總結(jié):不等式中可含有未知數(shù),也可不含未知數(shù)。
教師根據(jù)學(xué)生舉例給出表示不等關(guān)系的第三種符號“≠”,并強(qiáng)調(diào):像前面式子一樣用“≠”表示不等關(guān)系的式子也是不等式。
鞏固練習(xí)是讓學(xué)生用不等式來刻畫題中6個簡單的不等關(guān)系。學(xué)生得出答案并不難,所以該環(huán)節(jié)讓學(xué)生獨立完成、互相評價,教師可深入到學(xué)生的解題過程中,觀察指導(dǎo)學(xué)生的解題思路,傾聽學(xué)生的評價。
問題1在課本中起導(dǎo)入新課作用,考慮學(xué)生實際情況(分析應(yīng)用題能力尚欠缺)和題目難度,所以設(shè)置問題串,降低難度。這樣編排教材我認(rèn)為更能體現(xiàn)知識呈現(xiàn)的序列性,從易到難,讓學(xué)生“列不等式”能力實現(xiàn)螺旋上升。
問題3作用僅僅起鞏固上面所學(xué)的知識,所以采用書中的一組習(xí)題,讓學(xué)生獨立完成,進(jìn)一步培養(yǎng)學(xué)生列不等式能力。
采用學(xué)生熟悉的生活情境作為導(dǎo)入內(nèi)容,然后層層推進(jìn),步步設(shè)問,環(huán)環(huán)相扣,直至推出不等式的概念及概念理解中應(yīng)注意的地方。這樣實現(xiàn)了:讓學(xué)生從已有的數(shù)學(xué)經(jīng)驗出發(fā),從生活中建構(gòu)數(shù)學(xué)模型,為后面利用“不等式”這一模型解決生活中實際問題作好鋪墊,體現(xiàn)了數(shù)學(xué)生活化、生活
不等式課件 篇11
1、一元一次不等式的概念:一般地,不等式中只含有一個未知數(shù),未知數(shù)的次數(shù)是1,且不等式的兩邊都是整式,這樣的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步驟:(1)去分母(2)去括號(3)移項(4)合并同類項(5)將x項的系數(shù)化為1
1、一元一次不等式組的概念:幾個一元一次不等式合在一起,就組成了一個一元一次不等式組。
2、幾個一元一次不等式的解集的公共部分,叫做它們所組成的一元一次不等式組的解集。
3、求不等式組的解集的過程,叫做解不等式組。
4、當(dāng)任何數(shù)x都不能使不等式同時成立,我們就說這個不等式組無解或其解為空集。
3、代數(shù)式1-m的值大于-1,又不大于3,則m的取值范圍是( )
A.x≥1 B.x≥-1/2 C.x>1 D.x>-1/2
A.5+4>8 B.2x-1 C.2x-5≤1 D.1/x-3x≥0
A. a>0? B.a≥0? C.a
11、若關(guān)于x的不等式組 的解集是x>2a,則a的取值范圍是
A. a>4 B. a>2 C. a=2 D.a≥2
12、若方程組 中,若未知數(shù)x、y滿足x+y>0,則m的取值范圍是
13、不等式2(1) x>-3的解集是 。
14、用代數(shù)式表示,比x的5倍大1的數(shù)不小于x的 與4的差 。
15、若(m-3)x-1,則m .
18、某次個人象棋賽規(guī)定:贏一局得2分,平一局得0分,負(fù)一局得反扣1分。在12局比賽中,積分超過15分就可以晉升下一輪比賽,小王進(jìn)入了下一輪比賽,而且在全部12輪比賽中,沒有出現(xiàn)平局,問小王最多輸 局比賽【www.LiuxUE86.cOm 出國留學(xué)網(wǎng)】
1、定義:把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這個點對稱或中心對稱,這個點叫做對稱中心.這兩個圖形中的對應(yīng)點叫做關(guān)于中心的對稱點。
2、心對稱的兩條基本性質(zhì):
(1)關(guān)于中心對稱的兩個圖形,對稱點所連線段都經(jīng)過對稱中心,而且被對稱中心所平分。
(2)關(guān)于中心對稱的兩個圖形是全等圖形。
把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。
每上第一次課,我所講的課程內(nèi)容都和學(xué)生的錯題有關(guān)。我通常把試卷中的錯題摘抄出幾個典型題,作為課堂的例題再講一遍。而學(xué)生的反應(yīng),或是像沒有見過,或是對題目非常熟悉,但沒有思路。
這些現(xiàn)象的發(fā)生,都是學(xué)生沒有及時總結(jié)的原因。所以第一次課后我都建議我的學(xué)生做一個錯題本,像寫日記一樣,記錄下自己的錯題和感想。
成也審題敗也審題。如何審題呢?
(1)這個題目有哪些個已知條件?我能不能把已知條件分開?
(2)求解的目標(biāo)是什么?對求解有什么要求?
(3)能不能畫一個圖幫助思考?好多問題是沒有看清楚題意致錯。審題不清,你做得越多,可能錯的就越多。
(4)所給出的已知條件相互之間有什么關(guān)系?能不能從中發(fā)現(xiàn)隱含條件?
(5)已知條件與求解目標(biāo)有什么聯(lián)系?能不能從中獲得解題的思路?找到進(jìn)門的門檻?
不等式課件 篇12
1.使學(xué)生感受到生活中存在著大量的不等關(guān)系,了解不等式和一元一次不等式的意義;
2.讓學(xué)生自發(fā)地尋找不等式的解,會在數(shù)軸上正確地表示出不等式的解集;
3.能夠根據(jù)題意準(zhǔn)確迅速地列出相應(yīng)的不等式。
1.通過汽車行駛過a地這一實例的研究,使學(xué)生體會到數(shù)學(xué)來源于生活,又服務(wù)于生活,培養(yǎng)學(xué)生“學(xué)數(shù)學(xué)、用數(shù)學(xué)”的意識;
2.經(jīng)歷由具體實例建立不等模型的過程,探究不等式的解與解集的不同意義的過程,滲透數(shù)形結(jié)合的思想。
㈢情感、態(tài)度、價值觀:
1.通過對不等式、不等式的解與解集的探究,引導(dǎo)學(xué)生在獨立思考的基礎(chǔ)上積極參與對數(shù)學(xué)問題的討論,培養(yǎng)他們的合作交流意識;
2.讓學(xué)生充分體會到生活中處處有數(shù)學(xué),并能將它們應(yīng)用到生活的各個領(lǐng)域中去。
3.培養(yǎng)學(xué)生類比的思想方法、數(shù)形結(jié)合的思想。
1.教學(xué)重點:不等式、一元一次不等式、不等式解與解集的意義;在數(shù)軸上正確地表示出不等式的解集;
2.教學(xué)難點:不等式解集的意義,根據(jù)題意列出相應(yīng)的不等式。
計算機(jī)、自制cai課件、實物投影儀、三角板等。
教師創(chuàng)設(shè)情境引入,學(xué)生交流探討;師生共同歸納;教師示范畫圖,課件交互式練習(xí)。
〖創(chuàng)設(shè)情境——從生活走向數(shù)學(xué)〗
[多媒體展示]“五·一黃金周”快要到了,蕪湖市某兩個商場為了促銷商品,推行以下促銷方案:①甲商場:購物不超過50元者,不優(yōu)惠;超過50元的,超過部分折優(yōu)惠。②乙商場:購物不超過100元者,不優(yōu)惠;超過100元的,超過部分九折優(yōu)惠。親愛的同學(xué),如果五·一期間,你去購物,選擇到哪個商場,才比較合算呢?
(以上教學(xué)內(nèi)容是向?qū)W生設(shè)疑,激發(fā)學(xué)生探索問題、研究問題的積極性,可以讓學(xué)生討論一會兒)
教師:要想正確地解決這個問題,我們大家就要學(xué)習(xí)第九章《不等式和不等式組》,學(xué)完本章的內(nèi)容后,我相信,聰明的你們一定都會作出正確的選擇,真正地做到既經(jīng)濟(jì)又實惠。
首先,我們來共同學(xué)習(xí)本章的第一節(jié)課——9.1.1節(jié)《不等式及其解集》
〖新課學(xué)習(xí)〗
學(xué)習(xí)目標(biāo):
1.能感受到生活中存在著大量的不等關(guān)系,了解不等式和一元一次不等式和意義;
2.會尋找不等式的解,會在數(shù)軸上正確地表示出不等式的解集;
3.能夠根據(jù)題意準(zhǔn)確迅速地列出相應(yīng)的不等式。
[多媒體展示一段動畫]:引例:一輛勻速行駛的汽車在11:20距離a地50千米,要在12:00之前駛過a地,車速應(yīng)滿足什么條件?
設(shè)車速是x千米/小時,
(1)從時間上看,汽車要在12:00之前駛過a地,則以這個速度行駛50千米所用的時間不到 小時,即
(2)從路程上看,汽車要在12:00之前駛過a地,則以這個速度行駛 小時的路程要超過50千米,即
請同學(xué)們觀察上面的兩個式子,式子左右兩邊的大小關(guān)系是怎樣的? 左右兩邊相等嗎?
在學(xué)生充分發(fā)表自己意見的基礎(chǔ)上,師生共同歸納得出:
用“>”或“<”號表示大小關(guān)系的式子叫做不等式;
用“≠”表示不等關(guān)系的式子也是不等式。
判斷下列式子中哪些是不等式,是不等式的請在題后的括號內(nèi)劃“√”,不是的請劃“×”
(1)3> 2????? (???? ) (2)2a+1> 0?? (???? )?? (3)a+b=b+a? (???? )
(4)x< 2x+1?? (???? )???? (5)x=2x-5??? (???? ) (6)2x+4x< 3x+1 (???? )????????? (7)15≠7+9? (???? )
上面的不等式中,有些不含未知數(shù),有些含有未知數(shù),大家把(2)、(4)、(6)式與(5)式類比,(5)式是一個一元一次方程,能不能給(2)、(4)、(6)式也起個名字呢?
含有一個未知數(shù), 未知數(shù)的次數(shù)是1的不等式,叫做一元一次不等式.
問題2:車速可以是78千米/小時嗎?75千米/小時呢? 72千米/小時呢?
問題3:我們曾經(jīng)學(xué)過“使方程兩邊相等的未知數(shù)的值就是方程的解”,那么我們可以把使不等式成立的未知數(shù)的值叫做什么呢?
(師生共同歸納)使不等式成立的未知數(shù)的值叫做不等式的解。
2.課堂練習(xí)二——動一動腦,動一動手,你一定能算得對。
76, 73, 79, 80, 74.9, 75.1, 90, 60
(學(xué)生做完后,師問):你還能找出這個不等式的其他的解嗎?這個不等式有多少個解?你從中發(fā)現(xiàn)了什么規(guī)律?
(學(xué)生討論后,師生共同總結(jié)):當(dāng)x>75時,不等式 x>50總成立;而當(dāng)x<75或x=75時,不等式 x>50不成立,這就是說,任何一個大于75的數(shù)都是不等式 x>50的解,這樣的解有無數(shù)個。因此,x>75表示了能使不等式 x>50成立的x的取值范圍,叫做不等式 x>50的解的集合,簡稱解集。
我們再回到前面的問題,經(jīng)過剛才的分析,可以知道,要使汽車在12:00之前駛過a地,車速必須大于75千米/小時。
一個含有未知數(shù)的不等式的所有的解,組成了這個不等式的解集。
4.在數(shù)軸上表示不等式的解集;
注意:在表示75的點上畫空心圓圈,表示不包括這一點.
5.課堂練習(xí)三——動一動腦,動一動手,你一定能算得對。
判斷下列數(shù)中哪些是不等式x+3>6的解? 哪些不是?
-4, -2.5,? 0,? 1,? 2.5,? 3,? 3.2,? 4.8,? 8,? 12
求不等式的解集的過程叫做解不等式。
7.課堂練習(xí)四——看誰算得最快最準(zhǔn)。
直接想出不等式的解集,并在數(shù)軸上表示出不等式的解集:
(1) x+3>6;??????? (2)2x<8;?? ?(3)x-2>0
解:(1)x>3;???????? (2)x<4;??? (3)x>2。
1.例用不等式表示:
(1)x與1的和是正數(shù);??????(2)的與的的差是負(fù)數(shù);
(3)的2倍與1的和大于3;(4)的一半與4的差小于的3倍.
解:(1)x+1>0;???????? (2)+b<0;
(3)2+1>3;????? (4)-4<3;
2.課堂練習(xí)五——看誰最列得又快又準(zhǔn)。
用不等式表示:
(1)是正數(shù);??????????(2)是負(fù)數(shù);
(3)與5的和小于7;??(4)與2的差大于-1;
(5)的4倍大于8;??????(6)的一半小于3.
答案;(1)>0;??????? (2)<0;?? (3)+5>0;
學(xué)生小結(jié),師生共同完善:
2.會尋找不等式的解,會在數(shù)軸上正確地表示出不等式的解集;
3.能夠根據(jù)題意準(zhǔn)確迅速地列出相應(yīng)的不等式。
不等式課件 篇13
教學(xué)重點:掌握不等式的三條基本性質(zhì),尤其是不等式的基本性質(zhì)3.
教學(xué)難點:正確應(yīng)用不等式的三條基本性質(zhì)進(jìn)行不等式變形.
通過觀察、分析、討論,引導(dǎo)學(xué)生歸納總結(jié)出不等式的三條基本性質(zhì),從具體上升到理論,再由理論指導(dǎo)具體的練習(xí),從而強(qiáng)化學(xué)生對知識的理解與掌握.
(設(shè)計說明:設(shè)置以下習(xí)題是為了溫故而知新,為學(xué)習(xí)本節(jié)內(nèi)容提供必要的知識準(zhǔn)備.)
2、什么是不等式?
3、用“>”或“<”填空.
(教學(xué)說明: 復(fù)習(xí)等式的基本性質(zhì)后學(xué)生自然會聯(lián)想到,不等式是否有與等式相類似的性質(zhì),從而引起學(xué)生的探究欲望.接著問題3為學(xué)生探究不等式的性質(zhì)提供了載體,通過觀察,尋找規(guī)律,得出不等式的性質(zhì).)
先讓學(xué)生獨立思考,后合作交流,通過充分討論,類比等式性質(zhì)得出不等式的性質(zhì).
觀察時,引導(dǎo)學(xué)生注意不等號的方向,通過(1)題學(xué)生容易得出不等式性質(zhì)1:
不等式基本性質(zhì)1 不等式兩邊加(或減)同一個數(shù)(或式子),不等號的方向不變.
比較(2)、(3)題,注意觀察不等號方向,并思考不等號方向的改變與什么有關(guān)?由學(xué)生概括總結(jié),教師補(bǔ)充完善得出:
不等式基本性質(zhì)2 不等式兩邊乘(或除以)同一個不為零的正數(shù),不等號的方向不變.
不等式基本性質(zhì)3 不等式兩邊乘(或除以)同一個不為零的負(fù)數(shù),不等號的方向改變.
通過PPT用圖形演示不等式的基本性質(zhì),讓學(xué)生更加清楚地認(rèn)識不等式的基本性質(zhì)。
不等式有傳遞性嗎?
【學(xué)生通過討論能夠比較容易得出結(jié)論:不等式有對稱性,但要注意其不等號方向的`變化;不等式也有傳遞性,但要注意的是同向傳遞性?!?/p>
三、鞏固訓(xùn)練,熟練技能:
1、(1) a - 3____b - 3;
(3) 0.1a____0.1b;
(5) 2a+3____2b+3;
【本題目采用提問的方式,因為內(nèi)容相對簡單,所以可以迅速得到結(jié)論。要讓提問者說清楚答案,并說明利用不等式的性質(zhì)幾來進(jìn)行判定的?!?/p>
(1)因為7.5>5.7,所以-7.5<-5.7;
(2)因為a+8>4,所以a>-4;
(3)因為4a>4b,所以a>b;
(4)因為-1>-2,所以-a-1>-a-2;
(5)因為3>2,所以3a>2a.
【學(xué)生口答,并說明為什么。本題重點是第5小題,要引導(dǎo)學(xué)生總結(jié)出a的取值會影響到答案。當(dāng)a>0時,3a>2a.(不等式基本性質(zhì)2)
當(dāng) a=0時,3a=2a.當(dāng)a<0時,3a<2a.(不等式基本性質(zhì)3) 】
學(xué)生自己完成以下題目,之后進(jìn)行集體講解。
(1)如果x-5>-1,那么______________________,得:x>4
(2)如果-2x>3,那么那么______________________,得X=______
師生共同小結(jié)本節(jié)課所學(xué)重點,不等式的基本性質(zhì)的具體內(nèi)容。
不等式課件 篇14
基本不等式是數(shù)學(xué)中重要的一個概念,它與不等式的證明和應(yīng)用有著密切的關(guān)系。基本不等式的解法和思維方法不僅能讓我們更好地掌握不等式的性質(zhì)和應(yīng)用,同時也能讓我們更好地解決數(shù)學(xué)中的其他問題。下面,讓我們就基本不等式這一主題展開更加深入的探討。
一、基本不等式的定義、證明和性質(zhì)
基本不等式定義:對于任意實數(shù)$x$,$y$,有$(x^2+y^2)\geq 2xy$,等號成立當(dāng)且僅當(dāng)$x=y$時成立。
基本不等式的證明:我們可以通過平方展開和配方進(jìn)行證明,即:
$(x-y)^2\geq 0$
$x^2-2xy+y^2\geq 0$
$x^2+y^2\geq 2xy$
證畢。
基本不等式的性質(zhì):基本不等式可以用于求證其他不等式和解決實際問題,例如可以用基本不等式證明算術(shù)平均數(shù)$\ge$幾何平均數(shù),可以用基本不等式求證要想最小化一個多項式,需要使其中的各項等于彼此等于基本不等式中的相等值等。
二、基本不等式的應(yīng)用及相關(guān)例題
基本不等式的應(yīng)用廣泛,其中最常見的應(yīng)用就是在證明和求解不等式問題中。下面,我們就通過例題來展示基本不等式的具體應(yīng)用。
例題一:
已知$a,b,c$均為正實數(shù),求出$abc$與$\frac{(a+b+c)^3}{27}$的大小關(guān)系。
解:由于$a,b,c$均為正實數(shù),故可運(yùn)用基本不等式進(jìn)行求解,即
$\begin{aligned}
\frac{(a+b+c)}{3}\geq\sqrt[3]{abc}\\
(a+b+c)^3\geq 27abc
\end{aligned}$
因此,
$\frac{(a+b+c)^3}{27}\geq abc$
即$\frac{(a+b+c)^3}{27}\geq abc$
得證。
例題二:
已知$a+b=3$,$a^2+b^2=5$,求出$a,b$的大小關(guān)系。
解:由已知條件可得$(a+b)^2=a^2+b^2+2ab$,即
$9=5+2ab$
$ab=\frac{4}{3}$
由基本不等式知得
$2ab=\frac{8}{3}\leq a^2+b^2=5$
即$a^2+b^2>2ab$,因此$a^2>b^2$,
又因為$a+b=3$,所以$b=3-a$,
所以$(3-a)^2
$9+a^2-6a
$a>\frac{3}{2}$
因此,
$a>b>\frac{3}{2}-a$
即$0
例題三:
已知$a,b,c>0$,求證$\frac{(a+b)^2}{c}+\frac{(b+c)^2}{a}+\frac{(c+a)^2}\geq 12(a+b+c)$
解:由基本不等式得
$(a+b)^2\geq 4ab,(b+c)^2\geq 4bc,(c+a)^2\geq 4ac$
將以上三個式子代入原式變化得
$\frac{4ab}{c}+\frac{4bc}{a}+\frac{4ac}\geq 12(a+b+c)$
即$4(ab^2+bc^2+ca^2)\geq 12abc(a+b+c)$
即$(ab^2+bc^2+ca^2)\geq 3abc$
由于$a,b,c>0$,故得證。
三、基本不等式的擴(kuò)展
除了基本不等式外,還有一些基本不等式的擴(kuò)展形式,例如平均值不等式和柯西施瓦茲不等式等。這些擴(kuò)展形式大大豐富了不等式的證明和應(yīng)用,并為數(shù)學(xué)研究提供了更加廣泛的空間。下面,我們就來簡單介紹一下平均值不等式和柯西施瓦茲不等式的相關(guān)內(nèi)容。
平均值不等式:對于$n$個非負(fù)實數(shù)$x_1,x_2,\cdots,x_n$,有
$\frac{x_1+x_2+\cdots+x_n}{n}\geq\sqrt[n]{x_1x_2\cdots x_n}$
其中等號成立當(dāng)且僅當(dāng)$x_1=x_2=\cdots=x_n$時成立。
柯西施瓦茲不等式:對于任意實數(shù)$x_1,x_2,\cdots,x_n$和$y_1,y_2,\cdots,y_n$,有
$(x_1^2+x_2^2+\cdots+x_n^2)(y_1^2+y_2^2+\cdots+y_n^2)\geq(x_1y_1+x_2y_2+\cdots+x_ny_n)^2$
其中等號成立當(dāng)且僅當(dāng)$\frac{x_1}{y_1}=\frac{x_2}{y_2}=\cdots=\frac{x_n}{y_n}$時成立。
四、總結(jié)
綜上所述,基本不等式是數(shù)學(xué)中重要的一個概念,它與不等式的證明和應(yīng)用有著密切的關(guān)系。基本不等式的解法和思維方法不僅能讓我們更好地掌握不等式的性質(zhì)和應(yīng)用,同時也能讓我們更好地解決數(shù)學(xué)中的其他問題。在學(xué)習(xí)和應(yīng)用基本不等式時,我們還需掌握其相關(guān)的擴(kuò)展形式,如平均值不等式和柯西施瓦茲不等式等。只有充分掌握了這些知識點,我們才能更加深入地理解并應(yīng)用不等式的知識。
Yjs21.coM更多幼師資料延伸讀
不等式的課件
老師在開學(xué)前需要把教案課件準(zhǔn)備好,每個人都要計劃自己的教案課件了。教案是實現(xiàn)高效教學(xué)的不可或缺要素之一。如果您想深入理解這一話題不妨看看“不等式的課件”,本文的內(nèi)容必將給您帶來很多有用的收獲!
不等式的課件 篇1
【教學(xué)目標(biāo)】
1、知識與技能目標(biāo)
(1)掌握基本不等式 ,認(rèn)識其運(yùn)算結(jié)構(gòu);
(2)了解基本不等式的幾何意義及代數(shù)意義;
(3)能夠利用基本不等式求簡單的最值。
2、過程與方法目標(biāo)
(1)經(jīng)歷由幾何圖形抽象出基本不等式的過程;
(2)體驗數(shù)形結(jié)合思想。
3、情感、態(tài)度和價值觀目標(biāo)
(1)感悟數(shù)學(xué)的發(fā)展過程,學(xué)會用數(shù)學(xué)的眼光觀察、分析事物;
(2)體會多角度探索、解決問題。
【能力培養(yǎng)】
培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、規(guī)范的學(xué)習(xí)能力,辯證地分析問題的能力,學(xué)以致用的能力,分析問題、解決問題的能力。
【教學(xué)重點】
應(yīng)用數(shù)形結(jié)合的思想理解不等式,并從不同角度探索不等式 的證明過程。
【教學(xué)難點】
基本不等式 等號成立條件。
【教學(xué)方法】
教師啟發(fā)引導(dǎo)與學(xué)生自主探索相結(jié)合
【教學(xué)工具】
課件輔助教學(xué)、實物演示實驗
【教學(xué)流程】
SHAPE MERGEFORMAT
【教學(xué)過程設(shè)計】
創(chuàng)設(shè)情景,引入新課
如圖是在北京召開的第24屆國際數(shù)學(xué)家大會的會標(biāo), 這是根據(jù)趙爽弦圖而設(shè)計的。用課前折好的趙爽弦圖示范,比較 4個直角三角形的面積和與大正方形的面積,你會得到怎樣的相 等和不等關(guān)系?
趙爽弦圖
1.探究圖形中的不等關(guān)系
將圖中的“風(fēng)車”抽象成如圖,在正方形ABCD中右個全等的直角三角形。
設(shè)直角三角形的兩條直角邊長為a,b那么正方形的邊長為 。這樣,4個直角三角形的面積的和是2ab,正方形的面積為 。由于4個直角三角形的面積小于正方形的面積,我們就得到了一個不等式: 。
當(dāng)直角三角形變?yōu)榈妊苯侨切?,即a=b時,正方形EFGH縮為一個點,這時有 。
2.得到結(jié)論:一般的,如果
3.思考證明:你能給出它的證明嗎?
證明:因為
當(dāng)
所以, ,即
4.基本不等式
1)特別的,如果a>0,b>0,我們用分別代替a、b ,可得 ,通常我們把上式寫作:
2)從不等式的性質(zhì)推導(dǎo)基本不等式
用分析法證明:
要證 (1)
只要證 (2)
要證(2),只要證 a+b- 0 (3)
要證(3),只要證 ( - ) (4)
顯然,(4)是成立的。當(dāng)且僅當(dāng)a=b時,(4)中的等號成立。
3)理解基本不等式 的幾何意義
不等式的課件 篇2
基本不等式教學(xué)設(shè)計
數(shù)學(xué)與應(yīng)用數(shù)學(xué) 鐘林
課題:人教A版必修5第3章4節(jié),基本不等式
【教學(xué)目標(biāo)】
1.通過兩個探究實例,引導(dǎo)學(xué)生從幾何圖形中獲得兩個基本不等式,了解基本不等式的幾何背景,體會數(shù)形結(jié)合的思想。
2.進(jìn)一步提煉、完善基本不等式,并從代數(shù)角度給出不等式的證明,組織學(xué)生分析證明方法,加深對基本不等式的認(rèn)識,提高邏輯推理論證能力。 3.結(jié)合課本的探究圖形,引導(dǎo)學(xué)生進(jìn)一步探究基本不等式的幾何解釋,強(qiáng)化數(shù)形結(jié)合的思想。
4.借助例1嘗試用基本不等式解決簡單的最值問題,通過例2及其變式引導(dǎo)學(xué)生
a?b領(lǐng)會運(yùn)用基本不等式ab?的三個限制條件(一正二定三相等)在解決最
2值中的作用,提升解決問題的能力,體會方法與策略。
【重點難點】
重點:應(yīng)用數(shù)形結(jié)合的思想理解基本不等式,并從不同角度探索不等式a?bab?的證明過程。
2難點:在幾何背景下抽象出基本不等式,并理解基本不等式。
【教學(xué)設(shè)計】
(一)問題導(dǎo)入
欣賞2002年國際數(shù)學(xué)家大會會徽,會徽是根據(jù)中國古代數(shù)學(xué)家趙爽的弦圖設(shè)計的,顏色的明暗使它看上去象一個風(fēng)車,代表中國人民熱情好客。你能發(fā)現(xiàn)它是什么圖形構(gòu)成的嗎?請根據(jù)會徽探索一些常見相等或不等關(guān)系。
探究一:在這張“弦圖”中能找出一些相等關(guān)系和不等關(guān)系嗎? 在正方形ABCD中有4個全等的直角三角形.設(shè)直角三角形兩條直角邊長為,a,b。
22a?b那么正方形的邊長為。
于是,4個直角三角形的面積之和S1?2ab。 正方形的面積S2?a2?b2。 由圖可知S2?S1,即a2?b2?2ab。
當(dāng)直角三角形變?yōu)榈妊苯侨切?,即時,正方形EFGH縮為一個點,這時 a2?b2?2ab
所以a2?b2?2ab。
探究二:如下圖所示的梯形中,EF是梯形ABCD的中位線,梯形ABGH相似于梯 形GHDC。
梯形ABCD的上底是a,下底是b。讓同學(xué)們自主研究GH和EF的大小關(guān)系。
a?b因為EF是中位線,所以EF?,
2由相似,可以得出GH?ab, 同樣因為相似,有
AGABa, ??GDGHb又因為a?b,所以AG?GD,即AG?AE,
a?b。 2顯然,當(dāng)AB逐漸趨近CD的時候,GH也逐漸向EF靠近, 當(dāng)AB=CD的時候,即ABCD是矩形的時候,GH與EF重合。
a?b即,當(dāng)且僅當(dāng)a?b時,ab?。
2a?b所以,ab?,當(dāng)且僅當(dāng)a?b時,等號成立。
2所以GH?EF,即ab?
(二)概念深入
根據(jù)上述兩個幾何背景,初步形成不等式結(jié)論:
若a,b?R?,則a2?b2?2ab。(當(dāng)且僅當(dāng)a=b時,等號成立)
a?b。(當(dāng)且僅當(dāng)a=b時,等號成立) 2請同學(xué)們運(yùn)用代數(shù)法證明: 作法一(作差法): 若a,b?R?,則ab?a2?b2?2ab?(a?b)2?0a?b?2ab22
當(dāng)且僅當(dāng)a=b時,等號成立。且發(fā)現(xiàn)這里且a和b可以是全體實數(shù)、單項式、多項式。
作法二(分析法):
要證明a?b?ab, 2只需證明a?b?2ab, 即證a?b-2ab?0, 即為?a-b?2?0,該式顯然成立,所以,當(dāng)a?b時取等號。
于是有這樣的結(jié)論:
稱ab為a,b的幾何平均數(shù);稱基本不等式ab?a?b為a,b的算術(shù)平均數(shù), 2a?b又可敘述為: 2兩個正數(shù)的幾何平均數(shù)不大于它們的算術(shù)平均數(shù)
作法三(幾何法):
如圖,AB是圓O的直徑,點C是AB上一點,AC=a,BC=b.過點C作 垂直于AB的弦DE,連接AD,BD。 從而有CD?ab,OD?a?b。 2a?b。 2a?b當(dāng)且僅當(dāng)C點與圓心O點重合時,即a=b時,ab?
2故再次證明:
a?ba?0,b?0,ab?,當(dāng)且僅當(dāng)a=b時,等號成立。
2a?b也說明了ab?的幾何意義:半徑不小于半弦。
2由于直角三角形COD中,直角邊CD
(三)例題講解
例1.(1)用籬笆圍一個面積為100平方米的矩形菜園,問這個矩形的長、寬各為多少時,所用籬笆最短,最短的籬笆是多少?
(2)一段長為36米的籬笆圍成一個矩形菜園,問這個矩形的長、寬為多少時,菜園的面積最大,最大面積是多少?
(通過例1的講解,總結(jié)歸納利用基本不等式求最值問題的特征,實現(xiàn)積與和的轉(zhuǎn)化)
對于x,y?R?,
(1)若xy?p(定值),則當(dāng)且僅當(dāng)x?y時,x?y有最小值2p;
s2(2)若x?y?s(定值),則當(dāng)且僅當(dāng)x?y時,xy有最大值。
4(鼓勵學(xué)生自己探索推導(dǎo),不但可使他們加深基本不等式的理解,還鍛煉了他們的思維,培養(yǎng)了勇于探索的精神。)
1例2.求y?x?(x?0)的值域。
x1變式1.若x?2,求x?的最小值.
x?21在運(yùn)用基本不等式解題的基礎(chǔ)上,利用幾何畫板展示y?x?(x?0)的函數(shù)
x圖象,使學(xué)生再次感受數(shù)形結(jié)合的數(shù)學(xué)思想。
a?b并通過例2及其變式引導(dǎo)學(xué)生領(lǐng)會運(yùn)用基本不等式ab?的三個限制
2條件(一正二定三相等)在解決最值問題中的作用,提升解決問題的能力,體會方法與策略。
(四)歸納小結(jié)&課后作業(yè) 基本不等式:
若a,b?R?,則a2?b2?2ab。(當(dāng)且僅當(dāng)a=b時,等號成立)
a?b。(當(dāng)且僅當(dāng)a=b時,等號成立) 2(1)基本不等式的幾何解釋(數(shù)形結(jié)合思想); (2)運(yùn)用基本不等式解決簡單最值問題的基本方法。
作業(yè):A組第4題,B組第1題,第2題
若a,b?R?,則ab?
不等式的課件 篇3
課題:3.4.3 基本不等式 的應(yīng)用(二) 科目:數(shù)學(xué) 教學(xué)對象:高二(290)學(xué)生 課時:1課時 提供者:劉和安 單位: 姚安一中 一、教學(xué)內(nèi)容分析 本節(jié)課的研究是起到了對學(xué)生以前所學(xué)知識與方法的復(fù)習(xí)、應(yīng)用,進(jìn)而構(gòu)建他們更完善的知識網(wǎng)絡(luò)。數(shù)學(xué)建模能力的培養(yǎng)與鍛煉是數(shù)學(xué)教學(xué)的一項長期而艱苦的任務(wù),這一點,在本節(jié)課是真正得到了體現(xiàn)和落實。?
根據(jù)本節(jié)課的教學(xué)內(nèi)容,應(yīng)用觀察、閱讀、歸納、邏輯分析、思考、合作交流、探究,對基本不等式展開實際應(yīng)用,進(jìn)行啟發(fā)、探究式教學(xué)并使用投影儀輔助。? 二、教學(xué)目標(biāo) (一)知識目標(biāo):構(gòu)建基本不等式解決函數(shù)的值域、最值問題;
(二)能力目標(biāo):讓學(xué)生探究用基本不等式解決實際問題
(三)情感、態(tài)度和價值觀目標(biāo):
通過具體問題的解決,讓學(xué)生去感受、體驗現(xiàn)實世界和日常生活中存在著大量的不等量關(guān)系并需要從理性的角度去思考,鼓勵學(xué)生用數(shù)學(xué)觀點進(jìn)行類比、歸納、抽象,使學(xué)生感受數(shù) 學(xué)、走進(jìn)數(shù)學(xué)、培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)學(xué)習(xí)習(xí)慣和良好的思維習(xí)慣;? 三、學(xué)習(xí)者特征分析 在本節(jié)課的教學(xué)過程中,仍應(yīng)強(qiáng)調(diào)不等式的現(xiàn)實背景和實際應(yīng)用,真正地把不等式作為刻畫現(xiàn)實世界中不等關(guān)系的工具。通過實際問題的分析解決,讓學(xué)生去體會基本不等式所具有的廣泛的實用價值,同時,也讓學(xué)生去感受數(shù)學(xué)的應(yīng)用價值,從而激發(fā)學(xué)生去熱愛數(shù)學(xué)、研究數(shù)學(xué)。而不是覺得數(shù)學(xué)只是一門枯燥無味的推理學(xué)科。在解決實際問題的過程中,既要求學(xué)生能用數(shù)學(xué)的眼光、觀點去看待現(xiàn)實生活中的許多問題,又會涉及與函數(shù)、方程、三角等許多數(shù)學(xué)本身的知識與方法的處理 四、教學(xué)策略選擇與設(shè)計 1.采用探究法,按照觀察、閱讀、歸納、思考、交流、邏輯分析、抽象應(yīng)用的方法進(jìn)行啟發(fā)式教學(xué);?
2.教師提供問題、素材,并及時點撥,發(fā)揮老師的主導(dǎo)作用和學(xué)生的主體作用;?
3.設(shè)計較典型的具有挑戰(zhàn)性的問題,激發(fā)學(xué)生去積極思考,從而培養(yǎng)他們的數(shù)學(xué)學(xué)習(xí)興趣。?? 五、教學(xué)重點及難點 教學(xué)重點:1.構(gòu)建基本不等式解決函數(shù)的值域、最值問題。?
2.讓學(xué)生探究用基本不等式解決實際問題;?
教學(xué)難點:1.讓學(xué)生探究用基本不等式解決實際問題;?
2.基本不等式應(yīng)用時等號成立條件的考查;?
六、教學(xué)過程 教師活動 學(xué)生活動 設(shè)計意圖 (一)導(dǎo)入新課
(二)推進(jìn)新課
已知 ,若ab為常數(shù)k,那么a+b的值如何變化?
若a+b為常數(shù)s,那么ab的值如何變化?
老師用投影儀給出本節(jié)課的第一組問題
(1)求函數(shù)y=2x2+ (x>0)的最小值。?
(2)求函數(shù)y=x2+ (x>0)的最小值。?
(3)求函數(shù)y=3x2-2x3(0
(4)求函數(shù)y=x(1-x2)(0
(5)設(shè)a>0,b>0,且a2+ =1,求 的最大值。?
(三)合作探究 我們來考慮運(yùn)用正數(shù)的算術(shù)平均數(shù)與幾何平均數(shù)之間的關(guān)系來解答這些問題。根據(jù)函數(shù)最值的含義,我們不難發(fā)現(xiàn)若平均值不等式的某一端為常數(shù),則當(dāng)?shù)忍柲軌蛉〉綍r,這個常數(shù)即為另一端的一個最值。 ?
(四)例題精析?
【例】某工廠要建造一個長方體形無蓋貯水池,其容積為4 800 m3,深為 3 m.如果池底每平方米的造價為150元,池壁每平方米的造價為120元,怎樣設(shè)計水池能使總造價最低?最低總造價是多少?
當(dāng)且僅當(dāng)a=b時,a+b就有最小值為2k.?
當(dāng)且僅當(dāng)a=b時,ab就有最大值 (或ab有 最大值 ).?
學(xué)生完成
留五分鐘的時間讓學(xué)生思考,合作交流
(根據(jù)學(xué)生完成的典型情況,找五位學(xué)生到黑板板演,然后老師根據(jù)學(xué)生到黑板板演的完成情況再一次作點評)?
學(xué)生思考、回答,
不等式的課件 篇4
不等式
教材分析:本課由實際問題中的不等關(guān)系引出不等式的概念;類比方程的解,明確不等式解和解集的概念,以及不等式解集的兩種表示方法。
教學(xué)目標(biāo):了解不等式概念,理解不等式的解和解集。 教學(xué)重難點:不等式及解集概念的理解。 教學(xué)過程: 一:引出新知。
現(xiàn)實世界中存在大量的數(shù)量關(guān)系,包括相等關(guān)系和不等關(guān)系。用等式(包括方程),我們可以研究相等關(guān)系,而研究不等關(guān)系需要用本章的不等式,如引言中選擇購物商場問題.二:探索新知。
問題1 一輛勻速行駛的汽車在11:20距離A地50 km,要在12:00之前駛過A地.你能用式子表示出車速應(yīng)滿足的條件嗎?
1、汽車在12:00之前駛過A地的意思是什么? 從時間上看,汽車要在12:00之前駛過A地,則 以這個速度行駛50 km所用的時間不到。
從路程上看,汽車要在12:00之前駛過A地,則以這個速度行駛的路程要超過50 km。
2、如何用式子表示以上不等關(guān)系? 設(shè):車速為x km/h. 從時間上看: 從路程上看:
(1)對于不等式 而言,車速可以是80 km/h嗎?78 km/h呢?75 km/h呢?72 km/h呢?
(2)類比方程的解,什么叫不等式的解?
使不等式成立的未知數(shù)的值.(3)不等式還有其他解嗎?如果有,這些解應(yīng)滿足什么條件?
一般地,一個含有未知數(shù)的不等式的所有的解,組成這個不等式的解集.求不等式的解集的過程叫做解不等式. (4)除了用不等式表示取值范圍,還有其他表示方法嗎? 數(shù)軸
三、運(yùn)用新知。 例1 請用不等式表示:
(1) 是負(fù)數(shù);
(2) 與5的和小于-7;
(3) 的一半大于3.例2 直接說出不等式的解集,并在數(shù)軸上表
示出來.
四、歸納總結(jié) (1)什么叫不等式?
(2)什么叫不等式的解?不等式的解和方程的解的區(qū)別? (3)什么叫不等式的解集?不等式的解和不等式的解集的區(qū)別?
五、布置作業(yè)
教科書 習(xí)題 第
1、
2、3題。
不等式的課件 篇5
[教學(xué)目標(biāo)]
依據(jù)《新標(biāo)準(zhǔn)》對《不等式》學(xué)段的目標(biāo)要求和本班學(xué)生實際情況,特確定如下目標(biāo):
1、知識與能力目標(biāo):理解掌握基本不等式,并能運(yùn)用基本不等式解決一些簡單問題(求最值、證明不等式);培養(yǎng)學(xué)生探究能力以及分析問題解決問題的能力。
2、過程與方法目標(biāo):按照創(chuàng)設(shè)情景,提出問題→ 剖析歸納證明→ 幾何解釋→ 應(yīng)用(最值的求法、不等式的證明)的過程呈現(xiàn)。啟動觀察、分析、歸納、總結(jié)、抽象概括等思維活動,培養(yǎng)學(xué)生的思維能力,體會數(shù)學(xué)概念的學(xué)習(xí)方法,通過運(yùn)用多媒體的教學(xué)手段,引領(lǐng)學(xué)生主動探索基本不等式性質(zhì),體會學(xué)習(xí)數(shù)學(xué)規(guī)律的方法,體驗成功的樂趣。
3、情感與態(tài)度目標(biāo):通過問題情境的設(shè)置,使學(xué)生認(rèn)識到數(shù)學(xué)是從實際中來,培養(yǎng)學(xué)生用數(shù)學(xué)的眼光看世界,通過數(shù)學(xué)思維認(rèn)知世界,從而培養(yǎng)學(xué)生善于思考、勤于動手的良好品質(zhì)。
二、 [教學(xué)重點]
基本不等式 的證明過程及應(yīng)用。
三、 [教學(xué)難點]
1、基本不等式成立時的三個限制條件(簡稱一正、二定、三相等)的正確理解;
2、靈活利用基本不等式求解實際問題中的最大值和最小值。
四、 [教學(xué)方法]
本節(jié)課采啟發(fā)誘導(dǎo)、講練結(jié)合的教學(xué)方法,結(jié)合現(xiàn)代信息技術(shù)多媒體課件、幾何畫板作為教學(xué)輔助手段,加深學(xué)生對基本不等式的理解。
[教學(xué)用具]
多媒體、幾何畫板
六、 [教學(xué)過程]
教學(xué)過程設(shè)計以問題為中心,以探究解決問題的方法為主線展開。這種安排強(qiáng)調(diào)過程,符合學(xué)生的認(rèn)知規(guī)律,使數(shù)學(xué)教學(xué)過程成為學(xué)生對知識的再創(chuàng)造、再發(fā)現(xiàn)的過程,從而培養(yǎng)學(xué)生的創(chuàng)新意識。
具體過程安排如下:
(一)、創(chuàng)設(shè)情景,提出問題;
上圖是在北京召開的第24屆國際數(shù)學(xué)家大會的會標(biāo),會標(biāo)是根據(jù)中國古代數(shù)學(xué)家趙爽的弦圖設(shè)計的,顏色的明暗使它看上去像一個風(fēng)車,代表中國人民熱情好客。
[問]你能在這個圖中找出一些相等關(guān)系或不等關(guān)系嗎?
利用圖中相關(guān)面積間存在的數(shù)量關(guān)系,抽象出不等式 。在此基礎(chǔ)上,引導(dǎo)學(xué)生認(rèn)識基本不等式。
同時,(幾何畫板輔助教學(xué))通過幾何畫板演示,
讓學(xué)生更直觀的抽象、歸納出結(jié)論:
(二)、抽象歸納:
一般地,對于任意實數(shù) ,有 ,當(dāng)且僅當(dāng) 時,等號成立。
[問] 你能給出它的證明嗎?
學(xué)生在黑板上板書。
特別地,當(dāng) 時,在不等式 中,以 、 分別代替 ,得到什么?
答案: 。
【歸納總結(jié)】
如果 都是正數(shù),那么 ,當(dāng)且僅當(dāng) 時,等號成立。
我們稱此不等式為基本不等式。 其中 稱為 的算術(shù)平均數(shù), 稱為 的幾何平均數(shù)。
(三)、理解升華:
1、文字語言敘述:
兩個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)。
2、符號語言敘述:
若 ,則有 ,當(dāng)且僅當(dāng) 時, 。
[問] 怎樣理解“當(dāng)且僅當(dāng)”?
3、探究基本不等式證明方法:
[問] 如何證明基本不等式?
方法一:作差比較或由 展開證明。
方法二:分析法。
分析法,實際上是尋找結(jié)論的充分條件,執(zhí)果索因的一種思維方法。
4、探究基本不等式的幾何意義:
讀書破萬卷下筆如有神,以上就是一米范文范文為大家?guī)淼?篇《2023高中數(shù)學(xué)基本不等式教學(xué)教案》,希望對您有一些參考價值。
不等式的課件 篇6
不等式和不等式組復(fù)習(xí)課教學(xué)設(shè)計
一、設(shè)計思想:
“不等式”是初中數(shù)學(xué)核心內(nèi)容之一。就不等式的解法來說,它是一種重要的數(shù)學(xué)技能;而就不等式的廣泛作用來說,不管是與實際相關(guān)的問題,還是純粹的數(shù)學(xué)問題,不管是代數(shù)方面的問題,還是幾何圖形方面的問題,乃至更為一般化的問題,只要是求未知數(shù)的值或范圍的問題,經(jīng)常要借助于不等式,可見學(xué)好不等式具有非常重要的意義。
這節(jié)課是中考前的專題復(fù)習(xí)課,知識點不多。由于學(xué)生已經(jīng)學(xué)過本章內(nèi)容,因此在本節(jié)復(fù)習(xí)中主要以提問的形式進(jìn)行知識要點的復(fù)習(xí),以學(xué)生自主探索和合作探究的學(xué)習(xí)方法學(xué)習(xí)本節(jié)內(nèi)容。教師主要在習(xí)題的設(shè)計上選好典型例題,復(fù)習(xí)的知識盡量全面。教學(xué)效果上使不同的學(xué)生有不同的收獲。
二、教學(xué)內(nèi)容分析:
1.《課程標(biāo)準(zhǔn)》對本專題教學(xué)內(nèi)容的要求:
(1)結(jié)合具體問題,了解不等式的意義,探索不等式的基本性質(zhì)。 (2)能解簡單的一元一次不等式,并能在數(shù)軸上表示出解集;會用數(shù)軸確定由兩個一元一次不等式組成的不等式組的解集。
(3)能根據(jù)具體問題中的數(shù)量關(guān)系,列出一元一次不等式,解決簡單的問題。 2.本節(jié)內(nèi)容在中考中的地位和作用。
本部分內(nèi)容在中考中大約6~12分,約占全卷分?jǐn)?shù)的5%~8%左右。而且,近幾年考試中,經(jīng)常與方程、函數(shù)三角函數(shù)、幾何等內(nèi)容一起綜合考查,因此學(xué)好本節(jié)內(nèi)容對于解決這些綜合問題起著舉足輕重的作用。
三、教學(xué)目標(biāo):
1、知識技能:
①掌握不等式的概念和性質(zhì),能根據(jù)不等式的性質(zhì)解決有關(guān)問題;
②掌握不等式(組)的解法,會求不等式(組)的解集,特別是不等式組的整數(shù)解;
③能根據(jù)不等式組的解集確定字母系數(shù)的范圍;
④會列不等式(組)解決簡單的實際問題,特別是方案設(shè)計問題。
2、數(shù)學(xué)思考:通過列不等式或不等式組解決具有不等關(guān)系的實際問題,讓學(xué)生體會不等式是解決實際問題的有效的數(shù)學(xué)模型。
3、解決問題:通過不等式(組)描述不等關(guān)系解決實際問題,發(fā)展學(xué)生由實際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力。
4、情感態(tài)度:①通過復(fù)習(xí)教學(xué),繼續(xù)強(qiáng)化用數(shù)學(xué)的意識,從而使學(xué)生樂于接觸社會環(huán)境中的數(shù)學(xué)信息,愿意談?wù)撃承?shù)學(xué)話題,能夠在數(shù)學(xué)活動中發(fā)揮積極作用。
②.通過探索,增進(jìn)學(xué)生之間的配合,使學(xué)生敢于面對數(shù)學(xué)活動中的困難,并有克服困難和運(yùn)用知識解決問題的成功體驗,樹立學(xué)好數(shù)學(xué)的自信心。
教學(xué)重點:不等式(組)的解法的規(guī)范性及實際應(yīng)用
教學(xué)難點:不等式組有無解的問題中字母系數(shù)的確定和實際問題中不等式(組)的列出
教學(xué)方法:依托多媒體平臺,啟發(fā)、談?wù)?、互動探究法(學(xué)生討論、教師點撥)、講練結(jié)合。
教學(xué)手段:計算機(jī)多媒體輔助教學(xué)。 教學(xué)時間:1課時
教學(xué)準(zhǔn)備:1.學(xué)生準(zhǔn)備:預(yù)習(xí)教材,了解本節(jié)的知識要點。
2.教師準(zhǔn)備:將學(xué)生分組,選好組長;制作多媒體課件。
教學(xué)設(shè)計
一 情境設(shè)計
導(dǎo)入新課
出示多媒體課件
1、問題情境:問題:某化妝品店老板到廠家選購A、B兩種品牌的化妝品,若銷售1套A品牌的化妝品可獲利30元,銷售1套B品牌的化妝品可獲利20元,根據(jù)市場需求,化妝品店老板決定,購進(jìn)B品牌化妝品的數(shù)量比購進(jìn)A品牌化妝品數(shù)量的2倍還多4套,且B品牌化妝品最多可購進(jìn)40套,這樣化妝品全部售出后,可使總的獲利不少于1200元,問有幾種進(jìn)貨方案?如何進(jìn)貨? 教師:同學(xué)們,如果你是這個化妝品店的老板,你怎么解決進(jìn)貨方案問題? (學(xué)生思考):
教師:如何用數(shù)學(xué)符號表示標(biāo)有下劃線的詞語?應(yīng)該考查我們哪部分知識? 學(xué)生:最多 —— ≤;不少于—— -≥。 教師:我們學(xué)過的哪章知識與它們聯(lián)系最密切?由此我們想到了哪部分知識? 學(xué)生:不等式和不等式組
教師:下面我們就來復(fù)習(xí)有關(guān)這方面的內(nèi)容,“專題復(fù)習(xí)
(二)方程和不等式-----------不等式和不等式”。 (板書課題)
(多媒體出示教學(xué)目標(biāo)。圖略)
二、展示教學(xué)目標(biāo)、教學(xué)重點和難點:(讓學(xué)生學(xué)有目的,學(xué)有依據(jù))
三、回顧知識要點:
1.知識網(wǎng)絡(luò)出示;(使學(xué)生對本節(jié)知識的復(fù)習(xí)內(nèi)容一目了然,從總體把握知識間的內(nèi)在聯(lián)系)
實際問題
3、知識要點復(fù)習(xí)不等關(guān)系不等式不等式的性質(zhì)解不等式解集一元一次不等式一元一次不等式組解法解法數(shù)軸表示解集數(shù)軸表示實際應(yīng)用解集數(shù)軸表示 2.知識要點復(fù)習(xí):(通過提問由學(xué)生回答) ①基本概念復(fù)習(xí)
(澄清基本概念,對知識間的內(nèi)在聯(lián)系更明確。)
3、知識要點復(fù)習(xí)
一、基本概念:
1、不等式:
2、不等號:
3、不等式的解:
4、不等式的解集:
5、解不等式:
6、一元一次不等式:
7、一元一次不等式組:
8、一元一次不等式組的解集:
9、解一元一次不等式組: ②不等式性質(zhì)復(fù)習(xí):(它是解不等式和不等式組的重要依據(jù),特別注意第3條性質(zhì),不等號方向改變問題,提醒學(xué)生,此處易錯,提起注意)
3、知識要點復(fù)習(xí)
二、不等式的性質(zhì):(1)如果a>b,那么a+c>b+c,a-c>b-c不等式的兩邊都加上(或減去)同一個數(shù)或同一個整式,不等號的方向不變。ab?(2)如果a>b,并且c>0,那么ac>bc,cc不等式兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變。(3)如果a>b,并且c
3、知識要點復(fù)習(xí)三,規(guī)律與方法:1,不等式的解法:2,解不等式組的方法:3,不等式的解集在數(shù)軸上的表示:大向右,小向左,有等號是實心,無等號是空心.4,求幾個不等式的解的公共部分的方法和規(guī)律:(1)數(shù)軸法(2)口訣法同大取大同小取小一大一小中間找 ④用一元一次不等式組解決實際問題的步驟:(為解決實際問題提供依據(jù),這是本節(jié)的重點知識,學(xué)生可能會類比前邊復(fù)習(xí)的方程和方程組的知識說出。)
3、知識要點復(fù)習(xí)
5、用一元一次不等式組解決實際問題的步驟:實際問題設(shè)未知數(shù),列不等式(組)數(shù)學(xué)問題(不等式或不等式組)解不等式組實際問題的解答檢驗數(shù)學(xué)問題的解(不等式(組)的解集)
四、典型例題解析:(這一環(huán)節(jié)也是學(xué)生要達(dá)到的知識技能目標(biāo)的重要一環(huán),學(xué)生解題的順利與否,是教師關(guān)注的重點。學(xué)生能夠獨立解出的,關(guān)注其過程是否規(guī)范,思路是否清晰,方法是否得當(dāng)。不能解出的,先由小組合作探究,看是否能找到解題的思路,得出問題的答案;如果仍不能得出,教師加以點撥,引導(dǎo),幫助學(xué)生找到解題思路,得出問題的答案。)
例1.(本題是一元一次不等式的解法的考查,是本節(jié)的基本題型,估計學(xué)生都能獨立解出,可讓中游的學(xué)生板演,這樣解題步驟展現(xiàn)在大家面前,如果規(guī)范,起個示范作用;不規(guī)范,示范改正,起警示作用。把重點放在解題步驟是否規(guī)范上。)
4、典型例題:例1.解一元一次不等式解:3 (x-1) ≤6 –2(x-2)3x –3 ≤6 –2x+43x+2x ≤6+4+35x ≤13x ≤135自然數(shù)解非負(fù)整數(shù)解正整數(shù)解最大解最大整數(shù)解 (右邊的云形圖中是在學(xué)生解完不等式后先后出示的五種特殊情況,這樣進(jìn)
行變式教學(xué),展示了一題多解的典型題目,同時又使學(xué)生鍛煉了仔細(xì)審題的能力。)
4、典型例題:例1.解一元一次不等式解一元一次方程一元一次不解:3 (x-1) = 6 –2(x-2)解:3 (x-1) ≤6 –2(x-2)3x –3 = 6 –2x+43x –3 ≤6 –2x+4等式和一元一次3x+2x =6+4+3方程有何共同點3x+2x ≤6+4+35x =13和不同點?5x ≤x =x≤55 (通過這種一元一次不等式和一元一次方程解法的類比,使學(xué)生明確知識間的內(nèi)在聯(lián)系,同時發(fā)現(xiàn)其中的異同,對兩者的區(qū)別更加清晰)
例2.(考查不等式的變形,解決問題的關(guān)鍵是正確理解不等式的概念和基本性質(zhì)。重點關(guān)注基本性質(zhì)的靈活掌握)
例3.(把平面直角坐標(biāo)系的象限問題轉(zhuǎn)化成不等式組問題,既體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想方法,又見識了不等式組的廣泛應(yīng)用??梢詭蛯W(xué)生回憶坐標(biāo)系的有關(guān)知識。)
4、典型例題:a例2.若a1;b1a③a+b
3、在直角坐標(biāo)系中,P(2x-6,x-5)在第四象限,則x的取值范圍是3
例4.(把不等式中的相等問題出示,體現(xiàn)了相等和不等可以互相轉(zhuǎn)化的數(shù)學(xué)思想。并與數(shù)與式中的乘方問題相聯(lián)系,具有一定的綜合性。)
例5.(借助數(shù)軸確定不等式組的解集,對于解這類題非常有效,學(xué)生容易做錯,特別是是否包括界點問題,有一定難度,讓學(xué)生小組合作探究,共同尋找問題的答案。教師巡視,給有困難小組點撥,指導(dǎo)。)
4、典型例題:x?a?2例
4、(2009涼山)若不等式組集是-1
例題分析:問題5問題分析:本題存在兩個不等關(guān)系,一是購買B品牌化妝品不超過40套;二是兩種化妝品的獲利不少于1200元。根據(jù)這兩個不等關(guān)系,可列不等式組求解。 (學(xué)生寫出解題過程后,教師可出示規(guī)范的解題過程,體現(xiàn)數(shù)學(xué)學(xué)科的嚴(yán)謹(jǐn)性。)
4例題講解:、典型例題:解:設(shè)A品牌化妝品購進(jìn)m套,則B品牌化妝品購進(jìn)(2m+4)套。根據(jù)題意得:解得:16≤m≤18.因為m為正整數(shù),所以m=16,17,18,所以2m+4=
36、
38、40.所以有三種進(jìn)貨方案:(1)A種品牌的化妝品的購進(jìn)16套,B種品牌的化妝品購進(jìn)36套;(1)A種品牌的化妝品的購進(jìn)16套,B種品牌的化妝品購進(jìn)36套;(1)A種品牌的化妝品的購進(jìn)16套,B種品牌的化妝品購進(jìn)36套; (通過方案設(shè)計題的解決,使學(xué)生能夠由實際問題建立數(shù)學(xué)模型,從而增強(qiáng)解決實際問題的能力。)
五、
歸納小結(jié)(先由學(xué)生自己歸納總結(jié)本節(jié)課的收獲,從而把課堂傳授的知識盡快化為學(xué)生的素質(zhì),以培養(yǎng)和增強(qiáng)學(xué)生的歸納總結(jié)能力;然后老師予以補(bǔ)充和歸納,為學(xué)生良好學(xué)習(xí)習(xí)慣的養(yǎng)成繼續(xù)進(jìn)行指導(dǎo)。)
5、歸納小結(jié)你會了嗎?這節(jié)課你學(xué)到了什么?你有什么收獲?你還有什么問題?
六、達(dá)標(biāo)檢測:(在這一環(huán)節(jié),我設(shè)計了幾個有梯度的題目,這樣可使不同層次的學(xué)生都能有所收獲,都能感受到成功的喜悅,使他們“在數(shù)學(xué)上都能有不同的發(fā)展”。)
6.達(dá)標(biāo)檢測(1)若2x=3+k的解集是負(fù)數(shù),那么k的取值范圍是______.K
3、不等式組數(shù)解為(A的最小整)A,-1 B,0 C,2 D,3 9
6.達(dá)標(biāo)檢測
4、躍壯五金商店準(zhǔn)備從寧云機(jī)械廠購進(jìn)甲、乙兩種零件進(jìn)行銷售。若每個甲種零件的進(jìn)價比每個乙種零件的進(jìn)價少2元,且用80元購進(jìn)甲種零件的數(shù)量與用100元購進(jìn)乙種零件的數(shù)量相同。(1)求每個甲種零件、每個乙種零件的進(jìn)價分別為多少元?(2)若該五金商店本次購進(jìn)甲種零件的數(shù)量比購進(jìn)乙種零件的數(shù)量的3倍還少5個,購進(jìn)兩種零件的總數(shù)量不超過95個,該五金商店每個甲種零件的銷售價格為12元,每個乙種零件的銷售價格為15元,則將本次購進(jìn)的甲、乙兩種零件全部售出后,可使銷售兩種零件的總利潤(利潤=售價-進(jìn)價超過371元,通過計算求出躍壯五金商店本次從寧云機(jī)械廠購進(jìn)甲、乙兩種零件有幾種方案?請你設(shè)計出來。 6.達(dá)標(biāo)檢測選做題?若不等式組x?a?01?2x?x?2有解,則a的取?值范圍是(A)。?>-1 ≥-1 ≤1 <1
七、教學(xué)設(shè)計的理論依據(jù)
1.“理論聯(lián)系實際”的原則,聯(lián)系學(xué)生身邊的生活,引導(dǎo)學(xué)生學(xué)習(xí)運(yùn)用理論知識分析、解決實際問題。
2.新課程標(biāo)準(zhǔn)中的“學(xué)生是學(xué)習(xí)的主人”的主體教育思想。
本節(jié)課努力構(gòu)建師生互動、生生互動的新的教學(xué)模式,創(chuàng)設(shè)情境引領(lǐng)教學(xué),引導(dǎo)學(xué)生的合作學(xué)習(xí),讓其在思考討論中自主學(xué)習(xí),真正落實以學(xué)生為中心、以學(xué)生發(fā)展為根本,注重學(xué)生道德和能力的培養(yǎng)。
不等式的課件 篇7
《基本不等式》教學(xué)設(shè)計
基本不等式
開江中學(xué) 魏江蘭
目標(biāo)分析
依據(jù)《新課程標(biāo)準(zhǔn)》對《不等式》學(xué)段的目標(biāo)要求和學(xué)生的實際情況,特確定如下目標(biāo):
1、知識與能力目標(biāo):理解掌握基本不等式,并能運(yùn)用基本不等式解決一些簡單的求最值問題;理解算數(shù)平均數(shù)與幾何平均數(shù)的概念,學(xué)會構(gòu)造條件使用基本不等式;培養(yǎng)學(xué)生探究能力以及分析問題解決問題的能力。
2、過程與方法目標(biāo):按照創(chuàng)設(shè)情景,提出問題→ 剖析歸納證明→ 幾何解釋→ 應(yīng)用(最值的求法、實際問題的解決)的過程呈現(xiàn)。啟動觀察、分析、歸納、總結(jié)、抽象概括等思維活動,培養(yǎng)學(xué)生的思維能力,體會數(shù)學(xué)概念的學(xué)習(xí)方法,通過運(yùn)用多媒體的教學(xué)手段,引領(lǐng)學(xué)生主動探索基本不等式性質(zhì),體會學(xué)習(xí)數(shù)學(xué)規(guī)律的方法,體驗成功的樂趣。
3、情感與態(tài)度目標(biāo):通過問題情境的設(shè)置,使學(xué)生認(rèn)識到數(shù)學(xué)是從實際中來,培養(yǎng)學(xué)生用數(shù)學(xué)的眼光看世界,通過數(shù)學(xué)思維認(rèn)知世界,從而培養(yǎng)學(xué)生善于思考、勤于動手的良好品質(zhì)。
教學(xué)重、難點分析
重點:應(yīng)用數(shù)形結(jié)合的思想理解基本不等式,并從不同角度探索基本不等式ab?a?b的證明過程及應(yīng)用。 2難點:
1、基本不等式成立時的三個限制條件(簡稱一正、二定、三相等);
2、利用基本不等式求解實際問題中的最大值和最小值。
教法分析
本節(jié)課采用觀察——感知——抽象——歸納——探究;啟發(fā)誘導(dǎo)、講練結(jié)合的教學(xué)方法,以學(xué)生為主體,以基本不等式為主線,從實際問題出發(fā),放手讓學(xué)生探究思索。以現(xiàn)代信息技術(shù)多媒體課件作為教學(xué)輔助手段,加深學(xué)生對基本不等式的理解。
《基本不等式》教學(xué)設(shè)計
教學(xué)準(zhǔn)備
多媒體課件、板書
教學(xué)過程
教學(xué)過程設(shè)計以問題為中心,以探究解決問題的方法為主線展開。這種安排強(qiáng)調(diào)過程,符合學(xué)生的認(rèn)知規(guī)律,使數(shù)學(xué)教學(xué)過程成為學(xué)生對知識的再創(chuàng)造、再發(fā)現(xiàn)的過程,從而培養(yǎng)學(xué)生的創(chuàng)新意識。 具體過程安排如下:
一、創(chuàng)設(shè)情景,提出問題;
設(shè)計意圖:數(shù)學(xué)教育必須基于學(xué)生的“數(shù)學(xué)現(xiàn)實”,現(xiàn)實情境問題是數(shù)學(xué)教學(xué)的平臺,數(shù)學(xué)教師的任務(wù)之一就是幫助學(xué)生構(gòu)造數(shù)學(xué)現(xiàn)實,并在此基礎(chǔ)上發(fā)展他們的數(shù)學(xué)現(xiàn)實.基于此,設(shè)置如下情境: 上圖是在北京召開的第24屆國際數(shù)學(xué)家大會的會標(biāo),會標(biāo)是根據(jù)中國古代數(shù)學(xué)家趙爽的弦圖設(shè)計的,顏色的明暗使它看上去像一個風(fēng)車,代表中國人民熱情好客。
[問]你能在這個圖中找出一些相等關(guān)系或不等關(guān)系嗎?
本背景意圖在于利用圖中相關(guān)面積間存在的數(shù)量關(guān)系,抽象出不等式a2?b2?2ab。在此基礎(chǔ)上,引導(dǎo)學(xué)生認(rèn)識基本不等式。
二、抽象歸納:
一般地,對于任意實數(shù)a,b,有a2?b2?2ab,當(dāng)且僅當(dāng)a=b時,等號成立。 [問] 你能給出它的證明嗎?
證明:因為a2?b2?2ab?(a?b)2?0,即a2?b2?2ab.(當(dāng)a?b時取等號)
特別地,當(dāng)a>0,b>0時,在不等式a2?b2?2ab中,以a、b分別代替a、b,得到什么?
設(shè)計依據(jù):類比是學(xué)習(xí)數(shù)學(xué)的一種重要方法,此環(huán)節(jié)不僅讓學(xué)生理解了基本不等式不等式的來源,突破了重點和難點,而且感受了其中的函數(shù)思想,為今后學(xué)習(xí)奠定基礎(chǔ).
《基本不等式》教學(xué)設(shè)計
答案: ab?a?b(a,b?0)。 2你能用不等式的性質(zhì)直接推導(dǎo)這個不等式嗎? 證明:(分析法):由于a,b?R?,于是要證明 a?b?2ab,
只要證明 a?b?2即證
2ab,
a?b?2ab?0,即 (a?b)2?0,
所以a?b?ab,(當(dāng)a?b時取等號)
【歸納總結(jié)】
如果a,b都是正數(shù),那么ab?a?b,當(dāng)且僅當(dāng)a=b時,等號成立。 2a?b稱為a,b的算術(shù)平均數(shù),ab稱2我們稱此不等式為基本不等式。 其中為a,b的幾何平均數(shù)。
文字語言敘述:兩個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)。
探究基本不等式的幾何意義:借助初中階段學(xué)生熟知的幾何圖形,引導(dǎo)學(xué)生探究ab?a?b(a,b?0)2的幾何解釋,通過數(shù)形結(jié)合,賦予不等式不等式ab?a?b(a,b?0)2幾何直觀。進(jìn)一步領(lǐng)悟不等式中等號成立的條件。
如圖:AB是圓的直徑,點C是AB上一點,CD⊥AB,AC=a,CB=b,CD
D?ab
aba?b2abOCAB幾何解釋實質(zhì)可認(rèn)為是:在同一半圓中,半徑不小于半弦(直徑是最長的弦);或者認(rèn)為是,直角三角形斜邊的一半不小于斜邊上的高。
《基本不等式》教學(xué)設(shè)計
4.應(yīng)用舉例,鞏固提高
我們可以用兩個重要不等式來解決什么樣的問題呢?
例1(1)用籬笆圍一個面積為100平方米的矩形菜園,問這個矩形的長、寬各為多少時,所用籬笆最短,最短的籬笆是多少? (2)一段長為36米的籬笆圍成一個矩形菜園,問這個矩形的長、寬為多少時,菜園的面積最大,最大面積是多少?
(通過例1的講解,總結(jié)歸納利用基本不等式求最值問題的特征,實現(xiàn)積與和的轉(zhuǎn)化) 對于(1)若(2)若,
(定值),則當(dāng)且僅當(dāng)(定值),則當(dāng)且僅當(dāng)
時,時,
有最小值有最大值
; .
(鼓勵學(xué)生自己探索推導(dǎo),不但可使他們加深基本不等式的理解,還鍛煉了他們的思維,培養(yǎng)了勇于探索的精神.)
1例 2:當(dāng)x?0時,求y?x?的最小值?x1變式1:當(dāng)x?0時,y?x?有最值嗎?
x1變式2:當(dāng)x?1時,y?x?有最值嗎?
x通過例2及其變式引導(dǎo)學(xué)生領(lǐng)會運(yùn)用基本不等式的三個限制條件(一正二定三相等)在解決最值問題中的作用,提升解決問題的能力,體會方法與策略.
練一練(自主練習(xí)):課本練習(xí) 5.歸納小結(jié),反思提高
《基本不等式》教學(xué)設(shè)計
基本不等式:若若
,則,則
(當(dāng)且僅當(dāng)(當(dāng)且僅當(dāng)
時,等號成立) 時,等號成立)
(1)基本不等式的幾何解釋(數(shù)形結(jié)合思想);(2)運(yùn)用基本不等式解決簡單最值問題的基本方法(一正二定三相等). 6.布置作業(yè),課后延拓
(1)基本作業(yè):課本P100習(xí)題組
1、
2、3題
(2)拓展作業(yè):請同學(xué)們課外到閱覽室或網(wǎng)上查找基本不等式的其他幾何解釋,整理并相互交流.
基本不等式教學(xué)設(shè)計
《等式的性質(zhì)》教學(xué)設(shè)計
《等式的性質(zhì)》教學(xué)設(shè)計
等式性質(zhì)教學(xué)設(shè)計(共8篇)
等式的基本性質(zhì)的課后教學(xué)反思
不等式的課件 篇8
一、教學(xué)目標(biāo):
(一)知識與能力目標(biāo):(課件第2張)
1.體會解不等式的步驟,體會比較、轉(zhuǎn)化的作用。
2.學(xué)生理解、鞏固一元一次不等式的解法.
3.用數(shù)軸表示解集,加深對數(shù)形結(jié)合思想的進(jìn)一步理解和掌握。
4.在解決實際問題中能夠體會將文字語言轉(zhuǎn)化成數(shù)學(xué)語言,學(xué)會用數(shù)學(xué)語言表示實際的數(shù)量關(guān)系。
(二)過程與方法目標(biāo):
1.介紹一元一次不等式的概念。
2.通過對一元一次方程的解法的復(fù)習(xí)和對不等式性質(zhì)的利用,導(dǎo)入對解不等式的討論。
3.學(xué)生體會通過綜合利用不等式的概念和基本性質(zhì)解不等式的方法。
4.學(xué)生將文字表達(dá)轉(zhuǎn)化為數(shù)學(xué)語言,從而解決實際問題。
5.練習(xí)鞏固,將本節(jié)和上節(jié)內(nèi)容聯(lián)系起來。
(三)情感、態(tài)度與價值目標(biāo):(課件第3張)
1.在教學(xué)過程中,學(xué)生體會數(shù)學(xué)中的比較和轉(zhuǎn)化思想。
2.通過類比一元一次方程的解法,從而更好的掌握一元一次不等式的解法,樹立辯證統(tǒng)一思想。
3.通過學(xué)生的討論,學(xué)生進(jìn)一步體會集體的作用,培養(yǎng)其集體合作的精神。
4.通過本節(jié)的學(xué)習(xí),學(xué)生體會不等式解集的奇異的數(shù)學(xué)美。
二、教學(xué)重、難點:
1.掌握一元一次不等式的解法。
2.掌握解一元一次不等式的階梯步驟,并能準(zhǔn)確求出解集。
3.能將文字?jǐn)⑹鲛D(zhuǎn)化為數(shù)學(xué)語言,從而完成對應(yīng)用問題的解決。
三、教學(xué)突破:
教材中沒有給出解法的一般步驟,所以在教學(xué)中要注意讓學(xué)生經(jīng)歷將所給的不等式轉(zhuǎn)化為簡單不等式的過程,并通過學(xué)生的討論交流使學(xué)生經(jīng)歷知識的形成和鞏固過程。在解不等式的過程中,與上節(jié)課聯(lián)系起來,重視將解集表示在數(shù)軸上,從而指導(dǎo)學(xué)生體會用數(shù)形結(jié)合的方法解決問題。在研究中,鼓勵學(xué)生用多種方法求解,從而鍛煉他們活躍的思維。
四、教 具:計算機(jī)輔助教學(xué).
五、教學(xué)流程:
(一)、復(fù)習(xí):
教學(xué)環(huán)節(jié)
教 師 活 動
學(xué) 生 活 動
設(shè) 計 意 圖
2023一元二次不等式課件
今天筆者為大家?guī)砹艘黄P(guān)于一元二次不等式課件的精彩文章,歡迎保存本網(wǎng)站,并時刻關(guān)注我們的最新動態(tài)。每位教師都應(yīng)該在授課前準(zhǔn)備充分的教案課件,只要在課前認(rèn)真編寫好教案,便可以有效地促進(jìn)學(xué)校的不斷發(fā)展。教案是推進(jìn)教育教學(xué)創(chuàng)新的有力工具。
一元二次不等式課件 篇1
《一元二次不等式及其解法》
教 學(xué) 設(shè) 計 說 明
《一元二次不等式及其解法》教學(xué)設(shè)計說明
一.教學(xué)內(nèi)容分析:
1.本節(jié)課內(nèi)容在整個教材中的地位和作用.
必修五第三章不等式第二節(jié)一元二次不等式及其解法共有三個課時,本節(jié)課是第一課時,教學(xué)內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性.一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續(xù)和深化,對已學(xué)習(xí)過的集合知識的鞏固和運(yùn)用具有重要的作用.許多問題的解決都會借助一元二次不等式的解法.因此,一元二次不等式的解法在整個高中數(shù)學(xué)教學(xué)中具有很強(qiáng)的基礎(chǔ)性,體現(xiàn)出很大的工具作用. 2.教學(xué)目標(biāo)定位.
根據(jù)教學(xué)大綱要求、高考考試大綱說明、新課程標(biāo)準(zhǔn)精神、高一學(xué)生已有的知識儲備狀況和學(xué)生心理認(rèn)知特征,我確定了四個層面的教學(xué)目標(biāo).第一層面是面向全體學(xué)生的知識目標(biāo):熟練掌握一元二次不等式的解法,正確理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系.第二層面是能力目標(biāo),培養(yǎng)學(xué)生運(yùn)用數(shù)形結(jié)合與分類討論等數(shù)學(xué)思想方法解決問題的能力,提高運(yùn)算和作圖能力.第三層面是德育目標(biāo),通過對解不等式過程中等與不等對立統(tǒng)一關(guān)系的認(rèn)識,向?qū)W生逐步滲透辨證唯物主義思想.第四層面是情感目標(biāo),在教師的啟發(fā)引導(dǎo)下,學(xué)生自主探究,交流討論,培養(yǎng)學(xué)生的合作意識和創(chuàng)新精神. 3.教學(xué)重點、難點確定.
本節(jié)課是在復(fù)習(xí)了一元二次方程和二次函數(shù)之后,利用二次函數(shù)的圖象研究一元二次不等式的解法.只要學(xué)生能夠理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系,并利用其關(guān)系解不等式即可.因此,我確定本節(jié)課的教學(xué)重點為一元二次不等式的解法,關(guān)鍵是一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系. 二.教法學(xué)法分析:
數(shù)學(xué)是發(fā)展學(xué)生思維、培養(yǎng)學(xué)生良好意志品質(zhì)和美好情感的重要學(xué)科,在教學(xué)中,我們不僅要使學(xué)生獲得知識、提高解題能力,還要讓學(xué)生在教師的啟發(fā)引導(dǎo)下學(xué)會學(xué)習(xí)、樂于學(xué)習(xí),感受數(shù)學(xué)學(xué)科的人文思想,使學(xué)生在學(xué)習(xí)中培養(yǎng)堅強(qiáng)的意志品質(zhì)、形成良好的道德情感.為了更好地體現(xiàn)課堂教學(xué)中“教師為主導(dǎo),學(xué)生為主體”的教學(xué)關(guān)系和“以人為本,以學(xué)定教”的教學(xué)理念,在本節(jié)課的教學(xué)過程中,將緊緊圍繞教師組織——啟發(fā)引導(dǎo),學(xué)生探究——交流發(fā)現(xiàn),組織開展教學(xué)活動.我設(shè)計了①回憶舊知,服務(wù)新知,②創(chuàng)設(shè)情境,提出問題,③合作交流,探究新知,④數(shù)學(xué)運(yùn)用,深化認(rèn)知,⑤練習(xí)檢測,反饋新知,⑥談?wù)勈斋@,強(qiáng)化思想,⑦布置作業(yè),實踐新知,環(huán)環(huán)相扣、層層深入的教學(xué)環(huán)節(jié),在教學(xué)中注意關(guān)注整個過程和全體學(xué)生,充分調(diào)動學(xué)生積極參與教學(xué)過程的每個環(huán)節(jié). 三.教學(xué)過程分析:
(一)聯(lián)系舊知,構(gòu)建新知
設(shè)置一系列的問題喚起學(xué)生對舊知識的回憶. 問題1:一元二次方程的解法有哪些呢?
(意圖:讓學(xué)生回顧一元二次方程的解法,為解一元二次不等式做準(zhǔn)備.)
問題2:同學(xué)們還記得二次函數(shù)嗎?二次函數(shù)的形式是怎樣的?你記得二次函數(shù)的性質(zhì)嗎?
(意圖:引導(dǎo)學(xué)生從圖象的角度出發(fā),并啟發(fā)學(xué)生二次函數(shù)的圖象是一條拋物線,其開口方向由二次項系數(shù)決定,為突出重點做準(zhǔn)備)
(二)創(chuàng)設(shè)情景,提出問題
1、讓學(xué)生動手畫直角坐標(biāo)系,然后沿x軸方向上下對折這張紙,觀察它們的值有什么特點?
22、請在剛才的坐標(biāo)系中畫出y=x-7x+6的圖像 問題1:
(1)x軸上方有無圖像?若有請用紅線描出。這部分圖像對應(yīng)的y值如何?(2)x軸下方有無圖像?若有請用藍(lán)線描出。這部分圖像對應(yīng)的y值如何?(3)紅線與藍(lán)線有無交點?若有請用綠色標(biāo)出。
(4)你能找出上述各種情況的x的取值范圍嗎?請在圖中寫出。
問題2:你能說一說這兩個不等式有何共同特點么?(1)含有一個未知數(shù)x;
(2)未知數(shù)的最高次數(shù)為2。通過兩問題得出一元二次不等式的概念:一般地,只含有一個未知數(shù),且未知數(shù)的最高次數(shù)為2的不等式,叫做一元二次不等式。
問題3:判斷下列式子是不是一元二次不等式?
問題4:一元二次函數(shù)、一元二次方程之間有何聯(lián)系呢?
一元二次方程的解即一元二次函數(shù)圖象與x軸交點的橫坐標(biāo),也就是說方程的解即對應(yīng)函數(shù)的零點。
問題5:一元二次不等式如何求解呢?
(三)合作交流,探究新知
1. 探究一元二次不等式x2?x?2?0的解.
容易知道:一元二次方程x2?x?2?0的有兩個實數(shù)根:x1??1或x2?2. 二次函數(shù)y?x2?x?2與x軸有兩個交點:??1,0?和?2,0?. 思考1:觀察圖象一元二次方程的根與二次函數(shù)之間有什么關(guān)系? 思考2:觀察圖象,當(dāng)x為何值時,y?0;
當(dāng)x為何值時,y?0; 當(dāng)x為何值時,y?0.
(設(shè)計意圖 : ①體現(xiàn)學(xué)生的主體性;②有利于加強(qiáng)對圖象的認(rèn)識,從而加強(qiáng)數(shù)形結(jié)合的數(shù)學(xué)思想 ;③有利于加強(qiáng)學(xué)生理解一元二次不等式的解相關(guān)的三個因素;④為歸納解一元二次不等式做好準(zhǔn)備.根據(jù)前面探討的問題引導(dǎo)學(xué)生歸納一元二次不等式的解.)
2. 探究一元二次不等式ax2?bx?c?0或ax2?bx?c?0?a?0?的解法. 組織討論:從上面的例子出發(fā),綜合學(xué)生的意見,可以歸納出確定一元二次不等式的解集,關(guān)鍵要考慮:
2拋物線y?ax?bx?c與x軸的相關(guān)位置的情況,也就是一元二次方程2ax2?bx?c=0的根的情況,而一元二次方程根的情況是由判別式??b?4ac三 3 種取值情況(??0,??0,??0)來確定.
(設(shè)計意圖:這里我將運(yùn)用多媒體圖標(biāo)的形式來展現(xiàn)出其解法思路,學(xué)生有一個完整的邏輯思維,讓學(xué)生在探究中建立知識間的聯(lián)系,體會數(shù)形結(jié)合,強(qiáng)調(diào)突出本節(jié)的難點.)
(四)數(shù)學(xué)運(yùn)用,深化認(rèn)知.
2例1.求不等式2x?3x?2?0的解集. 2變式為:求不等式2x?3x?2?0的解集.
2例2.解不等式?x?2x?3?0.
(設(shè)計意圖:先讓學(xué)生來解答例題,若教師巡視、指導(dǎo),講評學(xué)生完成情況,尋找學(xué)生中的閃光點,給予熱情表揚(yáng).)總結(jié):
解一元二次不等式的步驟:
一化:化二次項前的系數(shù)為正(a>0).二判:判斷對應(yīng)方程的根.三求:求對應(yīng)方程的根.四畫:畫出對應(yīng)函數(shù)的圖象.五解集:根據(jù)圖象寫出不等式的解集.(五)練習(xí)檢測,鞏固收獲
(設(shè)計意圖:為了鞏固和加深一元二次不等式的解法,讓學(xué)生學(xué)以致用,接下來及時組織學(xué)生進(jìn)行課堂練習(xí).然后就學(xué)生在解題中出現(xiàn)的問題共同糾正.)
(六)歸納小結(jié),強(qiáng)化思想
設(shè)計意圖:梳理本節(jié)課的知識點,總結(jié)一元二次不等式解法的步驟:“一化,二判,三求根,四畫圖,五寫解集”的口訣來幫助學(xué)生記憶和歸納,讓學(xué)生掌握嚴(yán)謹(jǐn)?shù)淖鲱}方法,知曉本節(jié)課的重難點.
(七)布置作業(yè),拓展延伸
必做題:課本第80頁習(xí)題A組 1,2.選做題:(1)若關(guān)于m的一元二次方程x
2?(m?1)x?m?0有兩個不相 等的實數(shù)根,求m的取值范圍.2(2)已知不等式x?ax?b?0的解集為x2?x?3?,求a,b的
?值.(設(shè)計意圖:以作業(yè)的鞏固性和發(fā)展性為出發(fā)點,我設(shè)計了必做題和選做題,必做題是對本節(jié)課內(nèi)容的反饋,選做題是對本節(jié)課知識的延伸,整體的設(shè)計意圖是反饋教學(xué),鞏固提高.)四.教學(xué)總結(jié)
本節(jié)課的所有內(nèi)容以習(xí)題的形式展現(xiàn)給學(xué)生,學(xué)生始終在解題中探究,在解題中發(fā)現(xiàn),學(xué)生參與教學(xué)的全過程,成為課堂教學(xué)的主體和學(xué)習(xí)的主人,而老師只須時刻關(guān)注學(xué)生的活動過程,不時給予引導(dǎo),及時糾正.
一元二次不等式課件 篇2
高中數(shù)學(xué)《一元二次不等式的解法(2)》教案
一、教學(xué)目標(biāo)
【知識與技能】
掌握求解一元二次不等式的簡單方法,能正確求解一元二次不等式的解集。
【過程與方法】
在探究一元二次不等式的解法的過程中,提升邏輯推理能力。
【情感、態(tài)度與價值觀】
感受數(shù)學(xué)知識的前后聯(lián)系,提升學(xué)習(xí)數(shù)學(xué)的熱情。
二、教學(xué)重難點
【重點】一元二次不等式的解法。
【難點】一元二次不等式的解法的探究過程。
三、教學(xué)過程
(一)導(dǎo)入新課
回顧一元二次不等式的一般形式,組織學(xué)生舉例一些簡單的一元二次不等式。
提問:如何求解?引出課題。
(二)講解新知
結(jié)合課前回顧的一元二次不等式的一般形式,對比之前所學(xué)內(nèi)容,引導(dǎo)學(xué)生發(fā)現(xiàn)其與一元二次方程和二次函數(shù)的共同特點。
一元二次不等式課件 篇3
新課程理念下的教學(xué)更多的關(guān)注學(xué)生自主探究、關(guān)注學(xué)生的個性發(fā)展,鼓勵學(xué)生勇于提出問題,培養(yǎng)學(xué)生思維的批評性。在課堂上學(xué)生往往會提出讓老師感到“意外”的問題,我在平時的教學(xué)中重視對“課堂意外預(yù)案”的探索和思考,備課時盡量設(shè)想課堂中可能會出現(xiàn)的各種情況,做到有備無患,以免在課堂中學(xué)生提出讓自己出乎意料的問題,使自己陷入被動尷尬境地。結(jié)合以往經(jīng)驗,在本節(jié)課,我提出兩個“意外預(yù)案”。
1、學(xué)生在做課本練習(xí)1(x+2)(x-3)>0時,可能會問到轉(zhuǎn)化為不等式組{或{求解對不對。學(xué)生提出的問題,想法非常好,應(yīng)給予肯定和鼓勵,這與下節(jié)簡單分式不等式和高次不等式的解法有關(guān),是解不等式的另一種解法——等價轉(zhuǎn)化法,不在本節(jié)課之列。
2、根據(jù)以往的經(jīng)驗,在解(x-1)(x+2)>1一類的不等式的時候,由于受方程(x+1)(x+2)=0可轉(zhuǎn)化為x-1=0或x+2=0求解的影響,有可能會出現(xiàn)將不等式轉(zhuǎn)化為不等式組{來求解的錯誤做法,教師要關(guān)注學(xué)生,及時發(fā)現(xiàn)問題并給予糾正,指出上面的轉(zhuǎn)化不是等價轉(zhuǎn)化。
以上是我對本節(jié)課的一些粗淺的認(rèn)識和構(gòu)想,如有不妥之處,懇請各位專家、各位同仁批評指正。謝謝大家!
一元二次不等式課件 篇4
一、教材分析
1、地位和作用。本課是五年制高等師范教材南京大學(xué)出版社《數(shù)學(xué)》教材第一冊第二章第二節(jié)的教學(xué)內(nèi)容,從知識結(jié)構(gòu)看:它是一元一次不等式的延續(xù)和拓展,又是以后研究函數(shù)的定義域、值域等問題的重要工具,起到承前啟后的作用;
從思想層次上看:它涉及到數(shù)形結(jié)合、分類轉(zhuǎn)化等數(shù)學(xué)思想方法,在整個教材中有很強(qiáng)的基礎(chǔ)性。
2、教材內(nèi)容剖析。本節(jié)課的主要內(nèi)容是通過二次函數(shù)的圖像探究一元二次不等式的解法。教材中首先復(fù)習(xí)引入了“三個一次”的關(guān)系,然后依舊帶新,揭示“三個二次”的關(guān)系,其次通過變式例題討論了△=0和△
3、重難點剖析。重點:一元二次不等式的解法。難點:一元二次方程、一元二次不等式、二次函數(shù)的關(guān)系。難點突破:
(1)教師引導(dǎo),學(xué)生自主探究,分組討論。
(2)借助多媒體直觀展示,數(shù)形結(jié)合。
(3)采用由簡單到復(fù)雜,由特殊到一般的教學(xué)策略。
二、目的分析
知識目標(biāo):掌握一元二次不等式的解法,理解“三個二次”之間的關(guān)系
能力目標(biāo):培養(yǎng)學(xué)生“從形到數(shù)”的轉(zhuǎn)化能力,由具體到抽象再到具體,從特殊到一般的歸納概括能力。
情感目標(biāo):在自主探究與討論交流過程中,培養(yǎng)學(xué)生的合作意識。
三、教法分析
教法:“問題串”解決教學(xué)法
以“一串問題”為出發(fā)點,指導(dǎo)學(xué)生“動腦、動手、動眼、動口”,參與知識的形成過程,注重學(xué)生的內(nèi)在發(fā)展。
學(xué)法:合作學(xué)習(xí)(1)以問題為依托,分組探究,合作交流學(xué)習(xí)。(2)以現(xiàn)有認(rèn)知結(jié)構(gòu)為依托,指導(dǎo)學(xué)生用類比方法建構(gòu)新知,用化歸思想解決問題。
四、過程分析
本節(jié)課的教學(xué),設(shè)計了四個教學(xué)環(huán)節(jié):
創(chuàng)設(shè)情景、提出問題
問題1:用一根長為10m的繩子能圍成一個面積大于6m2的矩形嗎?“數(shù)學(xué)來源于生活,應(yīng)用于生活”,首先,以生活中的一個實際問題為背景切入,通過建立簡單的數(shù)學(xué)模型,抽象出一個一元二次不等式,引入課題。
設(shè)計意圖:激發(fā)學(xué)生學(xué)習(xí)興趣,體現(xiàn)數(shù)學(xué)的科學(xué)價值和使用價值。
自主探究,發(fā)現(xiàn)規(guī)律
問題2:解下列方程和不等式。①2x—4=0②2x—4>0③2x—4
歸納、類比法是我們發(fā)現(xiàn)問題、尋求規(guī)律,揭示問題本質(zhì)最常用的方法之一。尋求一元二次不等式的解法,首先從一元一次不等式的解法著手。展示問題2。學(xué)生:用等式和不等式的基本性質(zhì)解題。教師:還有其他的解決方法嗎?展示問題3。
問題3:畫出一次函數(shù)y=2x—4的圖像,觀察圖像,縱坐標(biāo)y=0、y>0、y
學(xué)生:發(fā)現(xiàn)可以借用圖像解題。此問題揭示了“三個一次”的關(guān)系。
設(shè)計意圖:為后面學(xué)習(xí)二次不等式的解法提供鋪墊。
問題4:用圖像法能不能解決一元二次不等式的解呢?已知二次函數(shù)y=x2—2x—8。
(1)求出此函數(shù)與x軸的交點坐標(biāo)。
(2)畫出這個二次函數(shù)的草圖。
(3)在拋物線上找到縱坐標(biāo)y>0的點。
(4)縱坐標(biāo)y>0(即:x2—2x—8>0)的點所對應(yīng)的橫坐標(biāo)x取哪些數(shù)呢?
(5)二次函數(shù)、二次方程、二次不等式的關(guān)系是什幺?
教師:展示問題4。此環(huán)節(jié),要注意下面幾個問題:
(1)啟發(fā)引導(dǎo)學(xué)生運(yùn)用歸納、類比的方法,組織學(xué)生分組討論,自主探究。(2)及時解決學(xué)生的疑點,實現(xiàn)師生合作。(3)先讓學(xué)生自己思考,最后教師和學(xué)生一起歸納步驟。(求根—畫圖—找解),抓住問題本質(zhì),畫圖可省去y軸。教師抓住時機(jī),展示例題1,鞏固方法(△>0的情況),規(guī)范步驟,板書做題步驟,起到示范的作用。設(shè)計意圖:運(yùn)用“解決問題”的教學(xué)方法,使每位學(xué)生參與知識的形成過程,體現(xiàn)了教師主導(dǎo)學(xué)生主體的地位。
變式提問,啟發(fā)誘導(dǎo)
方程:ax2+bx+c=0的解情況函數(shù):y=ax2+bx+c的圖象
不等式的解集
ax2+bx+c>0ax2+bx+c
⊿>0
⊿=0
⊿
教師:展示例題2(1)—x2+x+6≥0(2)x2—4x+40。
學(xué)生:嘗試通過畫圖求解。
此環(huán)節(jié)要注意:引導(dǎo)學(xué)生把不熟悉的問題轉(zhuǎn)化為熟悉的問題解決;對于△=0,△
設(shè)計意圖:通過探索、嘗試的過程,培養(yǎng)了學(xué)生大膽猜想,勇于探索的精神。
自我嘗試,反饋小結(jié)。
教師:展示練習(xí)題,把學(xué)生分成兩個小組,要求當(dāng)堂完成,看哪個組做的好做的快。教師對出現(xiàn)的問題及時反饋。同時,進(jìn)一步啟發(fā)引導(dǎo)學(xué)生將特殊、具體問題的結(jié)論推廣到一般化。展示表格。
學(xué)生:填寫內(nèi)容。
學(xué)生理解了“三個二次”的關(guān)系,得到一般結(jié)論應(yīng)該是水到渠成。最后,教師做本節(jié)課的小結(jié),布置作業(yè)。設(shè)計意圖:激發(fā)了學(xué)生的求知欲,培養(yǎng)了學(xué)生的主動參與意識。
五、評價分析
1、重視學(xué)生學(xué)習(xí)的結(jié)果評價,更重視過程評價。
2、本節(jié)課貫徹了新課程的理念,教學(xué)形式開放,體現(xiàn)了“教師主導(dǎo),學(xué)生主體”的教學(xué)關(guān)系。以上是我對本節(jié)課的粗淺認(rèn)識,如有不妥之處,懇求各位專家、各位同仁批評指正。
一元二次不等式課件 篇5
一元二次不等式及其解法教學(xué)反思
塘沽中專-----戚衛(wèi)民
我在13級電子班教室上了一節(jié)課,由此我進(jìn)行了深刻的反思:
我教的是一個普通中專的班,學(xué)生基礎(chǔ)比較差。因此,第一,課前組織很重要,給 學(xué)生 做思想 工 作,這 節(jié) 課很重要,是大家表現(xiàn) 自己 的好機(jī)會,同 學(xué) 們應(yīng)該遵守紀(jì)律,積極發(fā)言,展示 自己 班良好的素質(zhì)和班風(fēng)。這樣學(xué)生激情會高一些,自然課堂也會活躍一些。第二,把握本節(jié)課的難點,課前做好鋪墊。一元二次不等式及其解法看上去好像很簡單,但是它需要同學(xué)們有很好的基礎(chǔ),解一元二次方程的基礎(chǔ)。而學(xué)生在初中只是熟悉用求根公式解方程,對于十字相乘法分解因式只有極個別會,對于這種情形我在課前把一元二次方程的解法好好的補(bǔ)了一下。還有二次函數(shù)的圖象畫法,也好好的復(fù)習(xí)一下,加深鞏固,突破難點,使得這節(jié)課能順利進(jìn)行下去。
盡管這樣我的課堂效果也不是很好,這是為什么呢?我陷入迷茫之中可能是我的學(xué)生不適應(yīng)教學(xué)方式?可能是學(xué)生緊張?弄錯?后來想想可能我沒有好好地備學(xué)生。我覺得這節(jié)課的教案應(yīng)該這樣設(shè)計,可能會更好:課前引入去掉,應(yīng)該在復(fù)習(xí)時讓學(xué)生解一元二次方程,畫二次函數(shù)圖象,這樣學(xué)生容易進(jìn)入狀態(tài)。然后直接導(dǎo)入新課,有特殊到 一般,由具體到抽象,逐步揭開解一元二次不等式的方法。給出例題應(yīng)由淺入深,先給出形如這樣的:(x-2)(x-3)
讓他們好求方程的根,從而畫圖求不等式的解集,為后續(xù)例題做鋪墊。作為教師我應(yīng)該很規(guī)范的板書。以給學(xué)生榜樣。然后給出形如這樣的不等式:x2+3x-4≥0 由上道題的啟示他們自然會去驗證Δ,用十字相乘法求一元二次方程x2+3x-4=0 的根,畫函數(shù)的圖像,從而求出解集。從這兩道題讓他們自己歸納一下解一元二次不等式的步驟,再出課本習(xí)題,這樣他們一定可以解出來,此種做法可以提高他們的解興趣,把課堂氣氛變得濃烈一些。接著給出-x2-3x+4>0提醒他們要把二項式系數(shù)變?yōu)檎龜?shù)。用課本課后題做練習(xí)。再給出x2-3x+4>0這種Δ0Δ=0的情形。根據(jù)二次函數(shù)的圖像學(xué)生應(yīng)該可以解決。
一節(jié)課究竟要解決什么問題,怎樣解決這是課堂的首要。貼近學(xué)生實際,層層深入,各個擊破,幫學(xué)生排憂解難,同時發(fā)揮他們的主觀能動性,讓學(xué)感受到自己是課堂的主人,這是教師課堂的主旨。還有一點非常重要,老師必須要有很強(qiáng)的親和力。其實親和力的前提是要有愛心,有愛才會親。一個孩子在班上是六十分之一,但在一個家庭是百分百,所以我覺得我們應(yīng)該向愛我們自己的孩子一樣去愛他們,讓學(xué)生感受到我們的關(guān)懷,怎樣做到愛學(xué)生,我覺得自己以后可這樣努力 :記住每一個學(xué)生的名字,在路上和他們打招呼,下課和他們談?wù)勑?,說笑說笑,不 要說一些傷學(xué)生人 格的話語,適當(dāng)鼓勵他們,人心都是肉長的呀,他們會感覺得到的。成績差的學(xué)生其實是非常敏感的,也是很容易叛逆的,在任何時候老師都要想到自己是成年人,是長者,要站在一定的高度考慮我們的學(xué)生,設(shè)身處地為他們想象。這樣就不會有芥蒂,沖突,代溝。這節(jié)課我比較真實展現(xiàn)我的學(xué)生和我自己。無論從哪一方面,業(yè)務(wù)能力,管理能力,對學(xué)生的掌控能力,課堂的把握能力。我都有待學(xué)習(xí)提高。我會努力的!
一元二次不等式課件 篇6
《一元二次不等式解法》說課稿范文
一、 教材簡析
1、地位和價值
一元二次不等式解法是高中數(shù)學(xué)新教材第一冊(上)第一章第5節(jié)的內(nèi)容。在此之前,學(xué)生在初中已學(xué)習(xí)了一元一次不等式,一元一次不等式組,一元二次方程,二次函數(shù),絕對值不等式(高中),這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。一元二次不等式解法是解不等式的基礎(chǔ)和核心,它在高中代數(shù)中起著廣泛應(yīng)用的工具作用,蘊(yùn)藏著“數(shù)與形結(jié)合”的重要思想方法,它已成為代數(shù)、三角、解析幾何交匯綜合的重要部分,是高考綜合題的熱點。
2、教材結(jié)構(gòu)簡介
教材首先以一個一次函數(shù)圖象的應(yīng)用解一元一次不等式,引出圖象法,然后給出一個二次函數(shù),通過具體畫圖象,提出問題。再一般地給出了二次函數(shù)圖象解二次不等式的結(jié)論。課本精選了四個解不等式的例題,并配有相應(yīng)的練習(xí)和習(xí)題。它的后一小節(jié)為解可轉(zhuǎn)化為一元二次不等式的分式不等式。
二、 教育教學(xué)觀
1、 學(xué)生為主體,重學(xué)生參與學(xué)習(xí)活動。
2、 重過程。按照認(rèn)知規(guī)律及學(xué)生認(rèn)知特點,由淺入深,由表及里,設(shè)計一系列教學(xué)活動過程。體現(xiàn)由“實踐……觀察……歸納 ……猜想…… 結(jié)論…… 驗證應(yīng)用”的循環(huán)往復(fù)的認(rèn)知過程。
3、 重能力與態(tài)度的培養(yǎng),在活動中培養(yǎng)學(xué)生自主、交流合作、探究、發(fā)現(xiàn)的能力。重科學(xué)嚴(yán)謹(jǐn)?shù)膫€性品質(zhì)。重參與學(xué)習(xí)的興趣和體驗。
4、 重指導(dǎo)點撥。在學(xué)生自主探究、實踐的基礎(chǔ)上,相機(jī)啟發(fā),恰當(dāng)點撥,促進(jìn)學(xué)生知識由感性向理性提升,由具體到概括抽象,形成師生間的有效互動。
三、 教學(xué)目標(biāo)
基于上述認(rèn)識,及不等式的基本知識,同時學(xué)生在初中已學(xué)過二次函數(shù),考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征,制訂如下教學(xué)目標(biāo):
1、 知識目標(biāo):一元二次方程,一元二次不等式及二次函數(shù)間的聯(lián)系,及利用二次函數(shù)的圖象求解一元二次不等式。
2、 能力目標(biāo):數(shù)形結(jié)合的思想(應(yīng)用二次函數(shù)圖象解不等式)
3、 情感態(tài)度目標(biāo):通過問題解決,培養(yǎng)學(xué)生自主參與學(xué)習(xí),以及嚴(yán)謹(jǐn)求實的.態(tài)度。
四、 教與學(xué)重點、難點
1、重點:用圖象解一元二次不等式。
2、難點:圍繞二次函數(shù)圖象、性質(zhì)這一主線,解決三個“二次”的聯(lián)系和應(yīng)用。
五、 教法與學(xué)法
1、學(xué)情分析及學(xué)法:函數(shù)與圖象應(yīng)用是初中生數(shù)學(xué)的薄弱之處,同時剛進(jìn)入高中的學(xué)生,對高中學(xué)習(xí)還很不適應(yīng),需要加強(qiáng)主動學(xué)習(xí)的指導(dǎo)?;诖?,在學(xué)生初中知識經(jīng)驗的基礎(chǔ)上,以舊探新;以一系列問題,促進(jìn)主體的學(xué)習(xí)活動(如畫圖象、讀圖等),建構(gòu)知識;以問題情景激勵學(xué)生參與,在恰當(dāng)時機(jī)進(jìn)行點撥啟發(fā),練、導(dǎo)結(jié)合,講練結(jié)合;通過學(xué)生自己做數(shù)學(xué),教師啟發(fā)指導(dǎo),以及學(xué)生領(lǐng)悟,實現(xiàn)學(xué)生對知識的再創(chuàng)造和主動建構(gòu);具體通過教材中的問題及設(shè)計的問題情景,給予學(xué)生活動的空間,通過這些問題(“腳手架”)的解決,使學(xué)生逐步攀升,達(dá)到知識與能力的目標(biāo)。
2、教法:數(shù)學(xué)教學(xué)是數(shù)學(xué)教與學(xué)活動過程的教學(xué),學(xué)生是在探究與發(fā)現(xiàn)中建構(gòu)知識,發(fā)展能力的,因而確定以“問題解決”為教法。實現(xiàn)學(xué)生在教師指導(dǎo)下的發(fā)現(xiàn)探索。同時所學(xué)內(nèi)容適宜用“計算機(jī)高中數(shù)學(xué)問題處理系統(tǒng)”輔助教學(xué)。
六、教學(xué)手段及工具:
多媒體教學(xué)手段,高中數(shù)學(xué)問題處理系統(tǒng)。
七、教學(xué)設(shè)計及教學(xué)過程
1、復(fù)習(xí)設(shè)問,引入新課
高中數(shù)學(xué)新教材第一冊(上)《一元二次不等式解法》(第一課時)說課稿.rar
一元二次不等式課件 篇7
解一元二次不等式化為標(biāo)準(zhǔn)型。判斷△的符號。若△<0,則不等式是在R上恒成立或恒不成立。
若△>0,則求出兩根,在數(shù)軸上標(biāo)出,每個根上畫一條豎線,再從右到左相間標(biāo)正負(fù)號,不等式大于0則取標(biāo)正的范圍,小于0則取標(biāo)負(fù)的范圍。
2.解簡單一元高次不等式
a.化為標(biāo)準(zhǔn)型。
b.將不等式分解成若干個因式的積。
c.求出各個根,在數(shù)軸上標(biāo)出,每個根上畫一條豎線,再從右到左相間標(biāo)正負(fù)號,不等式大于0則取標(biāo)正的范圍,小于0則取標(biāo)負(fù)的范圍。
3.解分式不等式的解
a.化為標(biāo)準(zhǔn)型。
b.可將分式化為整式,將整式分解成若干個因式的積。
c.求出各個根,在數(shù)軸上標(biāo)出,每個根上畫一條豎線,再從右到左相間標(biāo)正負(fù)號,不等式大于0則取標(biāo)正的范圍,小于0則取標(biāo)負(fù)的范圍。(如果不等式是非嚴(yán)格不等式,則要注意分式分母不等于0。)
4.解含參數(shù)的一元二次不等式
a.對二次項系數(shù)a的討論。
若二次項系數(shù)a中含有參數(shù),則須對a的符號進(jìn)行分類討論。分為a>0,a=0,a<0。
b.對判別式△的討論
若判別式△中含有參數(shù),則須對△的符號進(jìn)行分類討論。分為△>0,△=0,△<0。
c.對根大小的討論
若不等式對應(yīng)的方程的根x1、x2中含有參數(shù),則須對x1、x2的大小進(jìn)行分類討論。分為x1>x2,x1=x2,x1<x2。
5.一元二次方程的根的分布問題
a.將方程化為標(biāo)準(zhǔn)型。(a的符號)
b.畫圖觀察,若有區(qū)間端點對應(yīng)的函數(shù)值小于0,則只須討論區(qū)間端點的函數(shù)值。
若沒有區(qū)間端點對應(yīng)的函數(shù)值小于0,則須討論區(qū)間端點的函數(shù)值、△、軸。
6.一元二次不等式的應(yīng)用
⑴在R上恒成立問題(恒不成立問題相反,在某區(qū)間恒成立可轉(zhuǎn)化為實根分布問題)
a.對二次項系數(shù)a的符號進(jìn)行討論,分為a=0與a≠0。
b.a(chǎn)=0時,把a(bǔ)=0帶入,檢驗不等式是否成立,判斷a=0是否屬于不等式解集。
a≠0時,則轉(zhuǎn)化為二次函數(shù)圖像全在x軸上方或下方。
若f(x)>0,則要求a>0,△<0。
若f(x)<0,則要求a<0,△<0。
⑵特殊題型:已知一不等式的解集(含有字母),求另一不等式的解集(與原不等式系數(shù)大小相同,位置不同)。a.寫出原不等式對應(yīng)的方程,由韋達(dá)定理得出解集字母與方程系數(shù)間的關(guān)系。
b.寫出變換后不等式對應(yīng)的方程,由由韋達(dá)定理得出解集字母與方程系數(shù)間的關(guān)系。
c.將a中得到的關(guān)系變化后帶入b的關(guān)系中,得到變換后方程的兩根。
d.判斷兩根的大小,變換后不等式二次項的系數(shù),從而寫出所求解集。
一元二次不等式課件 篇8
一、教材分析
(一)教材的地位和作用
“一元二次不等式解法”既是初中一元一次不等式解法在知識上的延伸和發(fā)展,又是本章集合知識的運(yùn)用與鞏固,也為下一章函數(shù)的定義域和值域教學(xué)作鋪墊,起著鏈條的作用。同時,這部分內(nèi)容較好地反映了方程、不等式、函數(shù)知識的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊(yùn)含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學(xué)思想方法,能較好地培養(yǎng)學(xué)生的觀察能力、概括能力、探究能力及創(chuàng)新意識。
(二)教學(xué)內(nèi)容
本節(jié)內(nèi)容分2課時學(xué)習(xí)。本課時通過二次函數(shù)的圖象探索一元二次不等式的解集。通過復(fù)習(xí)“三個一次”的關(guān)系,即一次函數(shù)與一元一次方程、一元一次不等式的關(guān)系;以舊帶新尋找“三個二次”的關(guān)系,即二次函數(shù)與一元二次方程、一元二次不等式的關(guān)系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數(shù)學(xué)中的和諧美,體驗成功的樂趣。
二、教學(xué)目標(biāo)分析
根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點和高一學(xué)生的認(rèn)知規(guī)律,本節(jié)課的教學(xué)目標(biāo)確定為:
知識目標(biāo)——理解“三個二次”的關(guān)系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。
能力目標(biāo)——通過看圖象找解集,培養(yǎng)學(xué)生“從形到數(shù)”的轉(zhuǎn)化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。
情感目標(biāo)——創(chuàng)設(shè)問題情景,激發(fā)學(xué)生觀察、分析、探求的學(xué)習(xí)激情、強(qiáng)化學(xué)生參與意識及主體作用。
三、重難點分析
一元二次不等式是高中數(shù)學(xué)中最基本的不等式之一,是解決許多數(shù)學(xué)問題的重要工具。本節(jié)課的重點確定為:一元二次不等式的解法。
要把握這個重點。關(guān)鍵在于理解并掌握利用二次函數(shù)的圖象確定一元二次不等式解集的方法——圖象法,其本質(zhì)就是要能利用數(shù)形結(jié)合的思想方法認(rèn)識方程的解,不等式的解集與函數(shù)圖象上對應(yīng)點的橫坐標(biāo)的內(nèi)在聯(lián)系。由于初中沒有專門研究過這類問題,高一學(xué)生比較陌生,要真正掌握有一定的難度。因此,本節(jié)課的難點確定為:“三個二次”的關(guān)系。要突破這個難點,讓學(xué)生歸納“三個一次”的關(guān)系作鋪墊。
四、教法與學(xué)法分析
(一)學(xué)法指導(dǎo)
教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會學(xué)是目的。因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會學(xué)習(xí)。本節(jié)課主要是教給學(xué)生“動手畫、動眼看、動腦想、動口說、善提煉、勤鉆研”的研討式學(xué)習(xí)方法,這樣做增加了學(xué)生自主參與,合作交流的機(jī)會,教給了學(xué)生獲取知識的途徑、思考問題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會逐步感受到數(shù)學(xué)的美,會產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時代特色,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。
(二)教法分析
本節(jié)課設(shè)計的指導(dǎo)思想是:現(xiàn)代認(rèn)知心理學(xué)——建構(gòu)主義學(xué)習(xí)理論。
建構(gòu)主義學(xué)習(xí)理論認(rèn)為:應(yīng)把學(xué)習(xí)看成是學(xué)生主動的建構(gòu)活動,學(xué)生應(yīng)與一定的知識背景即情景相聯(lián)系,在實際情景下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識與經(jīng)驗同化和索引出當(dāng)前要學(xué)習(xí)的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。
本節(jié)課采用“誘思引探教學(xué)法”。把問題作為出發(fā)點,指導(dǎo)學(xué)生“畫、看、說、用”。較好地探求一元二次不等式的解法。
五、課堂設(shè)計
本節(jié)課的教學(xué)設(shè)計充分體現(xiàn)以學(xué)生發(fā)展為本,培養(yǎng)學(xué)生的觀察、概括和探究能力,遵循學(xué)生的認(rèn)知規(guī)律,體現(xiàn)理論聯(lián)系實際、循序漸進(jìn)和因材施教的教學(xué)原則,通過問題情境的創(chuàng)設(shè),激發(fā)興趣,使學(xué)生在問題解決的探索過程中,由學(xué)會走向會學(xué),由被動答題走向主動探究。
(一)創(chuàng)設(shè)情景,引出“三個一次”的關(guān)系
本節(jié)課開始,先讓學(xué)生解一元二次方程x2—x—6=0,如果我把“=”改成“>”則變成一元二次不等式x2—x—6>0讓學(xué)生解,學(xué)生肯定感到很突然。但是“思維往往是從驚奇和疑問開始”,這樣直奔主題,目的在于構(gòu)造懸念,激活學(xué)生的思維興趣。
為此,我設(shè)計了以下幾個問題:
1、請同學(xué)們解以下方程和不等式:
①2x—7=0;②2x—7>0;③2x—7
一元二次不等式課件 篇9
1.創(chuàng)設(shè)情景——引入新課。我們常說“興趣是最好的老師”,長期以來,學(xué)生對學(xué)習(xí)數(shù)學(xué)缺乏興趣,甚至失去信心,一個重要的原因,是老師在教學(xué)中不重視學(xué)生對學(xué)習(xí)的情感體驗,教學(xué)應(yīng)該充分考慮學(xué)生的情感和需要,想方設(shè)法讓學(xué)生在學(xué)習(xí)中樹立信心,感受學(xué)習(xí)的樂趣。根據(jù)教材內(nèi)容的安排,我以學(xué)生熟悉的畫一次函數(shù)圖象、求一次方程和一次不等式的解為背景知識切入,設(shè)置一個練習(xí)題組,一方面讓學(xué)生總結(jié)復(fù)習(xí)已有知識,為后面學(xué)習(xí)二次不等式的解法打下基礎(chǔ),做好鋪墊,另一方面,使學(xué)生在自己熟悉的問題中首先獲得解題成功的快樂體驗,然后以20xx年江蘇省的一道高考試題為引子,引入本節(jié)課的新授內(nèi)容。對于本題,引導(dǎo)學(xué)生,利用上面解練習(xí)題組1的方法,畫出二次函數(shù)圖象來解答。二次函數(shù)是初中數(shù)學(xué)的重要內(nèi)容,本題又給出了函數(shù)圖象上許多點,相信學(xué)生畫出圖象應(yīng)該不成問題,只要教師適當(dāng)點撥,學(xué)生不難得到正確答案。以高考試題為背景引入新課,可以提高學(xué)生興趣,抓住學(xué)生眼球,吸引學(xué)生注意力,還可以讓學(xué)生實實在在感受到,高考題就在我們的課本中,就在我們平常的練習(xí)中。
2.探究交流——發(fā)現(xiàn)規(guī)律。從特殊到一般是我們發(fā)現(xiàn)問題、尋求規(guī)律、揭示問題本質(zhì)最常用的方法之一。我把課本例題1、2編為練習(xí)題組(一),交由學(xué)生用上面解高考題的方法——圖象法去解,學(xué)生由于熟知二次函數(shù)圖象,求解應(yīng)該不會有太大的問題。在這個過程中,教師要啟發(fā)引導(dǎo)學(xué)生注意對比兩題的異同,組織引導(dǎo)學(xué)生展開交流討論,探討第(2)題能不能先把二次項系數(shù)化正以后再構(gòu)造函數(shù)畫圖求解。然后達(dá)成共識,如果二次項系數(shù)為負(fù)數(shù)時,先做等價轉(zhuǎn)化,把二次項系數(shù)化為正數(shù)再解,課本19頁例3、例4作為題組(二),繼續(xù)讓學(xué)生用上面的圖象法,由學(xué)生自己求解,這時我及時提示學(xué)生注意這兩題與題組(一)中兩題的不同(例1、例2對應(yīng)方程都有兩個不等實根,例3對應(yīng)方程有兩相等實根,例4對應(yīng)方程無實根)。兩個題組的練習(xí)之后,可以尋求解二次不等式的一般規(guī)律。
3.啟發(fā)引導(dǎo)——形成結(jié)論。前面兩個題組的四個小題,基本涵蓋了一般一元二次不等式解的各種情況,進(jìn)一步啟發(fā)引導(dǎo)學(xué)生將特殊、具體題目的結(jié)論做一般化總結(jié),與學(xué)生一起就△>0,△<0,△=0的三種情況,總結(jié)二次不等式ax2+bx+c>0或ax2+bx+c<0(a>0)的解的情況應(yīng)該水到渠成。至此,學(xué)生可以感受到,解二次不等式只須①將二次項系數(shù)化為正數(shù),②求解二次方程ax2+bx+c=0的.根。③根據(jù)①后的二次不等式的符號寫出解集即可,必要時也可以結(jié)合圖象寫解集。這樣我們就得到了二次不等式的另外一種解法(可稱為“三步曲”法)。
4.訓(xùn)練小結(jié)——鞏固深化。為了鞏固和加深二次不等式的兩種解法,接下來及時組織學(xué)生進(jìn)行課堂練習(xí),完成課本21頁練習(xí)1—4題。本環(huán)節(jié)請不同層次的學(xué)生在黑板上書寫解題過程,之后師生共同糾正問題,規(guī)范解題過程的書寫。
5.延伸拓寬——提高能力。課堂教學(xué)既要面向全體學(xué)生,又應(yīng)關(guān)注學(xué)生的個體差異。體現(xiàn)分類推進(jìn),分層教學(xué)的原則。為此,我又設(shè)計了一個提高練習(xí)題組,共有三道備選題目,以供程度較好學(xué)有余力的學(xué)生能夠更好的展示自己的解題能力,取得更進(jìn)一步的提高。
一元二次不等式課件 篇10
展過程一元二次不等式教學(xué)設(shè)計
一、教學(xué)內(nèi)容分析:
1、教材地位和作用
本節(jié)課是數(shù)學(xué)(基礎(chǔ)模塊)上冊第二章第三節(jié)《一元二次不等式》。從內(nèi)容上看它是我們初中學(xué)過的一元一次不等式的延伸,同時它也與一元二次方程、二次函數(shù)之間聯(lián)系緊密,涉及的知識面較多。從思想層面看,本節(jié)課突出本現(xiàn)了數(shù)形結(jié)合思想。同時一元二次不等式是解決函數(shù)定義域、值域等問題的重要工具,因此本節(jié)課在整個中學(xué)數(shù)學(xué)中具有較重要的地位和作用。
2、教學(xué)目標(biāo)
知識目標(biāo):正確理解一元二次不等式、一元二次方程、二次函數(shù)的關(guān)系。熟練掌握一元二次不等式的解法。
能力目標(biāo):培養(yǎng)數(shù)形結(jié)合思想、抽象思維能力和形象思維能力。
思想目標(biāo):在教學(xué)中滲透由具體到抽象,由特殊到一般,類比猜想、等價轉(zhuǎn)化的數(shù)學(xué)思想方法。
情感目標(biāo):通過具體情境,使學(xué)生體驗數(shù)學(xué)與實踐的緊密聯(lián)系,感受數(shù)學(xué)魅力,激發(fā)學(xué)生求知欲望。
3、重難點
重點:一元二次不等式的解法。
難點:一元二次方程,一元二次不等式與二次函數(shù)的關(guān)系。
二、學(xué)生情況分析:
我們的學(xué)生是在學(xué)習(xí)了一元一次不等式,一元一次方程、一元一次函數(shù),一元二次方程的基礎(chǔ)上學(xué)習(xí)一元二次不等式。但大都數(shù)學(xué)生的基礎(chǔ)都不是很好,解一元二次方程有一定的困難。
三、教學(xué)環(huán)境分析:教學(xué)環(huán)境應(yīng)包括和諧的師生關(guān)系、多媒體的合理應(yīng)用、良好的課堂組織、合理的問題情境。創(chuàng)設(shè)和諧的師生關(guān)系有利于提高學(xué)習(xí)效率,我們學(xué)校要建立和諧的師生關(guān)系是需要花很多心思的,特別是就業(yè)班的同學(xué),且要有一個相當(dāng)長的適應(yīng)時間。我們學(xué)校的每位老師都有手提電腦,每間教室都有寬屏電子顯示器,老師都能熟練掌握多媒體設(shè)備的運(yùn)用。運(yùn)用多媒體教學(xué)效果好、學(xué)生容易理解、學(xué)習(xí)的積極性高。上課時比較注意創(chuàng)設(shè)合適的問題情境,效果會不錯,學(xué)生從生活實際出發(fā),回答所提的問題,不知不覺學(xué)習(xí)了新的知識,他們不會感覺到學(xué)習(xí)疲勞,反而能積極主動地學(xué)習(xí)。
四、教學(xué)目標(biāo)分析:
知識與技能:正確理解一元二次不等式、一元二次方程、二次函數(shù)的關(guān)系。熟練掌握一元二次不等式的解法。
過程與方法:通過看圖象找解集,培養(yǎng)學(xué)生從從形到數(shù)的轉(zhuǎn)化能力,從具體到抽象、從特殊到一般的歸納概括能力;通過對問題的思考、探究、交流,培養(yǎng)學(xué)生良好的數(shù)學(xué)交流能力,增強(qiáng)其數(shù)形結(jié)合的思維意識。在教學(xué)中滲透由具體到抽象,由特殊到一般,類比猜想、等價轉(zhuǎn)化的數(shù)學(xué)思想方法。
情感態(tài)度與價值觀:通過具體情境,使學(xué)生體驗數(shù)學(xué)與實踐的緊密聯(lián)系,激發(fā)學(xué)生學(xué)習(xí)研究一元二次不等式的積極性和對數(shù)學(xué)的情感,使學(xué)生充分體驗獲取知識的成功感受;在探究、討論、交流過程中培養(yǎng)學(xué)生的合作意識和團(tuán)隊精神,使其養(yǎng)成嚴(yán)謹(jǐn)?shù)闹螌W(xué)態(tài)度和良好的思維習(xí)慣。
一元二次不等式課件 篇11
《一元二次不等式及其解法(第1課時)》教學(xué)設(shè)計
Eric 一 內(nèi)容分析
本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續(xù)和深化,對已學(xué)習(xí)過的集合知識的鞏固和運(yùn)用具有重要的作用,也與后面的函數(shù)、數(shù)列、三角函數(shù)、線形規(guī)劃、直線與圓錐曲線以及導(dǎo)數(shù)等內(nèi)容密切相關(guān)。許多問題的解決都會借助一元二次不等式的解法。因此,一元二次不等式的解法在整個高中數(shù)學(xué)教學(xué)中具有很強(qiáng)的基礎(chǔ)性,體現(xiàn)出很大的工具作用。
二 學(xué)情分析
學(xué)生已經(jīng)掌握了高中所學(xué)的基本初等函數(shù)的圖象及其性質(zhì), 能利用函數(shù)的圖象及其性質(zhì)解決一些問題。學(xué)生知道不等關(guān)系, 掌握了不等式的性質(zhì), 通過這部分內(nèi)容的學(xué)習(xí), 學(xué)生將學(xué)會利用二次函數(shù)的圖象, 通過數(shù)形結(jié)合的思想, 掌握一元二次不等式的解法。
三 教學(xué)目標(biāo)
1.知識與技能目標(biāo):(1)熟練應(yīng)用二次函數(shù)圖象解一元二次不等式的方法(2)了解一元二次不等式與相應(yīng)函數(shù), 方程的聯(lián)系 2.過程與方法:(1)通過學(xué)生已學(xué)過的一元一次不等式為例引入一元二次不等式的有關(guān)概及解法(2)讓學(xué)生觀察二次函數(shù),在此基礎(chǔ)上, 找到一元二次不等式的解法并掌握此解法(3)在學(xué)生尋找一元二次不等式的過中程中培養(yǎng)學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想 3.情感與價值目標(biāo):(1)通過新舊知識的聯(lián)系獲取新知,使學(xué)生體會溫故而知新的道理
(2)通過對解不等式過程中等與不等對立統(tǒng)一關(guān)系的認(rèn)識,向?qū)W生逐步滲透辨證唯物主義思想。
(3)在教師的啟發(fā)引導(dǎo)下,學(xué)生自主探究,交流討論,培養(yǎng)學(xué)生的合作意識和創(chuàng)新精神。
四 教學(xué)重點、難點 1.重點
一元二次不等式的解法 2.難點
理解元二次方程與一元二次不等式解集的關(guān)系
五 教學(xué)方法
啟發(fā)式教學(xué)法,討論法,講授法
六 教學(xué)過程
1.創(chuàng)設(shè)情景,提出問題(約10分鐘)
師:在初中,我們解過一元一次不等式,如解不等式x – 1 > 0,現(xiàn)在請同學(xué)們先畫出函數(shù)y = x – 1 的圖象,并通過觀察圖象回答以下問題: 1)x 為何值時,y = 0;2)x 為何值時,y > 0;3)x 為何值時,y 0的解集能從函數(shù)y = x – 1上看出來嗎?
學(xué)生畫圖,思考。先把問題交給學(xué)生自主探究,過一段時間,再小組交流,此間教師巡視并指導(dǎo)。提問學(xué)生代表。
通過對上述問題的探究,學(xué)生得出以下結(jié)論:
因為上述方程x – 1 = 0以及不等式x – 1 > 0的左邊恰好是上述函數(shù)y = x3x – 2 > 0;2)4x23x – 2 = 0的解是x1 =-1/2, x2 = 2.所以2x24x + 1 = 0 的解是x1 = x2 = 1/2, 所以不等式4x22x + 3
練習(xí):課本80頁練習(xí)第1題(1)-(3)【靈活掌握】.師:今天我們這節(jié)課的內(nèi)容有兩個: 1)會一元二次不等式的解法 2)理解三個“二次”的關(guān)系
作業(yè):課本第80頁 習(xí)題 A
4.板書設(shè)計
§ 一元二次不等式及其解法
解不等式x2 – x – 6 > 0, 請先畫出二次函數(shù) y = x2 – x – 6的圖像,并回答以下問題: 1)x 為何值時,y = 0;y > 0;y 0的解集呢?
七 教學(xué)反思
組1、2題 例,解不等式:
1)2x24x + 1 > 0;3)-x2 + 2x – 3
解:1)因為Δ =(-3)2 – 4×2×(-2)= 25 > 0, 方程的2x23x – 2 > 0的解集是{x| x1 2}.2)因為Δ = 0,方程4x24x + 1 > 0的解集是{x|x ≠ 1/2}.
一元二次不等式課件 篇12
各位評委、各位老師:
大家好!
我叫,來自。今天我說課的課題是《一元二次不等式的解法》(第一課時)。下面我將圍繞本節(jié)課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個問題,從教材內(nèi)容分析、教法學(xué)法分析、教學(xué)過程分析和課堂意外預(yù)案等幾個方面逐一加以分析和說明。
一、教材內(nèi)容分析:
1、本節(jié)課內(nèi)容在整個教材中的地位和作用。
概括地講,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續(xù)和深化,對已學(xué)習(xí)過的集合知識的鞏固和運(yùn)用具有重要的作用,也與后面的函數(shù)、數(shù)列、三角函數(shù)、線形規(guī)劃、直線與圓錐曲線以及導(dǎo)數(shù)等內(nèi)容密切相關(guān)。許多問題的解決都會借助一元二次不等式的解法。因此,一元二次不等式的解法在整個高中數(shù)學(xué)教學(xué)中具有很強(qiáng)的基礎(chǔ)性,體現(xiàn)出很大的工具作用。
2、教學(xué)目標(biāo)定位。
根據(jù)教學(xué)大綱要求、高考考試大綱說明、新課程標(biāo)準(zhǔn)精神、高一學(xué)生已有的知識儲備狀況和學(xué)生心理認(rèn)知特征,我確定了四個層面的教學(xué)目標(biāo)。第一層面是面向全體學(xué)生的知識目標(biāo):熟練掌握一元二次不等式的兩種解法,正確理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系。第二層面是能力目標(biāo),培養(yǎng)學(xué)生運(yùn)用數(shù)形結(jié)合與等價轉(zhuǎn)化等數(shù)學(xué)思想方法解決問題的能力,提高運(yùn)算和作圖能力。第三層面是德育目標(biāo),通過對解不等式過程中等與不等對立統(tǒng)一關(guān)系的認(rèn)識,向?qū)W生逐步滲透辨證唯物主義思想。第四層面是情感目標(biāo),在教師的啟發(fā)引導(dǎo)下,學(xué)生自主探究,交流討論,培養(yǎng)學(xué)生的合作意識和創(chuàng)新精神。
3、教學(xué)重點、難點確定。
本節(jié)課是在復(fù)習(xí)了一次不等式的解法之后,利用二次函數(shù)的圖象研究一元二次不等式的解法。只要學(xué)生能夠理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系,并利用其關(guān)系解不等式即可。因此,我確定本節(jié)課的教學(xué)重點為一元二次不等式的解法,關(guān)鍵是一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系。
二、教法學(xué)法分析:
數(shù)學(xué)是發(fā)展學(xué)生思維、培養(yǎng)學(xué)生良好意志品質(zhì)和美好情感的重要學(xué)科,在教學(xué)中,我們不僅要使學(xué)生獲得知識、提高解題能力,還要讓學(xué)生在教師的啟發(fā)引導(dǎo)下學(xué)會學(xué)習(xí)、樂于學(xué)習(xí),感受數(shù)學(xué)學(xué)科的人文思想,使學(xué)生在學(xué)習(xí)中培養(yǎng)堅強(qiáng)的意志品質(zhì)、形成良好的道德情感。為了更好地體現(xiàn)課堂教學(xué)中“教師為主導(dǎo),學(xué)生為主體”的教學(xué)關(guān)系和“以人為本,以學(xué)定教”的教學(xué)理念,在本節(jié)課的教學(xué)過程中,我將緊緊圍繞教師組織——啟發(fā)引導(dǎo),學(xué)生探究——交流發(fā)現(xiàn),組織開展教學(xué)活動。我設(shè)計了①創(chuàng)設(shè)情景——引入新課,②交流探究——發(fā)現(xiàn)規(guī)律,③啟發(fā)引導(dǎo)——形成結(jié)論,④練習(xí)小結(jié)——深化鞏固,⑤思維拓展——提高能力,五個環(huán)環(huán)相扣、層層深入的教學(xué)環(huán)節(jié),在教學(xué)中注意關(guān)注整個過程和全體學(xué)生,充分調(diào)動學(xué)生積極參與教學(xué)過程的每個環(huán)節(jié)。
不等式課件精選九篇
為了促進(jìn)學(xué)生掌握上課知識點,老師需要提前準(zhǔn)備教案,老師在寫教案課件時還需要花點心思去寫。?教案和課件優(yōu)化可使教學(xué)任務(wù)的完成更加精細(xì)化。幼兒教師教育網(wǎng)小編特意為大家收集整理了“不等式課件”,歡迎參考愿您成為更好的自己!
不等式課件 篇1
不等式的性質(zhì) 教學(xué)設(shè)計
十六中 尚進(jìn)軍
【教學(xué)重點與難點】
教學(xué)重點:掌握不等式的三條基本性質(zhì),尤其是不等式的基本性質(zhì)3 教學(xué)難點:正確應(yīng)用不等式的三條基本性質(zhì)進(jìn)行不等式變形 【教學(xué)目標(biāo)】
1、探索并掌握不等式的基本性質(zhì)
2、會用不等式的基本性質(zhì)進(jìn)行化簡 【教學(xué)方法】
通過觀察、分析、討論,引導(dǎo)學(xué)生歸納總結(jié)出不等式的三條基本性質(zhì),從具體上升到理論,再由理論指導(dǎo)具體的練習(xí),從而強(qiáng)化學(xué)生對知識的理解與掌握.
【教學(xué)過程】
一、創(chuàng)設(shè)情境 復(fù)習(xí)引入
(設(shè)計說明:設(shè)置以下習(xí)題是為了溫故而知新,為學(xué)習(xí)本節(jié)內(nèi)容提供必要的知識準(zhǔn)備.)問題:
1、什么是等式?等式的基本性質(zhì)是什么?
2、什么是不等式?
3、用“>”或“<”填空.(1)3
2×5 3×5
2×(-1)3×(-1)3-5 7-5 2÷2 3÷2 2×(-5)3×(-5)3+a 7+a
2÷(-2)3÷(-2)(教學(xué)說明: 復(fù)習(xí)等式的基本性質(zhì)后學(xué)生自然會聯(lián)想到,不等式是否有與等式相類似的性質(zhì),從而引起學(xué)生的探究欲望.接著問題3為學(xué)生探究不等式的性質(zhì)提供了載體,通過觀察,尋找規(guī)律,得出不等式的性質(zhì).)
二、師生互動,探索新知
1、不等式的基本性質(zhì)
問題1:觀察思考問題3,猜想出不等式的性質(zhì)
先讓學(xué)生獨立思考,后合作交流,通過充分討論,類比等式性質(zhì)得出不等式的性質(zhì).觀察時,引導(dǎo)學(xué)生注意不等號的方向,通過(1)題學(xué)生容易得出不等式性質(zhì)1: 不等式基本性質(zhì)1 不等式兩邊加(或減)同一個數(shù)(或式子),不等號的方向不變. 比較(2)、(3)題,注意觀察不等號方向,并思考不等號方向的改變與什么有關(guān)?由學(xué)生概括總結(jié),教師補(bǔ)充完善得出: 不等式基本性質(zhì)2 不等式兩邊乘(或除以)同一個正數(shù),不等號的方向不變. 不等式基本性質(zhì)3 不等式兩邊乘(或除以)同一個負(fù)數(shù),不等號的方向改變.
問題2:將不等式-2<6兩邊都加上7,-9,兩邊都乘3,-3試一試,進(jìn)一步驗證上面得出的三條結(jié)論. 教師 強(qiáng)調(diào)指出:不等式的三條基本性質(zhì)實質(zhì)上是對不等式兩邊進(jìn)行“+”、“-”、“×”、“÷”四則運(yùn)算,當(dāng)進(jìn)行“+”、“-”法時,不等號方向不變;當(dāng)乘(或除以)同一個正數(shù)時,不等號方向不變;只有當(dāng)乘(或除以)同一個負(fù)數(shù)時,不等號的方向才改變.
問題3:嘗試用數(shù)學(xué)式子表示不等式的三條基本性質(zhì). 學(xué)生思考出答案,教師訂正,最后得出:(1)如果a>b,那么a±c>b±c(2)如果a>b,c>0那么ac>bc(或>)(3)如果a>b,ca” 或“x26;(2)3x50;(4)-4x>3.解:(l)根據(jù)不等式基本性質(zhì)1,不等式的兩邊都加上7,不等號的方向不變. 得 x-7+7>26 +>33(2)根據(jù)不等式基本性質(zhì)1,兩邊都減去2x,不等號的方向不變,得3x-2x75,不等號的方向不變,得(4)根據(jù)不等式基本性質(zhì)3,兩邊都除以-4,不等號的方向改變,得x(教學(xué)說明:這些不等式比較簡單,可以利用不等式的性質(zhì)直接求解,從而加深對這些性質(zhì)的認(rèn)識.教師板書(1)題解題過程.(2)(3)(4)題由學(xué)生在練習(xí)本上完成,指定三個學(xué)生板演,然后師生共同判斷板演是否正確.解題時要引導(dǎo)學(xué)生與解一元一次方程的思路進(jìn)行對比,有助于加強(qiáng)知識之間的前后聯(lián)系,突出新知識的特點,并將原題與“x>a” 或“xc, a+c>b, b+c>a 我們現(xiàn)在求的是兩邊之差與第三邊的關(guān)系,所以由不等式的性質(zhì)1將上式變形為: 由a +b>c得a>c-b, b>c-a.同理,由a+c>b, b+c>a可得c>b-a, b>a-c,c>a-b, a>b-c.這就是說,三角形中任意兩邊之差小于第三邊.(教學(xué)說明:此問題應(yīng)用不等式的性質(zhì)由“三角形的任意兩邊之和大于第三邊”得出“三角形中任意兩邊之差小于第三邊”這個與已有結(jié)論等價的新結(jié)論.“三角形的任意兩邊之和大于第三邊”對應(yīng)的是三個形式一樣的不等式,而不是一個不等式.由這三個不等式再推出“三角形中任意兩邊之差小于第三邊”.為了加深學(xué)生的感性認(rèn)識,可以通過測量的方法驗證這個結(jié)論.)三、鞏固訓(xùn)練,熟練技能:1、如果a>b,那么(1)a-3 b-3,(2)2a 2b(3)-3a-3b,(4)a-b 0(5)(6)-b_____-、在下列各題橫線上填入不等號,并說明是根據(jù)不等式的哪一條基本性質(zhì).(1)若a–3<9,則a_____12;(2)若-a<10,則a_____–10;(3)若a>–1,則a_____–4;(4)若-a>0,則a_____0.3、利用不等式的性質(zhì)解下列不等式,并在數(shù)軸上表示解集(解未知數(shù)為x的不等式,就是要使不等式逐步化為“x>a”或“x<a”的形式)(1)x-1<0;(2)x>-x+6;(3)3x>7;(4)-x<-3.(教學(xué)說明:這些練習(xí)進(jìn)一步加深了學(xué)生對不等式性質(zhì)的理解,做此練習(xí)題時,應(yīng)讓學(xué)生注意觀察它們是應(yīng)用不等式的哪條性質(zhì),是怎樣由已知變形得到的.注意應(yīng)用不等式性質(zhì)3時,不等號要改變方向.做第3題時要引導(dǎo)學(xué)生與解一元一次方程的思路進(jìn)行對比,讓學(xué)生認(rèn)識到應(yīng)用不等式的性質(zhì)1變形,相當(dāng)于移項.)四、總結(jié)反思,課堂小結(jié)1、不等式的基本性質(zhì)是什么?如何用數(shù)學(xué)式子表示?2、在本節(jié)課的學(xué)習(xí)中,你還有什么疑惑? 3.主要用到的思想方法是類比思想.4.注意的問題: 當(dāng)不等式兩邊同乘(或除以)同一個數(shù)時,一定要看清是正數(shù)還是負(fù)數(shù),若是負(fù)數(shù),要變兩個號,一個性質(zhì)符號,另一個是不等號,對于未給定范圍的字母,應(yīng)分情況討論.六、布置課后作業(yè):1、課本127頁練習(xí)2、課本128習(xí)題的5、6、7題 【評價與反思】通過具體的事例觀察并歸納出不等式的三條基本性質(zhì),引導(dǎo)學(xué)生用數(shù)學(xué)式子表示三條基本性質(zhì),同時注意將不等式的三條基本性質(zhì)與等式的基本性質(zhì)進(jìn)行比較,以加深學(xué)生的理解.在教學(xué)過程中,注重培養(yǎng)學(xué)生運(yùn)用類比方法觀察、分析、解決問題的能力及歸納總結(jié)概括的能力.同時培養(yǎng)了學(xué)生積極主動的參與意識和勇敢嘗試、探索的精神.
不等式課件 篇2
本節(jié)教學(xué)的重點是不等式的解集的概念及在數(shù)軸上表示不等式的解集的方法.難點為不等式的解集的概念.
相同點:定義方式相同(使方程成立的未知數(shù)的值,叫做方程的解);解的表示方法也相同.
不同點:解的個數(shù)不同,一般地,一個不等式有無數(shù)多個解,而一個方程只有一個或幾個解,例如, 能使不等式 成立,那么 是不等式的一個解,類似地 等也能使不等式 成立,它們都是不等式 的解,事實上,當(dāng) 取大于 的數(shù)時,不等式 都成立,所以不等式 有無數(shù)多個解.
不等式的解與不等式的解集是兩個不同的概念,不等式的解是指滿足這個不等式的未知數(shù)的某個值,而不等式的解集,是指滿足這個不等式的未知數(shù)的所有的值,不等式的所有解組成了解集,解集中包括了每一個解.
注意:不等式的解集必須滿足兩個條件:第一,解集中的任何一個數(shù)值,都能使不等式成立;第二,解集外的任何一個數(shù)值,都不能使不等式成立.
一般地,一個含未知數(shù)的不等式有無數(shù)多個解,其解集是某個范圍,這個范圍可用一個最簡單的不等式表示出來,例如,不等式 的解集是 .
如不等式 的解集 ,可以用數(shù)軸上表示4的點的左邊部分表示,因為 包含 ,所以在表示4的點上畫實心圓.
如不等式 的解集 ,可以用數(shù)軸上表示4的點的左邊部分表示,因為 包含 ,所以在表示4的點上畫實心圈.
注意:在數(shù)軸上,右邊的點表示的數(shù)總比左邊的點表示的數(shù)大,所以在數(shù)軸上表示不等式的解集時應(yīng)牢記:大于向右畫,小于向左畫;有等號的畫實心圓點,無等號的畫空心圓圈.
1.使學(xué)生了解不等式的解集、解不等式的概念,會在數(shù)軸上表示出不等式的解集.
2.知道不等式的“解集”與方程“解”的不同點.
通過教學(xué),使學(xué)生能夠正確地在數(shù)軸上表示出不等式的解集,并且能把數(shù)軸上的某部分?jǐn)?shù)集用相應(yīng)的不等式表示.
通過講解不等式的“解集”與方程“解”的關(guān)系,向?qū)W生滲透對立統(tǒng)一的辯證觀點.
通過本節(jié)課的學(xué)習(xí),讓學(xué)生了解不等式的解集可利用圖形來表達(dá),滲透數(shù)形結(jié)合的數(shù)學(xué)美.
2.學(xué)生學(xué)法:明確不等式的解與解集的區(qū)別和聯(lián)系,并能熟練地用數(shù)軸表示不等式的解集,在數(shù)軸上表示不等式的解集時,要特別注意:大于向右畫,小于向左畫;有等號的畫實心圓點,無等號的畫空心圓圈.
不等式課件 篇3
基本不等式是數(shù)學(xué)中一個重要的基礎(chǔ)公式,也是高中數(shù)學(xué)學(xué)習(xí)的重點之一。此公式廣泛應(yīng)用于各種求證、排列、組合、概率等數(shù)學(xué)問題中,具有廣泛的實際應(yīng)用價值。本文將圍繞基本不等式的定義、推導(dǎo)、應(yīng)用和解題技巧進(jìn)行講解。
一、基本不等式的定義
基本不等式又稱柯西-施瓦茨不等式,其一般形式為:
∣∣∣∣∑iaibi∣∣∣∣∣≤∣∣∣∣∑iai∣∣∣∣∣∣∣∣∣∑ibi∣∣∣∣∣
其中a1,a2,…,an和b1,b2,…,bn為任意實數(shù)。該不等式的本質(zhì)含義是,在平面直角坐標(biāo)系中,向量間的內(nèi)積不大于它們模的乘積之積,并且當(dāng)且僅當(dāng)向量線性相關(guān)時取等號。
二、基本不等式的推導(dǎo)
基本不等式的推導(dǎo)涉及到向量的概念。假設(shè)有兩個n維向量a和b,它們的內(nèi)積為∑iaibi,則它們的長度分別為:|a|=√∑iai2和|b|=√∑ibi2。
將a和b定義為Rn中的兩個向量,則它們的夾角為θ,則有:
cosθ=∑iaibi/|a||b|
通過分析cosθ的大小關(guān)系,顯然有:
?1≤cosθ≤1
進(jìn)一步得到基本不等式:
|∑iaibi|≤∣∣∣∣∑iai∣∣∣∣∣∣∣∣∑ibi∣∣∣∣∣
三、基本不等式的應(yīng)用
基本不等式廣泛應(yīng)用于各種求證、排列、組合、概率等數(shù)學(xué)問題中,下面將分別介紹它們的應(yīng)用。
1. 求證
基本不等式可以用于求證數(shù)學(xué)中的一些定理,比如互余等比數(shù)列的和定理。具體應(yīng)用時,我們可以將等比數(shù)列拆成兩個向量,然后應(yīng)用基本不等式即可得到所證定理。
2. 排列組合
在排列組合問題中,基本不等式可以幫助我們確定最優(yōu)解,以最小或最大值為目標(biāo)得到所需的數(shù)字。例如,在n個數(shù)字中有幾對數(shù)對,他們之間的差值恰好為k,可以通過將原問題轉(zhuǎn)換為求兩個向量之間的夾角,然后應(yīng)用基本不等式進(jìn)行求解。
3. 概率
在概率問題中,基本不等式可以用于推算隨機(jī)事件中不等的概率值,例如玩牌游戲中的胡牌概率等。我們可以將每個事件看作向量,然后使用基本不等式計算它們的夾角,從而得到相應(yīng)的概率值。
四、基本不等式的解題技巧
基本不等式的應(yīng)用需要掌握一些解題技巧。下面列舉一些常用的技巧:
1. 將數(shù)列表示成向量
在排列組合問題中,將數(shù)列表示成向量,有利于方便運(yùn)用基本不等式進(jìn)行計算。
2. 極小化或極大化
當(dāng)問題中要求最小或最大值時,我們可以使用極小化或極大化的思路,以求解最優(yōu)解。
3. 利用對稱性
當(dāng)有對稱條件時,可以運(yùn)用基本不等式中的對稱性質(zhì),簡化數(shù)學(xué)推理。
4. 運(yùn)用方法的差異性
在某些情況下,我們可以發(fā)現(xiàn)數(shù)列的算術(shù)平均數(shù)和幾何平均數(shù)在大小方面的差異,從而確定使用哪個方法進(jìn)行計算。
綜上所述,基本不等式是高中數(shù)學(xué)學(xué)習(xí)的重點之一,應(yīng)用范圍廣泛。掌握了基本不等式的定義、推導(dǎo)、應(yīng)用和解題技巧,能夠在數(shù)學(xué)競賽中取得更好的成績,也有利于我們理解、應(yīng)用其它數(shù)學(xué)定理。
不等式課件 篇4
《不等式的性質(zhì)(1)》教學(xué)設(shè)計
一、引入
展示任務(wù)單的數(shù)據(jù)分析,向?qū)W生明確本堂課的教學(xué)內(nèi)容。
二、預(yù)習(xí)檢測
學(xué)生回答“什么是不等式的性質(zhì)” 不等式的性質(zhì)1 不等式兩邊加(或減)同一個數(shù)(或式子),不等號的方向不變 不等式的性質(zhì)2 不等式兩邊乘(或除以)同一個正數(shù),不等號的方向不變 不等式的性質(zhì)3 不等式兩邊乘(或除以)同一個負(fù)數(shù),不等號的方向改變
三、應(yīng)用1:利用不等式的性質(zhì)比較大小
【例1】若a?b,判斷3?2a與3?2b的大小關(guān)系.小結(jié):利用不等式的性質(zhì)比較大小的一般思路: 利用不等式的性質(zhì)將“已知”逐步化成“目標(biāo)
(1)教師對任務(wù)單中錯誤率較高的題目進(jìn)行講解;
(2)設(shè)置類似的問題作為例題,并進(jìn)行鞏固訓(xùn)練和變式訓(xùn)練。
【鞏固】(1)若3a?4?3b?4,則a___b;(2)若?5a?7??5b?7,則a___?b,則: 【變式一】若 ①(k2?1)a___(k2?1)b ②1?k2a___1?k2b
【變式二】若a?b,試比較ka與kb的大小.【鞏固】(1)若a?b,且(k?1)a?(k?1)b,則k的取值范圍是______.1(2)由kx?1變形可得x?,則k的取值范圍是________.k
四、應(yīng)用2:利用不等式的性質(zhì)解不等式
(1)針對任務(wù)單中學(xué)生解不等式時在步驟中出現(xiàn)的問題,教師規(guī)范解題步驟;
(2)教師分享某位同學(xué)任務(wù)單中對“不等式的性質(zhì)與等式性質(zhì)的異同?”的回答,小組討論利用不等式的性質(zhì)解不等式步驟中需要注意的問題;(3)學(xué)生綜合范例和討論結(jié)果,進(jìn)行鞏固訓(xùn)練和變式訓(xùn)練?!纠?】利用不等式的性質(zhì)解不等式:4y?12??2?3y.【鞏固】13用不等式的性質(zhì)解不等式:y?2?y?522 【變式】13已知y?2?y?5,化簡y?3?(6?2y)
五、課堂小結(jié)
小組討論分享:通過本節(jié)課的學(xué)習(xí),“我知道了??”“我掌握了??”。
六、課堂檢測
學(xué)生獨立完成課堂檢測,由數(shù)據(jù)反饋出本堂課的達(dá)成度
七、課后思考 布置課后思考題
利用不等式性質(zhì)1,比較2a與a的大?。╝?0).2,比較2a與a的大?。╝?0).利用不等式性質(zhì)
不等式課件 篇5
基本不等式是中學(xué)數(shù)學(xué)中比較重要的知識點,它是一條數(shù)學(xué)公式,可以用來證明數(shù)學(xué)上的不等式問題。在中學(xué)階段,我們通常會學(xué)習(xí)到關(guān)于基本不等式的概念、性質(zhì)以及應(yīng)用等方面的知識。接下來,本篇文章將圍繞這一主題展開,詳細(xì)說明基本不等式的相關(guān)知識點和應(yīng)用場景。
一、基本不等式的概念和性質(zhì)
基本不等式實際上是針對于a、b兩個正實數(shù)而言的,它的數(shù)學(xué)表述為:(a+b)2≥4ab 。 這個公式被稱為基本不等式的“基本式”。同時,在這個式子中,等號成立的條件是a=b時。接下來,讓我們來看看基本不等式的一些性質(zhì)。
1.基本不等式的證明:
(a+b)2=a2+2ab+b2≥4ab (由于a2+b2≥2ab)
化簡得:a2+b2≥2ab,即(a-b)2≥0,結(jié)合等式左側(cè)兩邊同時加上4ab,則得到公式(a+b)2≥4ab,也就是基本不等式。
2. 基本不等式的解釋:
從式子來看,基本不等式的左邊是一個完全平方數(shù),即(a+b)2。右邊是4ab。又因為基本不等式中的變量a和b都是正實數(shù),所以無論a和b的大小關(guān)系如何,四倍的乘積4ab一定是大于等于a2+b2、即2ab的。因此,我們可以得到基本不等式的結(jié)論:(a+b)2≥4ab。
3. 基本不等式的應(yīng)用:
基本不等式有非常廣泛的應(yīng)用,其中一些典型的應(yīng)用場景包括以下幾種:
a. 使用基本不等式證明其他不等式:
比如,對于x、y兩個正實數(shù),我們可以將不等式(x-y)2≥0 化簡為x2+y2≥2xy 的形式,然后用上基本不等式,即可快速證明(x-y)2≥0 成立。
b. 使用基本不等式解決實際問題:
比如,用4米長的繩子圍成一個矩形獸欄,求獸欄能夠圍住的最大面積是多少? 我們可以將這個問題轉(zhuǎn)換為求:4m邊長的正方形對面提醒獸欄的最大面積問題。此時,我們可以利用基本不等式,推導(dǎo)出正方形的對角線最大長度即為4√2米,由此可以得出此時正方形的面積即為16平方米,也就是獸欄的最大面積。
c. 使用基本不等式驗證一些數(shù)學(xué)結(jié)論:
比如,我們可以利用基本不等式來驗證任意兩個正實數(shù)的平均數(shù)一定大于等于它們的幾何平均數(shù)。 具體的,對于兩個正實數(shù)a和b,我們可以推導(dǎo)得到:
(a+b)2≥4ab
(a+b)2/4≥ab
(√ab+√ab)2/4≥ab
(?ab) ≥ (a+b)/2
由此可得,兩個正實數(shù)的平均數(shù)一定大于等于它們的幾何平均數(shù),即( a+b)/2≥?ab。
二、基本不等式的應(yīng)用實例
1.題目描述:
小峰有若干元錢,他能夠涵蓋八天的生活物資開銷?,F(xiàn)在,他去買菜了,花掉了R元錢,求他能不能仍然用這筆錢過完余下的那幾天。
2.解題思路:
我們可以設(shè)小峰剩下的錢數(shù)為x,應(yīng)該取得一個不等式來表示這個問題。具體地,設(shè)日均消費為m(m 一定是小于R/x 和x/8之間較小數(shù)),則從第9天開始,小峰所存的錢應(yīng)數(shù)學(xué)表達(dá)式為:
x-R≥m*(8),
x≥m*(8)+R
這是一個關(guān)于x的不等式,為驗證其是否成立,我們需要對它進(jìn)行推導(dǎo)。為了推導(dǎo)方便,我們將不等式變形如下:
m*(8)+R≤x
然后,我們可以利用基本不等式將其化簡為如下形式:
(mx/?8)^2+(Rx/?8)^2≥2mRx/4
由于 x>0,所以令 t = x/?8,則上式化簡為:
(m/2)t^2+(R/2)^2≥tmR
或者
(t-R/m)^2+(m/2)^2≥R^2/ 4m^2
根據(jù)上面的式子,我們可以得出,只要 t≥R/m,即x≥m*(8)+R,則小峰就有足夠的錢過余下的幾天生活了。
3.綜述
基本不等式是非常重要的中學(xué)數(shù)學(xué)知識點,它不僅有較為實際的應(yīng)用場景,還能用于證明和推導(dǎo)其他數(shù)學(xué)結(jié)論。在學(xué)習(xí)基本不等式的時候,我們需要注意,對于不等式的變量,要理解它們所表示的實際含義和邏輯關(guān)系,從而更好地應(yīng)用基本不等式來解決實際問題。
不等式課件 篇6
本節(jié)課的研究是對初中不等式學(xué)習(xí)的延續(xù)和拓展,也是實數(shù)理論的進(jìn)一步發(fā)展.在本節(jié)課的學(xué)習(xí)過程中,將讓學(xué)生回憶實數(shù)的基本理論,并能用實數(shù)的基本理論來比較兩個代數(shù)式的大小.
通過本節(jié)課的學(xué)習(xí),讓學(xué)生從一系列的具體問題情境中,感受到在現(xiàn)實世界和日常生活中存在著大量的不等關(guān)系,并充分認(rèn)識不等關(guān)系的存在與應(yīng)用.對不等關(guān)系的相關(guān)素材,用數(shù)學(xué)觀點進(jìn)行觀察、歸納、抽象,完成量與量的比較過程.即能用不等式或不等式組把這些不等關(guān)系表示出來.
在本節(jié)課的學(xué)習(xí)過程中還安排了一些簡單的、學(xué)生易于處理的問題,其用意在于讓學(xué)生注意對數(shù)學(xué)知識和方法的應(yīng)用,同時也能激發(fā)學(xué)生的學(xué)習(xí)興趣,并由衷地產(chǎn)生用數(shù)學(xué)工具研究不等關(guān)系的愿望.根據(jù)本節(jié)課的教學(xué)內(nèi)容,應(yīng)用再現(xiàn)、回憶得出實數(shù)的基本理論,并能用實數(shù)的基本理論來比較兩個代數(shù)式的大小.
在本節(jié)教學(xué)中,教師可讓學(xué)生閱讀書中實例,充分利用數(shù)軸這一簡單的數(shù)形結(jié)合工具,直接用實數(shù)與數(shù)軸上點的一一對應(yīng)關(guān)系,從數(shù)與形兩方面建立實數(shù)的順序關(guān)系.要在溫故知新的基礎(chǔ)上提高學(xué)生對不等式的認(rèn)識.
1.在學(xué)生了解不等式產(chǎn)生的實際背景下,利用數(shù)軸回憶實數(shù)的基本理論,理解實數(shù)的大小關(guān)系,理解實數(shù)大小與數(shù)軸上對應(yīng)點位置間的關(guān)系.
2.會用作差法判斷實數(shù)與代數(shù)式的大小,會用配方法判斷二次式的大小和范圍.
3.通過溫故知新,提高學(xué)生對不等式的認(rèn)識,激發(fā)學(xué)生的學(xué)習(xí)興趣,體會數(shù)學(xué)的奧秘與數(shù)學(xué)的結(jié)構(gòu)美.
教學(xué)重點:比較實數(shù)與代數(shù)式的大小關(guān)系,判斷二次式的大小和范圍.
思路1.(章頭圖導(dǎo)入)通過多媒體展示衛(wèi)星、飛船和一幅山巒重疊起伏的壯觀畫面,它將學(xué)生帶入“橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同”的大自然和浩瀚的宇宙中,使學(xué)生在具體情境中感受到不等關(guān)系在現(xiàn)實世界和日常生活中是大量存在的,由此產(chǎn)生用數(shù)學(xué)研究不等關(guān)系的強(qiáng)烈愿望,自然地引入新課.
思路2.(情境導(dǎo)入)列舉出學(xué)生身體的高矮、身體的輕重、距離學(xué)校路程的遠(yuǎn)近、百米賽跑的時間、數(shù)學(xué)成績的多少等現(xiàn)實生活中學(xué)生身邊熟悉的事例,描述出某種客觀事物在數(shù)量上存在的不等關(guān)系.這些不等關(guān)系怎樣在數(shù)學(xué)上表示出來呢?讓學(xué)生自由地展開聯(lián)想,教師組織不等關(guān)系的相關(guān)素材,讓學(xué)生用數(shù)學(xué)的觀點進(jìn)行觀察、歸納,使學(xué)生在具體情境中感受到不等關(guān)系與相等關(guān)系一樣,在現(xiàn)實世界和日常生活中大量存在著.這樣學(xué)生會由衷地產(chǎn)生用數(shù)學(xué)工具研究不等關(guān)系的愿望,從而進(jìn)入進(jìn)一步的探究學(xué)習(xí),由此引入新課.
1回憶初中學(xué)過的不等式,讓學(xué)生說出“不等關(guān)系”與“不等式”的異同.怎樣利用不等式研究及表示不等關(guān)系?
2在現(xiàn)實世界和日常生活中,既有相等關(guān)系,又存在著大量的不等關(guān)系.你能舉出一些實際例子嗎?
3數(shù)軸上的任意兩點與對應(yīng)的兩實數(shù)具有怎樣的關(guān)系?
4任意兩個實數(shù)具有怎樣的關(guān)系?用邏輯用語怎樣表達(dá)這個關(guān)系?
活動:教師引導(dǎo)學(xué)生回憶初中學(xué)過的不等式概念,使學(xué)生明確“不等關(guān)系”與“不等式”的異同.不等關(guān)系強(qiáng)調(diào)的是關(guān)系,可用符號“>”“b”“a
教師與學(xué)生一起舉出我們?nèi)粘I钪胁坏汝P(guān)系的例子,可讓學(xué)生充分合作討論,使學(xué)生感受到現(xiàn)實世界中存在著大量的不等關(guān)系.在學(xué)生了解了一些不等式產(chǎn)生的實際背景的前提下,進(jìn)一步學(xué)習(xí)不等式的有關(guān)內(nèi)容.
實例1:某天的天氣預(yù)報報道,最高氣溫32 ℃,最低氣溫26 ℃.
實例2:對于數(shù)軸上任意不同的兩點A、B,若點A在點B的左邊,則xA
實例5:三角形兩邊之和大于第三邊,兩邊之差小于第三邊.
實例6:限速40 km/h的路標(biāo)指示司機(jī)在前方路段行駛時,應(yīng)使汽車的速度v不超過40 km/h.
實例7:某品牌酸奶的質(zhì)量檢查規(guī)定,酸奶中脂肪的含量f應(yīng)不少于2.5%,蛋白質(zhì)的含量p應(yīng)不少于2.3%.
教師進(jìn)一步點撥:能夠發(fā)現(xiàn)身邊的數(shù)學(xué)當(dāng)然很好,這說明同學(xué)們已經(jīng)走進(jìn)了數(shù)學(xué)這門學(xué)科,但作為我們研究數(shù)學(xué)的人來說,能用數(shù)學(xué)的眼光、數(shù)學(xué)的觀點進(jìn)行觀察、歸納、抽象,完成這些量與量的比較過程,這是我們每個研究數(shù)學(xué)的人必須要做的,那么,我們可以用我們所研究過的什么知識來表示這些不等關(guān)系呢?學(xué)生很容易想到,用不等式或不等式組來表示這些不等關(guān)系.那么不等式就是用不等號將兩個代數(shù)式連結(jié)起來所成的式子.如-71+4,2x≤6,a+2≥0,3≠4,0≤5等.
教師引導(dǎo)學(xué)生將上述的7個實例用不等式表示出來.實例1,若用t表示某天的氣溫,則26 ℃≤t≤32 ℃.實例3,若用x表示一個非負(fù)數(shù),則x≥0.實例5,|AC|+|BC|>|AB|,如下圖.
|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.
|AB|-|BC|
實例6,若用v表示速度,則v≤40 km/h.實例7,f≥2.5%,p≥2.3%.對于實例7,教師應(yīng)點撥學(xué)生注意酸奶中的脂肪含量與蛋白質(zhì)含量需同時滿足,避免寫成f≥2.5%或p≥2.3%,這是不對的.但可表示為f≥2.5%且p≥2.3%.
對以上問題,教師讓學(xué)生輪流回答,再用投影儀給出課本上的兩個結(jié)論.
討論結(jié)果:
(1)(2)略;(3)數(shù)軸上任意兩點中,右邊點對應(yīng)的實數(shù)比左邊點對應(yīng)的實數(shù)大.
(4)對于任意兩個實數(shù)a和b,在a=b,a>b,a0a>b;a-b=0a=b;a-b
活動:通過兩例讓學(xué)生熟悉兩個代數(shù)式的大小比較的基本方法:作差,配方法.
點評:本節(jié)兩例的求解,是借助因式分解和應(yīng)用配方法完成的,這兩種方法是代數(shù)式變形時經(jīng)常使用的方法,應(yīng)讓學(xué)生熟練掌握.
1.若f(x)=3x2-x+1,g(x)=2x2+x-1,則f(x)與g(x)的大小關(guān)系是( )
解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).
2.已知x≠0,比較(x2+1)2與x4+x2+1的大小.
解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.
∵x≠0,得x2>0.從而(x2+1)2>x4+x2+1.
例2比較下列各組數(shù)的大小(a≠b).
(1)a+b2與21a+1b(a>0,b>0);
(2)a4-b4與4a3(a-b).
活動:比較兩個實數(shù)的大小,常根據(jù)實數(shù)的運(yùn)算性質(zhì)與大小順序的關(guān)系,歸結(jié)為判斷它們的差的符號來確定.本例可由學(xué)生獨立完成,但要點撥學(xué)生在最后的符號判斷說理中,要理由充分,不可忽略這點.
解:(1)a+b2-21a+1b=a+b2-2aba+b=a+b2-4ab2a+b=a-b22a+b.
∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴a-b22a+b>0,即a+b2>21a+1b.
(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)
=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]
=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].
∵2a2+(a+b)2≥0(當(dāng)且僅當(dāng)a=b=0時取等號),
又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2]
∴a4-b4
點評:比較大小常用作差法,一般步驟是作差——變形——判斷符號.變形常用的手段是分解因式和配方,前者將“差”變?yōu)椤胺e”,后者將“差”化為一個或幾個完全平方式的“和”,也可兩者并用.
已知x>y,且y≠0,比較xy與1的大小.
活動:要比較任意兩個數(shù)或式的大小關(guān)系,只需確定它們的差與0的大小關(guān)系.
∵x>y,∴x-y>0.
當(dāng)y
當(dāng)y>0時,x-yy>0,即xy-1>0.∴xy>1.
點評:當(dāng)字母y取不同范圍的值時,差xy-1的正負(fù)情況不同,所以需對y分類討論.
例3建筑設(shè)計規(guī)定,民用住宅的窗戶面積必須小于地板面積.但按采光標(biāo)準(zhǔn),窗戶面積與地板面積的比值應(yīng)不小于10%,且這個比值越大,住宅的采光條件越好.試問:同時增加相等的窗戶面積和地板面積,住宅的采光條件是變好了,還是變壞了?請說明理由.
活動:解題關(guān)鍵首先是把文字語言轉(zhuǎn)換成數(shù)學(xué)語言,然后比較前后比值的大小,采用作差法.
解:設(shè)住宅窗戶面積和地板面積分別為a、b,同時增加的面積為m,根據(jù)問題的要求a
由于a+mb+m-ab=mb-abb+m>0,于是a+mb+m>ab.又ab≥10%,
因此a+mb+m>ab≥10%.
所以同時增加相等的窗戶面積和地板面積后,住宅的采光條件變好了.
點評:一般地,設(shè)a、b為正實數(shù),且a0,則a+mb+m>ab.
已知a1,a2,…為各項都大于零的等比數(shù)列,公比q≠1,則( )
C.a1+a8=a4+a5 D.a1+a8與a4+a5大小不確定
解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4
=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).
∵{an}各項都大于零,∴q>0,即1+q>0.
又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.
1.下列不等式:①a2+3>2a;②a2+b2>2(a-b-1);③x2+y2>2xy.其中恒成立的不等式的個數(shù)為( )
2.比較2x2+5x+9與x2+5x+6的大小.
答案:
1.C解析:∵②a2+b2-2(a-b-1)=(a-1)2+(b+1)2≥0,
③x2+y2-2xy=(x-y)2≥0.
∴只有①恒成立.
2.解:因為2x2+5x+9-(x2+5x+6)=x2+3>0,
所以2x2+5x+9>x2+5x+6.
1.教師與學(xué)生共同完成本節(jié)課的小結(jié),從實數(shù)的基本性質(zhì)的回顧,到兩個實數(shù)大小的比較方法;從例題的活動探究點評,到緊跟著的變式訓(xùn)練,讓學(xué)生去繁就簡,聯(lián)系舊知,將本節(jié)課所學(xué)納入已有的知識體系中.
2.教師畫龍點睛,點撥利用實數(shù)的基本性質(zhì)對兩個實數(shù)大小比較時易錯的地方.鼓勵學(xué)有余力的學(xué)生對節(jié)末的思考與討論在課后作進(jìn)一步的探究.
1.本節(jié)設(shè)計關(guān)注了教學(xué)方法的優(yōu)化.經(jīng)驗告訴我們:課堂上應(yīng)根據(jù)具體情況,選擇、設(shè)計最能體現(xiàn)教學(xué)規(guī)律的教學(xué)過程,不宜長期使用一種固定的教學(xué)方法,或原封不動地照搬一種實驗?zāi)J?各種教學(xué)方法中,沒有一種能很好地適應(yīng)一切教學(xué)活動.也就是說,世上沒有萬能的教學(xué)方法.針對個性,靈活變化,因材施教才是成功的施教靈藥.
2.本節(jié)設(shè)計注重了難度控制.不等式內(nèi)容應(yīng)用面廣,可以說與其他所有內(nèi)容都有交匯,歷來是高考的重點與熱點.作為本章開始,可以適當(dāng)開闊一些,算作拋磚引玉,讓學(xué)生有個自由探究聯(lián)想的平臺,但不宜過多向外拓展,以免對學(xué)生產(chǎn)生負(fù)面影響.
3.本節(jié)設(shè)計關(guān)注了學(xué)生思維能力的訓(xùn)練.訓(xùn)練學(xué)生的思維能力,提升思維的品質(zhì),是數(shù)學(xué)教師直面的重要課題,也是中學(xué)數(shù)學(xué)教育的主線.采用一題多解有助于思維的發(fā)散性及靈活性,克服思維的僵化.變式訓(xùn)練教學(xué)又可以拓展學(xué)生思維視野的廣度,解題后的點撥反思有助于學(xué)生思維批判性品質(zhì)的提升.
1.比較(x-3)2與(x-2)(x-4)的大小.
2.試判斷下列各對整式的大?。?1)m2-2m+5和-2m+5;(2)a2-4a+3和-4a+1.
5.設(shè)a>0,b>0,且a≠b,試比較aabb與abba的大小.
∴(x-3)2>(x-2)(x-4).
=m2.
∵m2≥0,∴(m2-2m+5)-(-2m+5)≥0.
∴m2-2m+5≥-2m+5.
=a2+2.
∵a2≥0,∴a2+2≥2>0.
∴a2-4a+3>-4a+1.
=x24,
又∵x>0,∴x24>0.
∴(1+x2)2>(1+x)2.
由x>0,得1+x2>1+x.
=(x-y)[(x2+y2)-(x+y)2]
=-2xy(x-y).
∵x0,x-y
∴-2xy(x-y)>0.
∴(x2+y2)(x-y)>(x2-y2)(x+y).
5.解:∵aabbabba=aa-bbb-a=(ab)a-b,且a≠b,
當(dāng)a>b>0時,ab>1,a-b>0,
則(ab)a-b>1,于是aabb>abba.
則(ab)a-b>1.
于是aabb>abb a.
綜上所述,對于不相等的正數(shù)a、b,都有aabb>abba.
不等式課件 篇7
《課題:實際問題與一元一次不等式》教學(xué)設(shè)計
【教學(xué)目標(biāo)】:
1.通過列一元一次不等式解決具有不等關(guān)系的實際問題,進(jìn)一步熟練掌握一元一次不等式的解法,體會不等式是解決實際問題的有效的數(shù)學(xué)模型。
2.通過應(yīng)用一元一次不等式解決實際問題,進(jìn)一步強(qiáng)化應(yīng)用數(shù)學(xué)的意識,從而使學(xué)生樂于接觸社會環(huán)境中的數(shù)學(xué)信息,談?wù)摂?shù)學(xué)話題,能夠在數(shù)學(xué)活動中發(fā)揮積極作用。
3.通過探究,增進(jìn)學(xué)生之間的配合,培養(yǎng)學(xué)生敢于面對困難和克服困難的勇氣,樹立學(xué)好數(shù)學(xué)的自信心。
【重點難點】:
重點:由實際問題中的不等關(guān)系列出不等式。
難點:列一元一次不等式描述實際問題中的不等關(guān)系
【教學(xué)過程】:
回顧舊知、引入新課
師:之前我們學(xué)習(xí)過利用一元一次方程解決生活中的銷售問題,現(xiàn)在李老師就來考考大家,請看第一題:
出示幻燈片1
1.一種商品標(biāo)價100元,按標(biāo)價的8折出售,若想單件商品獲利10元,設(shè)進(jìn)價為x元,則可列等式。
(學(xué)生解決并給出合理解釋)
師:那我們一起來回顧一下利用一元一次方程解決實際問題的基本步驟是什么?
學(xué)生回答后,教師總結(jié):
利用一元一次方程解決實際問題的一般步驟:
審、設(shè)、列、解、答
師:好!請看第二題:
2.一種商品標(biāo)價100元,按標(biāo)價的8折出售,若想單件商品獲利不低于10元,設(shè)進(jìn)價為x元,則。
師:相較于第一題,題目發(fā)生了什么變化?
學(xué)生抓住關(guān)鍵詞“不低于”,列出不等式。
師:找到不等關(guān)系,列一元一次不等式也是解決實際問題的常用方法。今天,我們就來學(xué)習(xí)實際問題與一元一次不等式。
出示幻燈片
2小組討論、探究新知
師:馬上就要過春節(jié)了,想要給自己準(zhǔn)備什么禮物?
師:老師也想給可愛的兒子買禮物,通過考察,已經(jīng)知道有兩家超市正在舉行優(yōu)惠活動,咱們一起去逛一逛,好不好?
出示幻燈片3
甲超市說:凡在本超市累計購買100元商品后,再購買的商品按原價的90%收費。
乙超市:凡在本超市累計購買50元商品后,再購買的商品按原價的95%收費
師:李老師覺得甲超市優(yōu)惠,因為打9折?你的意見呢?
(學(xué)生發(fā)表自己的意見)
師:剛才幾位同學(xué)表達(dá)了自己的觀點,可是這僅僅是我們的猜想,解決問題不能只靠猜想,運(yùn)用數(shù)學(xué)知識該如何解決這個問題呢?
出示幻燈片
4下面老師就把時間交給大家,4人一小組展開討論,到底該選擇哪家超市購買才能獲得更大優(yōu)惠?
(學(xué)生討論的過程中,教師主要巡視并和學(xué)生共同探究。)
經(jīng)過探討,小組形成初步想法,小組派代表分享討論結(jié)果,逐一解決列表達(dá)式、分類、建模列不等式、解不等式等題目中難點,教師以板書形式將結(jié)果呈現(xiàn)在黑板上,并引導(dǎo)學(xué)生補(bǔ)充,完善解題過程,并利用多媒體進(jìn)行展示。
學(xué)以致用 挑戰(zhàn)自我?guī)煟和瑢W(xué)們理解得非常到位!那么再碰到類似的問題你能解決了嗎?
出示幻燈片
5我校計劃在暑假期間組織學(xué)生到某地旅游,參加旅游的人數(shù)估計為10~25人,甲、乙兩家旅行社的服務(wù)質(zhì)量相同,且報價都是每人200元.經(jīng)過協(xié)商:甲旅行社表示可給予每位學(xué)生七五折優(yōu)惠;乙旅行社表示可先免去一位學(xué)生的旅游費用,其余學(xué)生八折優(yōu)惠.我校選擇哪一家旅行社支付的旅游費用較少?
學(xué)生獨立思考后進(jìn)行小組討論,選代表上黑板展示。
梳理過程 總結(jié)提高
教師引導(dǎo)學(xué)生回顧兩道題的解題過程,談?wù)劔@得的感悟,學(xué)生獨立思考片刻后進(jìn)行小組交流討論。
出示幻燈片6
回顧這個問題的解題過程,你有哪些感悟呢?
例如:我感受最深的是??
我感到最困難的是??
我發(fā)現(xiàn)生活中??
我學(xué)會了??
布置作業(yè) 測評反饋
出示幻燈片7
作業(yè):
一、在市場上收集兩種手機(jī)收費方式,幫爸爸(媽媽)選擇一種合適的消費方式.二、習(xí)題(134頁)1.(1)(2)5.
不等式課件 篇8
1.使學(xué)生感受到生活中存在著大量的不等關(guān)系,了解不等式和一元一次不等式的意義;
2.讓學(xué)生自發(fā)地尋找不等式的解,會在數(shù)軸上正確地表示出不等式的解集;
3.能夠根據(jù)題意準(zhǔn)確迅速地列出相應(yīng)的不等式。
1.通過汽車行駛過a地這一實例的研究,使學(xué)生體會到數(shù)學(xué)來源于生活,又服務(wù)于生活,培養(yǎng)學(xué)生“學(xué)數(shù)學(xué)、用數(shù)學(xué)”的意識;
2.經(jīng)歷由具體實例建立不等模型的過程,探究不等式的解與解集的不同意義的過程,滲透數(shù)形結(jié)合的思想。
㈢情感、態(tài)度、價值觀:
1.通過對不等式、不等式的解與解集的探究,引導(dǎo)學(xué)生在獨立思考的基礎(chǔ)上積極參與對數(shù)學(xué)問題的討論,培養(yǎng)他們的合作交流意識;
2.讓學(xué)生充分體會到生活中處處有數(shù)學(xué),并能將它們應(yīng)用到生活的各個領(lǐng)域中去。
3.培養(yǎng)學(xué)生類比的思想方法、數(shù)形結(jié)合的思想。
1.教學(xué)重點:不等式、一元一次不等式、不等式解與解集的意義;在數(shù)軸上正確地表示出不等式的解集;
2.教學(xué)難點:不等式解集的意義,根據(jù)題意列出相應(yīng)的不等式。
計算機(jī)、自制cai課件、實物投影儀、三角板等。
教師創(chuàng)設(shè)情境引入,學(xué)生交流探討;師生共同歸納;教師示范畫圖,課件交互式練習(xí)。
〖創(chuàng)設(shè)情境——從生活走向數(shù)學(xué)〗
[多媒體展示]“五·一黃金周”快要到了,蕪湖市某兩個商場為了促銷商品,推行以下促銷方案:①甲商場:購物不超過50元者,不優(yōu)惠;超過50元的,超過部分折優(yōu)惠。②乙商場:購物不超過100元者,不優(yōu)惠;超過100元的,超過部分九折優(yōu)惠。親愛的同學(xué),如果五·一期間,你去購物,選擇到哪個商場,才比較合算呢?
(以上教學(xué)內(nèi)容是向?qū)W生設(shè)疑,激發(fā)學(xué)生探索問題、研究問題的積極性,可以讓學(xué)生討論一會兒)
教師:要想正確地解決這個問題,我們大家就要學(xué)習(xí)第九章《不等式和不等式組》,學(xué)完本章的內(nèi)容后,我相信,聰明的你們一定都會作出正確的選擇,真正地做到既經(jīng)濟(jì)又實惠。
首先,我們來共同學(xué)習(xí)本章的第一節(jié)課——9.1.1節(jié)《不等式及其解集》
〖新課學(xué)習(xí)〗
學(xué)習(xí)目標(biāo):
1.能感受到生活中存在著大量的不等關(guān)系,了解不等式和一元一次不等式和意義;
2.會尋找不等式的解,會在數(shù)軸上正確地表示出不等式的解集;
3.能夠根據(jù)題意準(zhǔn)確迅速地列出相應(yīng)的不等式。
[多媒體展示一段動畫]:引例:一輛勻速行駛的汽車在11:20距離a地50千米,要在12:00之前駛過a地,車速應(yīng)滿足什么條件?
設(shè)車速是x千米/小時,
(1)從時間上看,汽車要在12:00之前駛過a地,則以這個速度行駛50千米所用的時間不到 小時,即
(2)從路程上看,汽車要在12:00之前駛過a地,則以這個速度行駛 小時的路程要超過50千米,即
請同學(xué)們觀察上面的兩個式子,式子左右兩邊的大小關(guān)系是怎樣的? 左右兩邊相等嗎?
在學(xué)生充分發(fā)表自己意見的基礎(chǔ)上,師生共同歸納得出:
用“>”或“<”號表示大小關(guān)系的式子叫做不等式;
用“≠”表示不等關(guān)系的式子也是不等式。
判斷下列式子中哪些是不等式,是不等式的請在題后的括號內(nèi)劃“√”,不是的請劃“×”
(1)3> 2????? (???? ) (2)2a+1> 0?? (???? )?? (3)a+b=b+a? (???? )
(4)x< 2x+1?? (???? )???? (5)x=2x-5??? (???? ) (6)2x+4x< 3x+1 (???? )????????? (7)15≠7+9? (???? )
上面的不等式中,有些不含未知數(shù),有些含有未知數(shù),大家把(2)、(4)、(6)式與(5)式類比,(5)式是一個一元一次方程,能不能給(2)、(4)、(6)式也起個名字呢?
含有一個未知數(shù), 未知數(shù)的次數(shù)是1的不等式,叫做一元一次不等式.
問題2:車速可以是78千米/小時嗎?75千米/小時呢? 72千米/小時呢?
問題3:我們曾經(jīng)學(xué)過“使方程兩邊相等的未知數(shù)的值就是方程的解”,那么我們可以把使不等式成立的未知數(shù)的值叫做什么呢?
(師生共同歸納)使不等式成立的未知數(shù)的值叫做不等式的解。
2.課堂練習(xí)二——動一動腦,動一動手,你一定能算得對。
76, 73, 79, 80, 74.9, 75.1, 90, 60
(學(xué)生做完后,師問):你還能找出這個不等式的其他的解嗎?這個不等式有多少個解?你從中發(fā)現(xiàn)了什么規(guī)律?
(學(xué)生討論后,師生共同總結(jié)):當(dāng)x>75時,不等式 x>50總成立;而當(dāng)x<75或x=75時,不等式 x>50不成立,這就是說,任何一個大于75的數(shù)都是不等式 x>50的解,這樣的解有無數(shù)個。因此,x>75表示了能使不等式 x>50成立的x的取值范圍,叫做不等式 x>50的解的集合,簡稱解集。
我們再回到前面的問題,經(jīng)過剛才的分析,可以知道,要使汽車在12:00之前駛過a地,車速必須大于75千米/小時。
一個含有未知數(shù)的不等式的所有的解,組成了這個不等式的解集。
4.在數(shù)軸上表示不等式的解集;
注意:在表示75的點上畫空心圓圈,表示不包括這一點.
5.課堂練習(xí)三——動一動腦,動一動手,你一定能算得對。
判斷下列數(shù)中哪些是不等式x+3>6的解? 哪些不是?
-4, -2.5,? 0,? 1,? 2.5,? 3,? 3.2,? 4.8,? 8,? 12
求不等式的解集的過程叫做解不等式。
7.課堂練習(xí)四——看誰算得最快最準(zhǔn)。
直接想出不等式的解集,并在數(shù)軸上表示出不等式的解集:
(1) x+3>6;??????? (2)2x<8;?? ?(3)x-2>0
解:(1)x>3;???????? (2)x<4;??? (3)x>2。
1.例用不等式表示:
(1)x與1的和是正數(shù);??????(2)的與的的差是負(fù)數(shù);
(3)的2倍與1的和大于3;(4)的一半與4的差小于的3倍.
解:(1)x+1>0;???????? (2)+b<0;
(3)2+1>3;????? (4)-4<3;
2.課堂練習(xí)五——看誰最列得又快又準(zhǔn)。
用不等式表示:
(1)是正數(shù);??????????(2)是負(fù)數(shù);
(3)與5的和小于7;??(4)與2的差大于-1;
(5)的4倍大于8;??????(6)的一半小于3.
答案;(1)>0;??????? (2)<0;?? (3)+5>0;
學(xué)生小結(jié),師生共同完善:
2.會尋找不等式的解,會在數(shù)軸上正確地表示出不等式的解集;
3.能夠根據(jù)題意準(zhǔn)確迅速地列出相應(yīng)的不等式。
不等式課件 篇9
不等式的性質(zhì)(2)教學(xué)目標(biāo)
1.知識與技能:理解不等式的性質(zhì),會解簡單的一元一次不等式,并能在數(shù)軸上表示出解集。
2.過程與方法:通過經(jīng)歷不等式性質(zhì)的簡單應(yīng)用,積累數(shù)學(xué)活動。通過獨立解題,進(jìn)一步理解不等式的性質(zhì),體會不等式性質(zhì)的價值。
3.情感態(tài)度和價值觀:認(rèn)識到通過觀察、實驗、類比可以獲得數(shù)學(xué)結(jié)論,體驗數(shù)學(xué)活動充滿著探索性和創(chuàng)造性。在獨立思考的基礎(chǔ)上,積極參與對數(shù)學(xué)問題的討論,敢于發(fā)表自己的觀點,學(xué)會分享別人的想法和結(jié)果,并重新審視自己的想法,能從交流中獲益。重點難點
1.重點:不等式的性質(zhì)及其解法. 2.難點:不等式性質(zhì)的探索及運(yùn)用.方法策略
啟發(fā)式教學(xué)法——以設(shè)問和疑問層層引導(dǎo),激發(fā)學(xué)生,啟發(fā)學(xué)生積極思考,培養(yǎng)和發(fā)展學(xué)生的抽象思維能力。
探究教學(xué)法——引導(dǎo)學(xué)生去疑;鼓勵學(xué)生去探; 激勵學(xué)生去思,培養(yǎng)學(xué)生的創(chuàng)造性思維和批判精神。教學(xué)過程:
一、梳理舊知,引出新課
問題1: 在前面的學(xué)習(xí)中,你學(xué)到了不等式的哪些性質(zhì)?(用文字語言敘述)(鼓勵學(xué)生回答問題,用電子白版顯示三條性質(zhì)的符號語言)問題2: 解一元一次方程最終的目的是把方程轉(zhuǎn)化成哪種形式?其主要的理論依據(jù)是什么?
(為問題3做鋪墊)
二、合作交流,探究新知
問題3: 利用不等式的性質(zhì)解下列不等式:
(1)x?7?26(2)3x?2x?1 2(3)x?50(4)?4x?3 3(類比著解一元一次方程的方法教師先解(1),并用數(shù)軸表示其解集,然后讓學(xué)生試解(2)(3)(4)并和同學(xué)交流,最后教師點評。)
思考1:(3)(4)的求解過程,類似于解方程的哪一步變形? 思考2:依據(jù)不等式性質(zhì)3解不等式時應(yīng)注意什么? 隨堂練習(xí):1.完成課本P119練習(xí)1 問題4: 2011年北京的最低氣溫是19℃,最高氣溫是28℃,你能把北京的氣溫用不等式表示出來嗎?
(符號“≥”讀作“大于或等于”,也可以說是“不小于”;符號“≤”讀作“小于或等于”,也可以說是“不大于”.形如a≥b或a≤b的式子也是不等式,它們具有類似前面所說的不等式的性質(zhì)).隨堂練習(xí):完成課本119頁練習(xí)2.問題5: 某長方體形狀的容器長5 cm,寬3 cm,高10 cm.容器內(nèi)原有水的高度為3cm,現(xiàn)準(zhǔn)備向它繼續(xù)注水.用V(單位:cm3)表示新注入水的體積,寫出V的取值范圍.(學(xué)生先合作探究,然后讓學(xué)生交流探究結(jié)果,最后老師講評并強(qiáng)調(diào)在解決實際問題的時候,要考慮取值的現(xiàn)實意義。)
三、歸納完善,豐富新知
1:如何利用不等式的性質(zhì)解簡單不等式? 2:依據(jù)不等式性質(zhì)3解不等式時應(yīng)注意什么? 3:請說明符號“≥”和“≤”的含義?
四、布置作業(yè)
必做題:P120第5,7,8題.選做題:P120第9題
不等式的課件收藏
經(jīng)驗時常告訴我們,做事要提前做好準(zhǔn)備。在幼兒教育工作中,我們都有會準(zhǔn)備一寫需要用到資料。資料包含著人類在社會實踐,科學(xué)實驗和研究過程中所匯集的經(jīng)驗。有了資料的協(xié)助我們的工作會變得更加順利!所以,關(guān)于幼師資料你究竟了解多少呢?小編現(xiàn)在推薦你閱讀一下不等式的課件收藏,相信能對大家有所幫助。
不等式的課件 篇1
基本不等式是初中數(shù)學(xué)比較重要的一個概念,對于求解不等式問題有非常大的作用。在教學(xué)中,老師可以通過多學(xué)示例,呈現(xiàn)形式多樣,讓學(xué)生深刻理解基本不等式的本質(zhì)和應(yīng)用,使學(xué)生在解決實際問題中靈活掌握相關(guān)知識。本文將結(jié)合基本不等式的定義、性質(zhì)和應(yīng)用,探討其相關(guān)主題。
一、基本不等式的定義和性質(zhì)
基本不等式是在解決實際問題時常用到的一種數(shù)學(xué)方法,它可以有效地幫助我們解決很多實際問題。在數(shù)學(xué)中,一般把基本不等式定義為,對于任何正整數(shù)a和b,有下列不等關(guān)系:
(a+b)^2>=4ab
這個不等式在初中數(shù)學(xué)中非常重要,我們還可以把它解釋成下面的形式:對于任何兩個正數(shù)a和b,有下列不等式:
a/b+b/a>=2
這個式子實際上就是基本不等式的一個特例,也說明了基本不等式中的a和b可以指任何兩個正數(shù)。
基本不等式的一些性質(zhì):
1、兩邊同時乘以正數(shù)或是開根號(即不改變不等關(guān)系的實質(zhì))是允許的。
2、當(dāng)a=b時等號成立。
3、當(dāng)a不等于b時,不等號成立。
這些性質(zhì)是我們用基本不等式時需要注意的幾個關(guān)鍵點。如果我們了解了這些基本的性質(zhì),就可以更加靈活地運(yùn)用基本不等式解決實際問題。
二、基本不等式的應(yīng)用
基本不等式的應(yīng)用非常廣泛,例如可以用它來解決以下問題:
1、證明
√(a^2+b^2)>=a/√2+b/√2
這個問題就可以使用基本不等式來證明,首先得到(a+b)^2>=2(a^2+b^2),將式子化簡可得√(a^2+b^2)>=a/√2+b/√2,這就是想要證明的結(jié)論。
2、解決一些最值問題。例如:如何使a+b的值最?。窟@個問題可以用基本不等式來解決,我們設(shè)a+b=k,那么a+b的平方就是k^2,代入基本不等式中可得出:
k^2>=4ab,即(a+b)^2>=4ab
這個不等式右邊是4ab,左邊則是(a+b)^2,因此a+b的值取得最小值時,應(yīng)當(dāng)使(a+b)^2=4ab,所以a=b,因此a+b的最小值就是2a或是2b。
3、證明一些平方和不等式的結(jié)論。例如:
(a/b)^2+(b/a)^2>=2
這個問題可以通過基本不等式進(jìn)行證明,首先我們設(shè)x=a/b,y=b/a,很顯然有x+y>=2,然后通過簡單的運(yùn)算可得:x^2+y^2>=2,也即(a/b)^2+(b/a)^2>=2。
綜上所述,基本不等式作為初中數(shù)學(xué)比較重要的一部分,其定義、性質(zhì)和應(yīng)用都與實際問題密切相關(guān)。在解決實際問題時,我們可以通過多學(xué)示例,靈活運(yùn)用基本不等式的性質(zhì)和應(yīng)用,進(jìn)而更好地理解其本質(zhì)和應(yīng)用,從而使初中數(shù)學(xué)知識更加牢固。
不等式的課件 篇2
(1)運(yùn)用問題的形式幫助學(xué)生整理全章的內(nèi)容,建立知識體系。
(2)在獨立思考的基礎(chǔ)上,鼓勵學(xué)生開展小組和全班的交流,使學(xué)生通過交流和反思加強(qiáng)對所學(xué)知識的理解和掌握,并逐步建立知識體系。
通過問題情境的設(shè)立,使學(xué)生再現(xiàn)已學(xué)知識,鍛煉抽象、概括的能力。解決問題
通過具體問題來體會知識間的聯(lián)系和學(xué)習(xí)本章所采用的主要思想方法。
通過獨立思考獲取學(xué)習(xí)的成功體驗,通過小組交流培養(yǎng)合作交流意識,通過大膽發(fā)表自己的觀點,增強(qiáng)自信心。
重點:對一元一次不等式基本性質(zhì)的掌握;理解不等式(組)解及解集的含義,會解簡單的一元一不等式(組),并會在數(shù)軸上表示其解集;會解相關(guān)的問題,建立起相關(guān)的知識體系。
不等式有哪些基本性質(zhì)?它與等式的性質(zhì)有什么相同和不同之處?
解一元一次不等式和解一元一次方程有什么異同?引導(dǎo)學(xué)生回憶解一元一次方程的步驟.比較兩者之間的不同學(xué)生舉例回答.
舉例說明在數(shù)軸上如何表示一元一不等式(組)的解集分組競賽.看哪一組出的題型好,全班一起解答.
舉例說明不等式、函數(shù)、方程的聯(lián)系.引導(dǎo)學(xué)生回憶函數(shù)的有關(guān)內(nèi)容.舉例說明三者之間的關(guān)系.小組討論,合作回答.函數(shù)性質(zhì)、圖象
小組交流、討論不等式和函數(shù)、函數(shù)和方程等之間的關(guān)系,分別舉例說明.
布置作業(yè)開動腦筋,勇于表達(dá)自己的'想法.
(1)在運(yùn)用所學(xué)知識解決具體問題的同時,加深對全章知識體系理解。
(2)發(fā)展學(xué)生抽象能力、推理能力和有條理表達(dá)自己想法的能力.
教學(xué)思考:
體會數(shù)學(xué)的應(yīng)用價值,并學(xué)會在解決問題過程中與他人合作.解決問題。在獨立思考的基礎(chǔ)上,積極參與問題的討論,從交流中學(xué)習(xí),并敢于發(fā)表自己的觀點和主張,同時尊重與理解別人的觀點。
情感態(tài)度與價值觀:
進(jìn)一步嘗試學(xué)習(xí)數(shù)學(xué)的成功體驗,認(rèn)識到不等式是解決實際問題的重要工具,逐漸形成對數(shù)學(xué)活動積極參與的意識。
重點:
對一元一次不等式基本性質(zhì)的掌握;理解不等式(組)解及解集的含義,會解簡單的一元一次不等式(組),并會在數(shù)軸上表示其解集;會解相關(guān)的問題,建立起相關(guān)的知識體系。
↓ ↓
安排一組練習(xí)讓學(xué)生充分充分討論解決.
(1)當(dāng)X取何值時,Y>0(2)當(dāng)X取何值時,Y=0(3)當(dāng)X取何值時,Y
3.某工人制造機(jī)器零件,如果每天比預(yù)定多做一件,那么8天所做零件超過100件;如果每天比預(yù)定少做一件,那么8天所做零件不到90件,這個工人預(yù)定每天做幾個零件?
不等式的課件 篇3
一元二次不等式是高中數(shù)學(xué)中的一個重要概念,是指一個帶有二次項的不等式。在數(shù)學(xué)學(xué)習(xí)中,我們經(jīng)常需要利用二次不等式來解決問題,掌握這個概念對于深入了解高中數(shù)學(xué)知識是至關(guān)重要的。因此,學(xué)習(xí)一元二次不等式是高中數(shù)學(xué)學(xué)習(xí)中的一大難點,需要認(rèn)真對待。
一元二次不等式的概念和性質(zhì)
一元二次不等式可以寫成如下形式:
ax2 + bx + c > 0
或
ax2 + bx + c
其中a、b、c都是實數(shù),a ≠ 0。
我們可以通過一些方法求出不等式的根,比如將其轉(zhuǎn)化為標(biāo)準(zhǔn)形式。將不等式變形,我們可以得到如下形式:
ax2 + bx
或
ax2 + bx > – c
然后,我們再用求一元二次方程根的方法求出不等式的解,就能夠得到它的解集。
對于不等式ax2 + bx + c > 0,其圖像為二次函數(shù)的上凸形,即開口向上的拋物線,而對于不等式ax2 + bx + c
一元二次不等式的解法
解一元二次不等式的方法有很多,下面我們介紹其中的兩種:
方法一:化為標(biāo)準(zhǔn)形式,再利用求一元二次方程根的方法求解。
方法二:利用符號法將不等式中的式子化簡,得到一系列不等式,然后將這些不等式求解即可。
實際上,解一元二次不等式還有很多其他的方法,比如絕對值法、圖形法等等。在解題時,我們要根據(jù)具體的情況選擇最合適的方法來求解。
一元二次不等式的應(yīng)用
一元二次不等式廣泛應(yīng)用于數(shù)學(xué)學(xué)習(xí)以及生活中的各個領(lǐng)域,比如物理學(xué)、經(jīng)濟(jì)學(xué)、社會學(xué)等。下面我們以生活中的一個例子來說明一元二次不等式的應(yīng)用。
假設(shè)你要購買一臺電視機(jī),商家提供了兩種方案供你選擇。方案一:首付1500元,每月還款100元;方案二:首付3500元,每月還款80元。那么,你需要比較兩個方案的總花費,來決定哪個方案更加劃算。
我們假設(shè)電視機(jī)的總價格為x元。那么,方案一的總花費為:
C1 = 1500 + 100×n
而方案二的總花費為:
C2 = 3500 + 80×n
這里n為分期的期數(shù),即你需要還款的總期數(shù)。為了比較兩種方案的劃算程度,我們可以列出一個一元二次不等式:
1500 + 100×n
經(jīng)過化簡,我們可以得到:
20n > 2000
n > 100
因此,當(dāng)還款期數(shù)大于100期時,方案一比方案二更加劃算。這個例子很好地展示了一元二次不等式的應(yīng)用,它能夠幫助我們在日常生活中做出明智的選擇,也能夠更加深入地理解數(shù)學(xué)知識。
總結(jié)
一元二次不等式是高中數(shù)學(xué)學(xué)習(xí)中的重要概念,它在數(shù)學(xué)中和生活中都有廣泛的應(yīng)用。學(xué)習(xí)一元二次不等式需要我們認(rèn)真對待,掌握其概念、性質(zhì)和解法,同時也需要我們理解其實際應(yīng)用,這樣才能夠更好地掌握高中數(shù)學(xué)的知識。
不等式的課件 篇4
本節(jié)課的研究是對初中不等式學(xué)習(xí)的延續(xù)和拓展,也是實數(shù)理論的進(jìn)一步發(fā)展.在本節(jié)課的學(xué)習(xí)過程中,將讓學(xué)生回憶實數(shù)的基本理論,并能用實數(shù)的基本理論來比較兩個代數(shù)式的大小.
通過本節(jié)課的學(xué)習(xí),讓學(xué)生從一系列的具體問題情境中,感受到在現(xiàn)實世界和日常生活中存在著大量的不等關(guān)系,并充分認(rèn)識不等關(guān)系的存在與應(yīng)用.對不等關(guān)系的相關(guān)素材,用數(shù)學(xué)觀點進(jìn)行觀察、歸納、抽象,完成量與量的比較過程.即能用不等式或不等式組把這些不等關(guān)系表示出來.
在本節(jié)課的學(xué)習(xí)過程中還安排了一些簡單的、學(xué)生易于處理的問題,其用意在于讓學(xué)生注意對數(shù)學(xué)知識和方法的應(yīng)用,同時也能激發(fā)學(xué)生的學(xué)習(xí)興趣,并由衷地產(chǎn)生用數(shù)學(xué)工具研究不等關(guān)系的愿望.根據(jù)本節(jié)課的教學(xué)內(nèi)容,應(yīng)用再現(xiàn)、回憶得出實數(shù)的基本理論,并能用實數(shù)的基本理論來比較兩個代數(shù)式的大小.
在本節(jié)教學(xué)中,教師可讓學(xué)生閱讀書中實例,充分利用數(shù)軸這一簡單的數(shù)形結(jié)合工具,直接用實數(shù)與數(shù)軸上點的一一對應(yīng)關(guān)系,從數(shù)與形兩方面建立實數(shù)的順序關(guān)系.要在溫故知新的基礎(chǔ)上提高學(xué)生對不等式的認(rèn)識.
1.在學(xué)生了解不等式產(chǎn)生的實際背景下,利用數(shù)軸回憶實數(shù)的基本理論,理解實數(shù)的大小關(guān)系,理解實數(shù)大小與數(shù)軸上對應(yīng)點位置間的關(guān)系.
2.會用作差法判斷實數(shù)與代數(shù)式的大小,會用配方法判斷二次式的大小和范圍.
3.通過溫故知新,提高學(xué)生對不等式的認(rèn)識,激發(fā)學(xué)生的學(xué)習(xí)興趣,體會數(shù)學(xué)的奧秘與數(shù)學(xué)的結(jié)構(gòu)美.
教學(xué)重點:比較實數(shù)與代數(shù)式的大小關(guān)系,判斷二次式的大小和范圍.
思路1.(章頭圖導(dǎo)入)通過多媒體展示衛(wèi)星、飛船和一幅山巒重疊起伏的壯觀畫面,它將學(xué)生帶入“橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同”的大自然和浩瀚的宇宙中,使學(xué)生在具體情境中感受到不等關(guān)系在現(xiàn)實世界和日常生活中是大量存在的,由此產(chǎn)生用數(shù)學(xué)研究不等關(guān)系的強(qiáng)烈愿望,自然地引入新課.
思路2.(情境導(dǎo)入)列舉出學(xué)生身體的高矮、身體的輕重、距離學(xué)校路程的遠(yuǎn)近、百米賽跑的時間、數(shù)學(xué)成績的多少等現(xiàn)實生活中學(xué)生身邊熟悉的事例,描述出某種客觀事物在數(shù)量上存在的不等關(guān)系.這些不等關(guān)系怎樣在數(shù)學(xué)上表示出來呢?讓學(xué)生自由地展開聯(lián)想,教師組織不等關(guān)系的相關(guān)素材,讓學(xué)生用數(shù)學(xué)的觀點進(jìn)行觀察、歸納,使學(xué)生在具體情境中感受到不等關(guān)系與相等關(guān)系一樣,在現(xiàn)實世界和日常生活中大量存在著.這樣學(xué)生會由衷地產(chǎn)生用數(shù)學(xué)工具研究不等關(guān)系的愿望,從而進(jìn)入進(jìn)一步的探究學(xué)習(xí),由此引入新課.
1回憶初中學(xué)過的不等式,讓學(xué)生說出“不等關(guān)系”與“不等式”的異同.怎樣利用不等式研究及表示不等關(guān)系?
2在現(xiàn)實世界和日常生活中,既有相等關(guān)系,又存在著大量的不等關(guān)系.你能舉出一些實際例子嗎?
3數(shù)軸上的任意兩點與對應(yīng)的兩實數(shù)具有怎樣的關(guān)系?
4任意兩個實數(shù)具有怎樣的關(guān)系?用邏輯用語怎樣表達(dá)這個關(guān)系?
活動:教師引導(dǎo)學(xué)生回憶初中學(xué)過的不等式概念,使學(xué)生明確“不等關(guān)系”與“不等式”的異同.不等關(guān)系強(qiáng)調(diào)的是關(guān)系,可用符號“>”“b”“a
教師與學(xué)生一起舉出我們?nèi)粘I钪胁坏汝P(guān)系的例子,可讓學(xué)生充分合作討論,使學(xué)生感受到現(xiàn)實世界中存在著大量的不等關(guān)系.在學(xué)生了解了一些不等式產(chǎn)生的實際背景的前提下,進(jìn)一步學(xué)習(xí)不等式的有關(guān)內(nèi)容.
實例1:某天的天氣預(yù)報報道,最高氣溫32 ℃,最低氣溫26 ℃.
實例2:對于數(shù)軸上任意不同的兩點A、B,若點A在點B的左邊,則xA
實例5:三角形兩邊之和大于第三邊,兩邊之差小于第三邊.
實例6:限速40 km/h的路標(biāo)指示司機(jī)在前方路段行駛時,應(yīng)使汽車的速度v不超過40 km/h.
實例7:某品牌酸奶的質(zhì)量檢查規(guī)定,酸奶中脂肪的含量f應(yīng)不少于2.5%,蛋白質(zhì)的含量p應(yīng)不少于2.3%.
教師進(jìn)一步點撥:能夠發(fā)現(xiàn)身邊的數(shù)學(xué)當(dāng)然很好,這說明同學(xué)們已經(jīng)走進(jìn)了數(shù)學(xué)這門學(xué)科,但作為我們研究數(shù)學(xué)的人來說,能用數(shù)學(xué)的眼光、數(shù)學(xué)的觀點進(jìn)行觀察、歸納、抽象,完成這些量與量的比較過程,這是我們每個研究數(shù)學(xué)的人必須要做的,那么,我們可以用我們所研究過的什么知識來表示這些不等關(guān)系呢?學(xué)生很容易想到,用不等式或不等式組來表示這些不等關(guān)系.那么不等式就是用不等號將兩個代數(shù)式連結(jié)起來所成的式子.如-71+4,2x≤6,a+2≥0,3≠4,0≤5等.
教師引導(dǎo)學(xué)生將上述的7個實例用不等式表示出來.實例1,若用t表示某天的氣溫,則26 ℃≤t≤32 ℃.實例3,若用x表示一個非負(fù)數(shù),則x≥0.實例5,|AC|+|BC|>|AB|,如下圖.
|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.
|AB|-|BC|
實例6,若用v表示速度,則v≤40 km/h.實例7,f≥2.5%,p≥2.3%.對于實例7,教師應(yīng)點撥學(xué)生注意酸奶中的脂肪含量與蛋白質(zhì)含量需同時滿足,避免寫成f≥2.5%或p≥2.3%,這是不對的.但可表示為f≥2.5%且p≥2.3%.
對以上問題,教師讓學(xué)生輪流回答,再用投影儀給出課本上的兩個結(jié)論.
討論結(jié)果:
(1)(2)略;(3)數(shù)軸上任意兩點中,右邊點對應(yīng)的實數(shù)比左邊點對應(yīng)的實數(shù)大.
(4)對于任意兩個實數(shù)a和b,在a=b,a>b,a0a>b;a-b=0a=b;a-b
活動:通過兩例讓學(xué)生熟悉兩個代數(shù)式的大小比較的基本方法:作差,配方法.
點評:本節(jié)兩例的求解,是借助因式分解和應(yīng)用配方法完成的,這兩種方法是代數(shù)式變形時經(jīng)常使用的方法,應(yīng)讓學(xué)生熟練掌握.
1.若f(x)=3x2-x+1,g(x)=2x2+x-1,則f(x)與g(x)的大小關(guān)系是( )
解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).
2.已知x≠0,比較(x2+1)2與x4+x2+1的大小.
解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.
∵x≠0,得x2>0.從而(x2+1)2>x4+x2+1.
例2比較下列各組數(shù)的大小(a≠b).
(1)a+b2與21a+1b(a>0,b>0);
(2)a4-b4與4a3(a-b).
活動:比較兩個實數(shù)的大小,常根據(jù)實數(shù)的運(yùn)算性質(zhì)與大小順序的關(guān)系,歸結(jié)為判斷它們的差的符號來確定.本例可由學(xué)生獨立完成,但要點撥學(xué)生在最后的符號判斷說理中,要理由充分,不可忽略這點.
解:(1)a+b2-21a+1b=a+b2-2aba+b=a+b2-4ab2a+b=a-b22a+b.
∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴a-b22a+b>0,即a+b2>21a+1b.
(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)
=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]
=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].
∵2a2+(a+b)2≥0(當(dāng)且僅當(dāng)a=b=0時取等號),
又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2]
∴a4-b4
點評:比較大小常用作差法,一般步驟是作差——變形——判斷符號.變形常用的手段是分解因式和配方,前者將“差”變?yōu)椤胺e”,后者將“差”化為一個或幾個完全平方式的“和”,也可兩者并用.
已知x>y,且y≠0,比較xy與1的大小.
活動:要比較任意兩個數(shù)或式的大小關(guān)系,只需確定它們的差與0的大小關(guān)系.
∵x>y,∴x-y>0.
當(dāng)y
當(dāng)y>0時,x-yy>0,即xy-1>0.∴xy>1.
點評:當(dāng)字母y取不同范圍的值時,差xy-1的正負(fù)情況不同,所以需對y分類討論.
例3建筑設(shè)計規(guī)定,民用住宅的窗戶面積必須小于地板面積.但按采光標(biāo)準(zhǔn),窗戶面積與地板面積的比值應(yīng)不小于10%,且這個比值越大,住宅的采光條件越好.試問:同時增加相等的窗戶面積和地板面積,住宅的采光條件是變好了,還是變壞了?請說明理由.
活動:解題關(guān)鍵首先是把文字語言轉(zhuǎn)換成數(shù)學(xué)語言,然后比較前后比值的大小,采用作差法.
解:設(shè)住宅窗戶面積和地板面積分別為a、b,同時增加的面積為m,根據(jù)問題的要求a
由于a+mb+m-ab=mb-abb+m>0,于是a+mb+m>ab.又ab≥10%,
因此a+mb+m>ab≥10%.
所以同時增加相等的窗戶面積和地板面積后,住宅的采光條件變好了.
點評:一般地,設(shè)a、b為正實數(shù),且a0,則a+mb+m>ab.
已知a1,a2,…為各項都大于零的等比數(shù)列,公比q≠1,則( )
C.a1+a8=a4+a5 D.a1+a8與a4+a5大小不確定
解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4
=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).
∵{an}各項都大于零,∴q>0,即1+q>0.
又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.
1.下列不等式:①a2+3>2a;②a2+b2>2(a-b-1);③x2+y2>2xy.其中恒成立的不等式的個數(shù)為( )
2.比較2x2+5x+9與x2+5x+6的大小.
答案:
1.C解析:∵②a2+b2-2(a-b-1)=(a-1)2+(b+1)2≥0,
③x2+y2-2xy=(x-y)2≥0.
∴只有①恒成立.
2.解:因為2x2+5x+9-(x2+5x+6)=x2+3>0,
所以2x2+5x+9>x2+5x+6.
1.教師與學(xué)生共同完成本節(jié)課的小結(jié),從實數(shù)的基本性質(zhì)的回顧,到兩個實數(shù)大小的比較方法;從例題的活動探究點評,到緊跟著的變式訓(xùn)練,讓學(xué)生去繁就簡,聯(lián)系舊知,將本節(jié)課所學(xué)納入已有的知識體系中.
2.教師畫龍點睛,點撥利用實數(shù)的基本性質(zhì)對兩個實數(shù)大小比較時易錯的地方.鼓勵學(xué)有余力的學(xué)生對節(jié)末的思考與討論在課后作進(jìn)一步的探究.
1.本節(jié)設(shè)計關(guān)注了教學(xué)方法的優(yōu)化.經(jīng)驗告訴我們:課堂上應(yīng)根據(jù)具體情況,選擇、設(shè)計最能體現(xiàn)教學(xué)規(guī)律的教學(xué)過程,不宜長期使用一種固定的教學(xué)方法,或原封不動地照搬一種實驗?zāi)J?各種教學(xué)方法中,沒有一種能很好地適應(yīng)一切教學(xué)活動.也就是說,世上沒有萬能的教學(xué)方法.針對個性,靈活變化,因材施教才是成功的施教靈藥.
2.本節(jié)設(shè)計注重了難度控制.不等式內(nèi)容應(yīng)用面廣,可以說與其他所有內(nèi)容都有交匯,歷來是高考的重點與熱點.作為本章開始,可以適當(dāng)開闊一些,算作拋磚引玉,讓學(xué)生有個自由探究聯(lián)想的平臺,但不宜過多向外拓展,以免對學(xué)生產(chǎn)生負(fù)面影響.
3.本節(jié)設(shè)計關(guān)注了學(xué)生思維能力的訓(xùn)練.訓(xùn)練學(xué)生的思維能力,提升思維的品質(zhì),是數(shù)學(xué)教師直面的重要課題,也是中學(xué)數(shù)學(xué)教育的主線.采用一題多解有助于思維的發(fā)散性及靈活性,克服思維的僵化.變式訓(xùn)練教學(xué)又可以拓展學(xué)生思維視野的廣度,解題后的點撥反思有助于學(xué)生思維批判性品質(zhì)的提升.
1.比較(x-3)2與(x-2)(x-4)的大小.
2.試判斷下列各對整式的大?。?1)m2-2m+5和-2m+5;(2)a2-4a+3和-4a+1.
5.設(shè)a>0,b>0,且a≠b,試比較aabb與abba的大小.
∴(x-3)2>(x-2)(x-4).
=m2.
∵m2≥0,∴(m2-2m+5)-(-2m+5)≥0.
∴m2-2m+5≥-2m+5.
=a2+2.
∵a2≥0,∴a2+2≥2>0.
∴a2-4a+3>-4a+1.
=x24,
又∵x>0,∴x24>0.
∴(1+x2)2>(1+x)2.
由x>0,得1+x2>1+x.
=(x-y)[(x2+y2)-(x+y)2]
=-2xy(x-y).
∵x0,x-y
∴-2xy(x-y)>0.
∴(x2+y2)(x-y)>(x2-y2)(x+y).
5.解:∵aabbabba=aa-bbb-a=(ab)a-b,且a≠b,
當(dāng)a>b>0時,ab>1,a-b>0,
則(ab)a-b>1,于是aabb>abba.
則(ab)a-b>1.
于是aabb>abb a.
綜上所述,對于不相等的正數(shù)a、b,都有aabb>abba.
不等式的課件 篇5
基本不等式是初中數(shù)學(xué)中重要的一章內(nèi)容,也是高中數(shù)學(xué)和競賽數(shù)學(xué)的基礎(chǔ)?;静坏仁降膶W(xué)習(xí)不僅有助于提高學(xué)生的數(shù)學(xué)素養(yǎng)和解題能力,同時也能幫助他們提高邏輯思維能力。本文旨在探討“基本不等式”這一主題。
一、基本不等式的定義與性質(zhì)
基本不等式是說:對于正實數(shù)x1,x2,…,xn,有
(x1+x2+…+xn)/n≥√(x1x2…xn),當(dāng)且僅當(dāng)x1=x2=…=xn時等號成立。
基本不等式的性質(zhì)有以下幾條:
(1)當(dāng)n為偶數(shù)時,等號成立;
(2)當(dāng)n為奇數(shù)時,當(dāng)且僅當(dāng)所有數(shù)相等時等號成立;
(3)兩個數(shù)的平均數(shù)不小于它們的幾何平均數(shù),即(a+b)/2≥√(ab),其中a,b均為正實數(shù)且a≠b;
(4)當(dāng)n≥3時,三個數(shù)的平均數(shù)不小于它們的幾何平均數(shù),即(a+b+c)/3≥√(abc),其中a,b,c均為正實數(shù)且a≠b≠c。
二、基本不等式的應(yīng)用
基本不等式作為一種重要的數(shù)學(xué)工具,可以應(yīng)用于眾多問題之中。以下是基本不等式的一些常見應(yīng)用。
1. 求和式的最小值
例題1:已知-x1+x2+x3+x4+x5=-18,其中x1,x2,x3,x4,x5均為正數(shù),并且x1+x2+x3+x4+x5≥5,則x1x2x3x4x5的最小值為多少?
解法:根據(jù)已知條件,設(shè)x1+x2+x3+x4+x5=5+m(其中m≥0),則有x1+x2+x3+x4+x5+m=5+2m。代入到基本不等式中可得:
(x1+x2+x3+x4+x5+m)/5≥√(x1x2x3x4x5)m/5≥√(x1x2x3x4x5)/5
移項得到x1x2x3x4x5≥1,則x1x2x3x4x5的最小值為1。
2. 比較函數(shù)大小
例題2:比較函數(shù)f(x)=√(a2+x2)+√(b2+(c-x)2)(a,b,c>0)在[0,c]上的最小和最大值。
解法:根據(jù)已知條件和基本不等式,將f(x)分解成兩個正數(shù)的平均數(shù)不小于它們的幾何平均數(shù)的形式,即
f(x)=[√(a2+x2)+√(b2+(c-x)2)]/2+1/2[√(a2+x2)+√(b2+(c-x)2)]
≥√[(√(a2+x2)×√(b2+(c-x)2)]+1/2(2c)
=√(a2+b2+c2+ab-ac-bc)+c
當(dāng)x=c/3時等號成立,即f(x)的最小值為√(a2+b2+c2+ab-ac-bc)+c,最大值為√(a2+b2+c2+ab+ac+bc)+c。
3. 求極限
例題3:已知數(shù)列{a_n}(n≥1)的通項公式為a_n=(√n+1)/(n+1),則求∑(n從1到∞)a_n的極限。
解法:根據(jù)基本不等式,有
a_1+a_2+…+a_n≥n(√(a_1a_2…a_n))^1/n
代入已知條件,可得:
a_1+a_2+…+a_n≥n[(√(1+1)×√(2+1)×…×√(n+1))/((1+1)×(2+1)×…×(n+1))]^(1/n)
= n[√(n+1)/2×1/3×…×1/(n+1)]^(1/n) =n[(n+1)/[2(n+1)]]^(1/n)
極限為1/2。
4. 求證不等式
例題4:已知a,b,c為正實數(shù),且a+b+c=1,證明∑(a/(1-a))≥3(a2+b2+c2)/(ab+bc+ca)。
解法:將不等式化簡,得:
∑(a/(1-a))≥3(a2+b2+c2)/(ab+bc+ca)
?(a/(1-a))+(b/(1-b))+(c/(1-c))≥3(a2+b2+c2)/(ab+bc+ca)
?(a/(1-a))+(b/(1-b))+(c/(1-c))≥3[(a+b+c)2-(ab+bc+ca)]/(ab+bc+ca)
由于a+b+c=1,有
(ab+bc+ca)≤a2+b2+c2,
(a/(1-a))+(b/(1-b))+(c/(1-c))≥(a+b+c)2/(a(1-a)+b(1-b)+c(1-c))≥3(a2+b2+c2)/(ab+bc+ca)
其中第一個不等式成立是因為當(dāng)a=b=c=1/3時,等號成立;第二個不等式用到了基本不等式的形式。
綜上所述,基本不等式是數(shù)學(xué)中的重要概念,掌握了基本不等式的定義、性質(zhì)和應(yīng)用方法,將有助于提高人們的數(shù)學(xué)素養(yǎng)和解題能力。在日常生活和學(xué)習(xí)中,要重視基本不等式的學(xué)習(xí)和應(yīng)用,逐步提高自己的數(shù)學(xué)水平。
不等式的課件 篇6
學(xué)生初步接觸了一點代數(shù)知識(如用字母表示定律,用符號表示數(shù)),是在學(xué)生學(xué)習(xí)了用字母表示數(shù)以后基礎(chǔ)上進(jìn)行學(xué)習(xí)。應(yīng)用方程是解決問題的基礎(chǔ),有關(guān)的幾個概念,教材只作描述不下定義。在教學(xué)設(shè)計中仍然把理念作為教學(xué)的重點,理解方程的意義,判斷“等式”和“方程”知道方程是一個“含有未知數(shù)的等式”,才有可能明確所謂解方程。
學(xué)生不夠活潑,學(xué)習(xí)積極性不是很高,學(xué)生數(shù)學(xué)基礎(chǔ)不好。方程對學(xué)生來說還是比較陌生的,在他們頭腦中還沒有過方程這樣的表象,所以授新課就要從學(xué)生原有的`基礎(chǔ)開始,因為在前面學(xué)習(xí)用字母表示數(shù)的這部分內(nèi)容時,有了基礎(chǔ),我想在學(xué)習(xí)簡易方程應(yīng)該沒什么大的問題。
1、使學(xué)生初步理解和辨析“等式”“不等式”的意義。
2、會按要求用方程表示出數(shù)量關(guān)系,
3、培養(yǎng)學(xué)生的觀察、比較、分析能力。
教學(xué)重點: 用字母表示常見的數(shù)量關(guān)系,會用方程的意義去判斷一個式子是否是方程。
教師介紹天平各部分名稱。讓學(xué)生操作當(dāng)天平兩端托盤的物體的質(zhì)量相等時,天平就會平衡,指針指向中。根據(jù)這這個原理來稱物體的質(zhì)量。(讓學(xué)生操作,激發(fā)學(xué)生的興趣,借助實物演示的優(yōu)勢。初步感受平衡與不平衡的表象)
1、實物演示,引出方程:
(1)在天平稱出100克的左邊空杯,讓學(xué)生觀察是否平衡,感受1只空杯=100克。
(2)往空杯里倒入果汁,另一邊加100克法碼,問學(xué)生發(fā)現(xiàn)了什么? (讓學(xué)生感受天平慢慢傾斜,水是未知數(shù))引出100+X>200,往右加100克法碼, 問:哪邊重些?(學(xué)生初步感受平衡和不平衡的表象) 問:怎樣用式子表示?100+X<300
(3)教學(xué)100+X=250 問:如果是天平平衡怎么辦?(讓學(xué)生討論交流平衡的方案)把100克法碼換成50克的砝碼,這時會怎樣?(引導(dǎo)學(xué)生觀察這時天平出現(xiàn)平衡), 問:現(xiàn)在兩邊的質(zhì)量怎樣?現(xiàn)在水有多重知道嗎?如果用字母X表示怎樣用式子表示?得出:100+X=250
示題:100+X<250100+X=2504X+50>10040+40=80 X÷2=45X-12=27
請學(xué)生觀察合作交流分類:
(一)引出(1)兩邊不相等,叫做不等式。(2)兩邊相等叫做等式。
(2)含有未知數(shù)的等式100+X=250 X÷2=4 揭示:(2)這樣的含有未知數(shù)等式叫做方程(通過分類,培養(yǎng)學(xué)生對方程意義的了解) 問:方程的具備條件是什么?(感知必須是等式,而一定含有未知數(shù))你能寫出一些方程嗎?(同桌交流檢查)
(三)練習(xí)判斷那些是方程?那些不是方程?
6+2X=14103+X250÷2=1256+X>251÷A=3X+Y=180 (讓學(xué)生加深對方程的意義的認(rèn)識,培養(yǎng)學(xué)生的判斷能力。)
教師:我們能夠判斷什么是方程了,方程和等式有很密切的關(guān)系,你能畫圖來表示他們的關(guān)系嗎?(小組合作討論交流)
方程 等式 (讓學(xué)生通過觀察、思考、分析、歸類,自主發(fā)現(xiàn)獲得對方程和等式的關(guān)系理解,同時初步滲透教學(xué)中的集合思想。)
不等式的課件 篇7
基本不等式作為高中數(shù)學(xué)必修內(nèi)容之一,在學(xué)生學(xué)習(xí)中扮演著極為重要的角色。本篇文章將圍繞基本不等式,探討它的概念、性質(zhì)、證明方法及應(yīng)用,并展示基本不等式的魅力和實用性。
一、基本不等式的概念
基本不等式是指對于任意正實數(shù) $a_1,a_2,\cdots,a_n$ 和任意正整數(shù) $n$,有以下不等式成立:
$\dfrac{a_1}{n}+\dfrac{a_2}{n}+\cdots+\dfrac{a_n}{n}\geq\sqrt[n]{a_1a_2\cdots a_n}$
這個不等式也被稱為均值不等式或AM-GM不等式。其中,$\dfrac{a_1}{n}+\dfrac{a_2}{n}+\cdots+\dfrac{a_n}{n}$ 表示這些數(shù)的算術(shù)平均值,而 $\sqrt[n]{a_1a_2\cdots a_n}$ 表示這些數(shù)的幾何平均值。均值不等式的意義在于,算術(shù)平均數(shù)大于等于幾何平均數(shù)。
二、基本不等式的性質(zhì)
基本不等式有以下幾個性質(zhì):
1. 當(dāng)且僅當(dāng) $a_1=a_2=\cdots=a_n$ 時等號成立。
2. 如果 $a_1,a_2,\cdots,a_n$ 中至少有一個數(shù)為 $0$,則 $\sqrt[n]{a_1a_2\cdots a_n}=0$,這時等號成立。
3. 基本不等式可以擴(kuò)展到實數(shù)范圍內(nèi)。
4. 均值不等式不等式對于大于 $0$ 的實數(shù)都成立。
三、基本不等式的證明方法
基本不等式有多種證明方法,下面列舉其中兩種:
方法一:數(shù)學(xué)歸納法
假設(shè)基本不等式對于 $n=k$ 時成立,即對于 $k$ 個正實數(shù) $a_1,a_2,\cdots,a_k$,有以下不等式成立:
$\dfrac{a_1}{k}+\dfrac{a_2}{k}+\cdots+\dfrac{a_k}{k}\geq\sqrt[k]{a_1a_2\cdots a_k}$
現(xiàn)證明它對于 $n=k+1$ 時也成立。將 $a_{k+1}$ 插入到原來的不等式中,得到:
$\dfrac{a_1}{k+1}+\dfrac{a_2}{k+1}+\cdots+\dfrac{a_k}{k+1}+\dfrac{a_{k+1}}{k+1}\geq\sqrt[k+1]{a_1a_2\cdots a_k a_{k+1}}$
由于:
$\dfrac{a_1}{k+1}+\dfrac{a_2}{k+1}+\cdots+\dfrac{a_k}{k+1}\geq\sqrt[k]{a_1a_2\cdots a_k}$
因此,我們只需證明以下不等式:
$\dfrac{(k+1)\sqrt[k]{a_1a_2\cdots a_k}\cdot a_{k+1}}{k+1}\geq\sqrt[k+1]{a_1a_2\cdots a_k a_{k+1}}$
經(jīng)過變形化簡,可以得到:
$\sqrt[k]{a_1a_2\cdots a_k} \geq \sqrt[k+1]{a_1a_2\cdots a_k a_{k+1}}$
顯然,這是成立的。
因此,按照歸納法的證明方式,基本不等式對于所有的正整數(shù) $n$ 都成立。
方法二:對數(shù)函數(shù)的應(yīng)用
對于 $a_1,a_2,\cdots,a_n$,我們可以定義函數(shù):
$f(x)=\ln{x}$
顯然,函數(shù) $f(x)$ 是連續(xù)的、單調(diào)遞增的。根據(jù)式子:
$\dfrac{a_1}{n}+\dfrac{a_2}{n}+\cdots+\dfrac{a_n}{n}\geq\sqrt[n]{a_1a_2\cdots a_n}$
可以得到:
$\ln\left(\dfrac{a_1}{n}\right)+\ln\left(\dfrac{a_2}{n}\right)+\cdots+\ln\left(\dfrac{a_n}{n}\right)\geq\dfrac{1}{n} (\ln a_1+\ln a_2+\cdots+\ln a_n)$
即:
$\ln\left(\sqrt[n]{a_1a_2\cdots a_n}\right)\leq\dfrac{\ln a_1+\ln a_2+\cdots+\ln a_n}{n}$
對于左邊的式子,有:
$\ln\left(\sqrt[n]{a_1a_2\cdots a_n}\right)=\dfrac{1}{n}\ln(a_1a_2\cdots a_n)$
對于右邊的式子,有:
$\dfrac{\ln a_1+\ln a_2+\cdots+\ln a_n}{n}=\ln\left(\sqrt[n]{a_1a_2\cdots a_n}\right)$
因此,我們可以得到:
$\ln(a_1a_2\cdots a_n)\geq n\ln\left(\sqrt[n]{a_1a_2\cdots a_n}\right)$
即:
$a_1a_2\cdots a_n\geq\left(\sqrt[n]{a_1a_2\cdots a_n}\right)^n$
這正是均值不等式的形式。因此,基本不等式得證。
四、基本不等式的應(yīng)用
基本不等式在數(shù)學(xué)和物理學(xué)中有廣泛的應(yīng)用。下面介紹幾個常見的應(yīng)用場景:
1. 最小值求解
如果有 $n$ 個正實數(shù) $a_1,a_2,\cdots,a_n$,它們的和為 $k$,求它們的積的最大值,即:
$\max(a_1a_2\cdots a_n)$
根據(jù)基本不等式,有:
$\dfrac{a_1+a_2+\cdots+a_n}{n}\geq\sqrt[n]{a_1a_2\cdots a_n}$
因此,可以得到:
$\dfrac{k}{n}\geq\sqrt[n]{a_1a_2\cdots a_n}$
兩邊同時取冪,可以得到:
$\dfrac{k^n}{n^n}\geq a_1a_2\cdots a_n$
即:
$\max(a_1a_2\cdots a_n)=\dfrac{k^n}{n^n}$
2. 凸函數(shù)的優(yōu)化問題
如果 $f(x)$ 是一個凸函數(shù),$a_1,a_2,\cdots,a_n$ 是正實數(shù),$b_1,b_2,\cdots,b_n$ 是任意實數(shù)且 $\sum_{i=1}^n b_i=1$,則有:
$f(b_1a_1+b_2a_2+\cdots+b_na_n)\leq b_1f(a_1)+b_2f(a_2)+\cdots+b_nf(a_n)$
這是凸函數(shù)的優(yōu)化問題中常用的基本不等式形式。它可以通過Jensen不等式或基本不等式證明。
3. 三角形求證
如果我們可以用 $a,b,c$ 表示一個三角形的三邊長,則有:
$\sqrt{(a+b+c)(a+b-c)(a-b+c)(-a+b+c)}\leq\dfrac{(a+b+c)^2}{4\sqrt{3}}$
這個不等式在三角形求證中也被廣泛應(yīng)用。
五、結(jié)語
基本不等式是高中數(shù)學(xué)必修內(nèi)容之一,但其實它的應(yīng)用范圍遠(yuǎn)不止于此。在實際問題中,基本不等式常常能給我們提供有效的解決方案。通過本文的介紹,希望讀者能夠更加深入地理解基本不等式的概念、性質(zhì)、證明方法及應(yīng)用,并能在實際問題中靈活運(yùn)用。
不等式的課件 篇8
關(guān)于基本不等式的主題范文:
基本不等式是數(shù)學(xué)中非常重要的一道課題,所以我們需要從以下幾個方面來對基本不等式進(jìn)行介紹。
一、基本不等式是什么
基本不等式是指數(shù)學(xué)中的一個重要定理,它表述的是任意正整數(shù)n及n個正數(shù)a1,a2,…,an的積與它們的和之間的關(guān)系。也就是說,對于任意正整數(shù)n和n個正數(shù)a1,a2,…,an,有以下不等式成立:
(a1+a2+…+an)/n ≥ (a1×a2×…×an)1/n
其中,等式成立當(dāng)且僅當(dāng)a1 = a2 = … = an。
二、基本不等式的證明
下面我們來看一下基本不等式的證明過程。
首先,如果我們令A(yù)i = nai和G = (a1 × a2 × … × an)1/n,則我們可以將原不等式轉(zhuǎn)化為:
(a1+a2+…+an)/n ≥ G
接下來,我們來看一下如果證明G ≤ (a1+a2+…+an)/n,那么我們就可以證明基本不等式,因為不等式具有對稱性,即如果G ≤ (a1+a2+…+an)/n,則(a1+a2+…+an)/n ≥ G也成立。
接下來,我們證明G ≤ (a1+a2+…+an)/n,即:
(a1+a2+…+an)/n ≥ (a1 × a2 × … × an)1/n
將不等式右邊兩邊平方,得到:
(a1+a2+…+an)/n ≥ (a1 × a2 × … × an)2/n
這時,我們來觀察右邊的式子,將式子中的每一項都乘以(n-1),得到:
(a1 × (n-1) + a2 × (n-1) + … + an × (n-1)) / n ≥ (a1 × a2 × … × an)2/n
繼續(xù)進(jìn)行簡化,得到:
[(a1 × (n-1)) + (a2 × (n-1)) + … + (an × (n-1))] / n ≥ (n-1) × a1 × a2 × … × an / n
左邊乘以1/n,右邊除以(n-1),得到:
(a1 + a2 + … + an) / n ≥ (a1 × a2 × … × an)1/n
這樣我們就完成了基本不等式的證明。
三、基本不等式在實際中的應(yīng)用
基本不等式在實際中的應(yīng)用非常廣泛,下面我們來看一下其中的幾個例子。
1. 求平均數(shù)
如果我們已知n個正數(shù)的積,需要求它們的平均數(shù),那么根據(jù)基本不等式,我們可以得到:
(a1 + a2 + … + an) / n ≥ (a1 × a2 × … × an)1/n
等式兩邊都乘以n-1,得到:
a1 + a2 + … + an ≥ (n-1) × (a1 × a2 × … × an)1/n
這樣我們就可以求得平均數(shù):
(a1 + a2 + … + an) / n ≥ (n-1) × (a1 × a2 × … × an)1/n / n
2. 求數(shù)列中n個數(shù)的積的最大值
假設(shè)我們需要從數(shù)列{a1, a2, …, an}中選取n個數(shù),求它們的積的最大值。根據(jù)基本不等式,我們有:
(a1 + a2 + … + an) / n ≥ (a1 × a2 × … × an)1/n
因為我們需要求積的最大值,所以當(dāng)?shù)仁阶筮叺暮颓『玫扔趎個數(shù)的積時,這個積才能取到最大值。因此,我們可以得到:
a1 = a2 = … = an
這樣,我們就得到了求數(shù)列中n個數(shù)的積的最大值的方法。
三、結(jié)論
通過對基本不等式的介紹,我們可以發(fā)現(xiàn)它不僅僅是一道看似簡單的數(shù)學(xué)題目,而是一個非常重要的定理,有著廣泛的應(yīng)用價值。希望大家能夠在今后的學(xué)習(xí)中更加重視基本不等式,并能夠深刻理解它的實際應(yīng)用。
不等式的課件 篇9
基本不等式是高中數(shù)學(xué)中重要的一部分,也是初學(xué)者比較難掌握的一個概念。通過學(xué)習(xí)基本不等式,可以幫助學(xué)生理解不等式的基本概念、性質(zhì)和運(yùn)算。同時,對于高中數(shù)學(xué),基本不等式還有很多相關(guān)的題型需要掌握,比如極值問題、夾逼定理等。本文將從基本不等式的定義開始,探討其相關(guān)概念、性質(zhì)和應(yīng)用。
一、基本不等式的定義
基本不等式是指對于任意正實數(shù)a、b,有以下不等式成立:
(a + b)2 ≥ 4ab
這個不等式也可以寫成:
a2 + b2 ≥ 2ab
這個不等式的含義是:對于任意兩個正實數(shù)a、b,它們的平均數(shù)一定大于等于它們的幾何平均數(shù)。
二、基本不等式的證明
對于任意實數(shù)x,y,可以用(x-y)2≥0來證明基本不等式:
(x-y)2≥0
x2-2xy+y2≥0
x2+y2≥2xy
將x換成a、y換成b,即可得到基本不等式。
三、基本不等式的相關(guān)概念
1. 等式條件:
當(dāng)且僅當(dāng)a=b時,等式成立。
2. 平均數(shù)與幾何平均數(shù):
平均數(shù)指的是兩個數(shù)的和的一半,即(a+b)/2;幾何平均數(shù)指的是兩個數(shù)的積的二分之一,即√(ab)。由于基本不等式的成立,可以得出平均數(shù)大于等于幾何平均數(shù)的結(jié)論。
3. 關(guān)于兩個數(shù)之和與兩個數(shù)的比值的關(guān)系:
從基本不等式得到如下兩個等式:
(a+b)2=4ab+(a-b)2;ab≥(a+b)/2
以上兩個式子給出了兩個關(guān)于兩個數(shù)之和與兩個數(shù)的比值的關(guān)系。
四、基本不等式的性質(zhì)
1. 交換律和結(jié)合律:基本不等式滿足交換律和結(jié)合律。
2. 反比例函數(shù):若f(x)=1/x,x>0,則f(a)+f(b)≤2f((a+b)/2)對于a,b>0成立。
3. 帶約束的基本不等式:若a,b>0,且a+b=k,則(a+b)/2≥√(ab),即k/2≥√(ab)。
五、基本不等式的應(yīng)用
1. 求證夾逼定理:如果a1≤b1≤c1,且a2≤b2≤c2,則(a1a2+b1b2+c1c2)/3≥(a1b2+b1c2+c1a2)/3≥√(a1b1c1a2b2c2)。
2. 判斷一個二次函數(shù)的最大值或最小值:由于二次函數(shù)的導(dǎo)數(shù)為一次函數(shù),可以通過求導(dǎo)得到函數(shù)的極值。而基本不等式可以用于判斷二次函數(shù)的極值點是否合理,即是否在定義域內(nèi)。
3. 算術(shù)平均數(shù)和幾何平均數(shù)之間的關(guān)系:通過基本不等式可以證明,當(dāng)兩個數(shù)的和固定時,它們的平均數(shù)越大,它們的幾何平均數(shù)就越小。
總的來說,基本不等式是高中數(shù)學(xué)不可缺少的一部分,不僅在考試中占有重要地位,而且還具有很重要的理論意義。希望本文對初學(xué)者掌握基本不等式有所幫助。
不等式的課件 篇10
教學(xué)目標(biāo):
1.一元一次不等式與一次函數(shù)的關(guān)系.
2.會根據(jù)題意列出函數(shù)關(guān)系式,畫出函數(shù)圖象,并利用不等關(guān)系進(jìn)行比較.
1.通過一元一次不等式與一次函數(shù)的圖象之間的結(jié)合,培養(yǎng)學(xué)生的數(shù)形結(jié)合意識.
2.訓(xùn)練大家能利用數(shù)學(xué)知識去解決實際問題的能力.
體驗數(shù)、圖形是有效地描述現(xiàn)實世界的重要手段,認(rèn)識到數(shù)學(xué)是解決問題和進(jìn)行交流的重要工具,了解數(shù)學(xué)對促進(jìn)社會進(jìn)步和發(fā)展人類理性精神的作用.
自己根據(jù)題意列函數(shù)關(guān)系式,并能把函數(shù)關(guān)系式與一元一次不等式聯(lián)系起來作答.
1.張大爺買了一個手機(jī),想辦理一張電話卡,開米廣場移動通訊公司業(yè)務(wù)員對張大爺介紹說:移動通訊公司開設(shè)了兩種有關(guān)神州行的通訊業(yè)務(wù):甲類使用者先繳15元基礎(chǔ)費,然后每通話1分鐘付話費0.2元;乙類不交月基礎(chǔ)費,每通話1分鐘付話費0.3元。你能幫幫張大爺選擇一種電話卡嗎?
2.展示學(xué)習(xí)目標(biāo):
(1)、理解一次函數(shù)圖象與一元一次不等式的關(guān)系。
(2)、能夠用圖像法解一元一次不等式。
(3)、理解兩種方法的關(guān)系,會選擇適當(dāng)?shù)姆椒ń庖辉淮尾坏仁健?/p>
積極思考,嘗試回答問題,導(dǎo)出本節(jié)課題。
閱讀學(xué)習(xí)目標(biāo),明確探究方向。
問題1:結(jié)合函數(shù)y=2x-5的圖象,觀察圖象回答下列問題:
問題2:如果y=-2x-5,那么當(dāng)x取何值時,y>0?當(dāng)x取何值時,y
巡回每個小組之間,鼓勵學(xué)生用不同方法進(jìn)行嘗試,尋找最佳方案。答疑展示中存在的問題。
問題3.兄弟倆賽跑,哥哥先讓弟弟跑9m,然后自己才開始跑,已知弟弟每秒跑3m,哥哥每秒跑4m,列出函數(shù)關(guān)系式,畫出函數(shù)圖象,觀察圖象回答下列問題:
(1)何時哥哥分追上弟弟?
(2)何時弟弟跑在哥哥前面?
(3)何時哥哥跑在弟弟前面?
(4)誰先跑過20m?誰先跑過100m?
你是怎樣求解的?與同伴交流。
問題4:已知y1=-x+3,y2=3x-4,當(dāng)x取何值時,y1>y2?你是怎樣做的?與同伴交流.
讓學(xué)生體會數(shù)形結(jié)合的魅力所在。理解函數(shù)和不等式的聯(lián)系。
移動通訊公司開設(shè)了兩種長途通訊業(yè)務(wù):全球通使用者先繳50元基礎(chǔ)費,然后每通話1分鐘付話費0.4元;神州行不交月基礎(chǔ)費,每通話1分鐘付話費0.6元。若設(shè)一個月內(nèi)通話x分鐘,兩種通訊方式的費用分別為y1元和y2元,那么
(1)寫出y1、y2與x之間的函數(shù)關(guān)系式;
(2)在同一直角坐標(biāo)系中畫出兩函數(shù)的圖象;
(3)求出或?qū)で蟪鲆粋€月內(nèi)通話多少分鐘,兩種通訊方式費用相同;
(4)若某人預(yù)計一個月內(nèi)使用話費200元,應(yīng)選擇哪種通訊方式較合算?
在共同探究的過程中加強(qiáng)理解,體會數(shù)學(xué)在生活中的重大應(yīng)用,進(jìn)行能力提升。
積極完成導(dǎo)學(xué)案上的檢測內(nèi)容,相互點評。
學(xué)生回顧總結(jié)學(xué)習(xí)收獲,交流學(xué)習(xí)心得。
教材P51.習(xí)題2.6知識技能1;問題解決2,3.
一、學(xué)習(xí)與探究:
1.一元一次不等式與一次函數(shù)之間的關(guān)系;
2.做一做(根據(jù)函數(shù)圖象求不等式);
四、課后作業(yè):
$ 的實數(shù)都成立。
三、基本不等式的證明方法
基本不等式有多種證明方法,下面列舉其中兩種:
方法一:數(shù)學(xué)歸納法
假設(shè)基本不等式對于 $n=k$ 時成立,即對于 $k$ 個正實數(shù) $a_1,a_2,\cdots,a_k$,有以下不等式成立:
$\dfrac{a_1}{k}+\dfrac{a_2}{k}+\cdots+\dfrac{a_k}{k}\geq\sqrt[k]{a_1a_2\cdots a_k}$
現(xiàn)證明它對于 $n=k+1$ 時也成立。將 $a_{k+1}$ 插入到原來的不等式中,得到:
$\dfrac{a_1}{k+1}+\dfrac{a_2}{k+1}+\cdots+\dfrac{a_k}{k+1}+\dfrac{a_{k+1}}{k+1}\geq\sqrt[k+1]{a_1a_2\cdots a_k a_{k+1}}$
由于:
$\dfrac{a_1}{k+1}+\dfrac{a_2}{k+1}+\cdots+\dfrac{a_k}{k+1}\geq\sqrt[k]{a_1a_2\cdots a_k}$
因此,我們只需證明以下不等式:
$\dfrac{(k+1)\sqrt[k]{a_1a_2\cdots a_k}\cdot a_{k+1}}{k+1}\geq\sqrt[k+1]{a_1a_2\cdots a_k a_{k+1}}$
經(jīng)過變形化簡,可以得到:
$\sqrt[k]{a_1a_2\cdots a_k} \geq \sqrt[k+1]{a_1a_2\cdots a_k a_{k+1}}$
顯然,這是成立的。
因此,按照歸納法的證明方式,基本不等式對于所有的正整數(shù) $n$ 都成立。
方法二:對數(shù)函數(shù)的應(yīng)用
對于 $a_1,a_2,\cdots,a_n$,我們可以定義函數(shù):
$f(x)=\ln{x}$
顯然,函數(shù) $f(x)$ 是連續(xù)的、單調(diào)遞增的。根據(jù)式子:
$\dfrac{a_1}{n}+\dfrac{a_2}{n}+\cdots+\dfrac{a_n}{n}\geq\sqrt[n]{a_1a_2\cdots a_n}$
可以得到:
$\ln\left(\dfrac{a_1}{n}\right)+\ln\left(\dfrac{a_2}{n}\right)+\cdots+\ln\left(\dfrac{a_n}{n}\right)\geq\dfrac{1}{n} (\ln a_1+\ln a_2+\cdots+\ln a_n)$
即:
$\ln\left(\sqrt[n]{a_1a_2\cdots a_n}\right)\leq\dfrac{\ln a_1+\ln a_2+\cdots+\ln a_n}{n}$
對于左邊的式子,有:
$\ln\left(\sqrt[n]{a_1a_2\cdots a_n}\right)=\dfrac{1}{n}\ln(a_1a_2\cdots a_n)$
對于右邊的式子,有:
$\dfrac{\ln a_1+\ln a_2+\cdots+\ln a_n}{n}=\ln\left(\sqrt[n]{a_1a_2\cdots a_n}\right)$
因此,我們可以得到:
$\ln(a_1a_2\cdots a_n)\geq n\ln\left(\sqrt[n]{a_1a_2\cdots a_n}\right)$
即:
$a_1a_2\cdots a_n\geq\left(\sqrt[n]{a_1a_2\cdots a_n}\right)^n$
這正是均值不等式的形式。因此,基本不等式得證。
四、基本不等式的應(yīng)用
基本不等式在數(shù)學(xué)和物理學(xué)中有廣泛的應(yīng)用。下面介紹幾個常見的應(yīng)用場景:
1. 最小值求解
如果有 $n$ 個正實數(shù) $a_1,a_2,\cdots,a_n$,它們的和為 $k$,求它們的積的最大值,即:
$\max(a_1a_2\cdots a_n)$
根據(jù)基本不等式,有:
$\dfrac{a_1+a_2+\cdots+a_n}{n}\geq\sqrt[n]{a_1a_2\cdots a_n}$
因此,可以得到:
$\dfrac{k}{n}\geq\sqrt[n]{a_1a_2\cdots a_n}$
兩邊同時取冪,可以得到:
$\dfrac{k^n}{n^n}\geq a_1a_2\cdots a_n$
即:
$\max(a_1a_2\cdots a_n)=\dfrac{k^n}{n^n}$
2. 凸函數(shù)的優(yōu)化問題
如果 $f(x)$ 是一個凸函數(shù),$a_1,a_2,\cdots,a_n$ 是正實數(shù),$b_1,b_2,\cdots,b_n$ 是任意實數(shù)且 $\sum_{i=1}^n b_i=1$,則有:
$f(b_1a_1+b_2a_2+\cdots+b_na_n)\leq b_1f(a_1)+b_2f(a_2)+\cdots+b_nf(a_n)$
這是凸函數(shù)的優(yōu)化問題中常用的基本不等式形式。它可以通過Jensen不等式或基本不等式證明。
3. 三角形求證
如果我們可以用 $a,b,c$ 表示一個三角形的三邊長,則有:
$\sqrt{(a+b+c)(a+b-c)(a-b+c)(-a+b+c)}\leq\dfrac{(a+b+c)^2}{4\sqrt{3}}$
這個不等式在三角形求證中也被廣泛應(yīng)用。
五、結(jié)語
基本不等式是高中數(shù)學(xué)必修內(nèi)容之一,但其實它的應(yīng)用范圍遠(yuǎn)不止于此。在實際問題中,基本不等式常常能給我們提供有效的解決方案。通過本文的介紹,希望讀者能夠更加深入地理解基本不等式的概念、性質(zhì)、證明方法及應(yīng)用,并能在實際問題中靈活運(yùn)用。
不等式的課件 篇8
關(guān)于基本不等式的主題范文:
基本不等式是數(shù)學(xué)中非常重要的一道課題,所以我們需要從以下幾個方面來對基本不等式進(jìn)行介紹。
一、基本不等式是什么
基本不等式是指數(shù)學(xué)中的一個重要定理,它表述的是任意正整數(shù)n及n個正數(shù)a1,a2,…,an的積與它們的和之間的關(guān)系。也就是說,對于任意正整數(shù)n和n個正數(shù)a1,a2,…,an,有以下不等式成立:
(a1+a2+…+an)/n ≥ (a1×a2×…×an)1/n
其中,等式成立當(dāng)且僅當(dāng)a1 = a2 = … = an。
二、基本不等式的證明
下面我們來看一下基本不等式的證明過程。
首先,如果我們令A(yù)i = nai和G = (a1 × a2 × … × an)1/n,則我們可以將原不等式轉(zhuǎn)化為:
(a1+a2+…+an)/n ≥ G
接下來,我們來看一下如果證明G ≤ (a1+a2+…+an)/n,那么我們就可以證明基本不等式,因為不等式具有對稱性,即如果G ≤ (a1+a2+…+an)/n,則(a1+a2+…+an)/n ≥ G也成立。
接下來,我們證明G ≤ (a1+a2+…+an)/n,即:
(a1+a2+…+an)/n ≥ (a1 × a2 × … × an)1/n
將不等式右邊兩邊平方,得到:
(a1+a2+…+an)/n ≥ (a1 × a2 × … × an)2/n
這時,我們來觀察右邊的式子,將式子中的每一項都乘以(n-1),得到:
(a1 × (n-1) + a2 × (n-1) + … + an × (n-1)) / n ≥ (a1 × a2 × … × an)2/n
繼續(xù)進(jìn)行簡化,得到:
[(a1 × (n-1)) + (a2 × (n-1)) + … + (an × (n-1))] / n ≥ (n-1) × a1 × a2 × … × an / n
左邊乘以1/n,右邊除以(n-1),得到:
(a1 + a2 + … + an) / n ≥ (a1 × a2 × … × an)1/n
這樣我們就完成了基本不等式的證明。
三、基本不等式在實際中的應(yīng)用
基本不等式在實際中的應(yīng)用非常廣泛,下面我們來看一下其中的幾個例子。
1. 求平均數(shù)
如果我們已知n個正數(shù)的積,需要求它們的平均數(shù),那么根據(jù)基本不等式,我們可以得到:
(a1 + a2 + … + an) / n ≥ (a1 × a2 × … × an)1/n
等式兩邊都乘以n-1,得到:
a1 + a2 + … + an ≥ (n-1) × (a1 × a2 × … × an)1/n
這樣我們就可以求得平均數(shù):
(a1 + a2 + … + an) / n ≥ (n-1) × (a1 × a2 × … × an)1/n / n
2. 求數(shù)列中n個數(shù)的積的最大值
假設(shè)我們需要從數(shù)列{a1, a2, …, an}中選取n個數(shù),求它們的積的最大值。根據(jù)基本不等式,我們有:
(a1 + a2 + … + an) / n ≥ (a1 × a2 × … × an)1/n
因為我們需要求積的最大值,所以當(dāng)?shù)仁阶筮叺暮颓『玫扔趎個數(shù)的積時,這個積才能取到最大值。因此,我們可以得到:
a1 = a2 = … = an
這樣,我們就得到了求數(shù)列中n個數(shù)的積的最大值的方法。
三、結(jié)論
通過對基本不等式的介紹,我們可以發(fā)現(xiàn)它不僅僅是一道看似簡單的數(shù)學(xué)題目,而是一個非常重要的定理,有著廣泛的應(yīng)用價值。希望大家能夠在今后的學(xué)習(xí)中更加重視基本不等式,并能夠深刻理解它的實際應(yīng)用。
不等式的課件 篇9
基本不等式是高中數(shù)學(xué)中重要的一部分,也是初學(xué)者比較難掌握的一個概念。通過學(xué)習(xí)基本不等式,可以幫助學(xué)生理解不等式的基本概念、性質(zhì)和運(yùn)算。同時,對于高中數(shù)學(xué),基本不等式還有很多相關(guān)的題型需要掌握,比如極值問題、夾逼定理等。本文將從基本不等式的定義開始,探討其相關(guān)概念、性質(zhì)和應(yīng)用。
一、基本不等式的定義
基本不等式是指對于任意正實數(shù)a、b,有以下不等式成立:
(a + b)2 ≥ 4ab
這個不等式也可以寫成:
a2 + b2 ≥ 2ab
這個不等式的含義是:對于任意兩個正實數(shù)a、b,它們的平均數(shù)一定大于等于它們的幾何平均數(shù)。
二、基本不等式的證明
對于任意實數(shù)x,y,可以用(x-y)2≥0來證明基本不等式:
(x-y)2≥0
x2-2xy+y2≥0
x2+y2≥2xy
將x換成a、y換成b,即可得到基本不等式。
三、基本不等式的相關(guān)概念
1. 等式條件:
當(dāng)且僅當(dāng)a=b時,等式成立。
2. 平均數(shù)與幾何平均數(shù):
平均數(shù)指的是兩個數(shù)的和的一半,即(a+b)/2;幾何平均數(shù)指的是兩個數(shù)的積的二分之一,即√(ab)。由于基本不等式的成立,可以得出平均數(shù)大于等于幾何平均數(shù)的結(jié)論。
3. 關(guān)于兩個數(shù)之和與兩個數(shù)的比值的關(guān)系:
從基本不等式得到如下兩個等式:
(a+b)2=4ab+(a-b)2;ab≥(a+b)/2
以上兩個式子給出了兩個關(guān)于兩個數(shù)之和與兩個數(shù)的比值的關(guān)系。
四、基本不等式的性質(zhì)
1. 交換律和結(jié)合律:基本不等式滿足交換律和結(jié)合律。
2. 反比例函數(shù):若f(x)=1/x,x>0,則f(a)+f(b)≤2f((a+b)/2)對于a,b>0成立。
3. 帶約束的基本不等式:若a,b>0,且a+b=k,則(a+b)/2≥√(ab),即k/2≥√(ab)。
五、基本不等式的應(yīng)用
1. 求證夾逼定理:如果a1≤b1≤c1,且a2≤b2≤c2,則(a1a2+b1b2+c1c2)/3≥(a1b2+b1c2+c1a2)/3≥√(a1b1c1a2b2c2)。
2. 判斷一個二次函數(shù)的最大值或最小值:由于二次函數(shù)的導(dǎo)數(shù)為一次函數(shù),可以通過求導(dǎo)得到函數(shù)的極值。而基本不等式可以用于判斷二次函數(shù)的極值點是否合理,即是否在定義域內(nèi)。
3. 算術(shù)平均數(shù)和幾何平均數(shù)之間的關(guān)系:通過基本不等式可以證明,當(dāng)兩個數(shù)的和固定時,它們的平均數(shù)越大,它們的幾何平均數(shù)就越小。
總的來說,基本不等式是高中數(shù)學(xué)不可缺少的一部分,不僅在考試中占有重要地位,而且還具有很重要的理論意義。希望本文對初學(xué)者掌握基本不等式有所幫助。
不等式的課件 篇10
教學(xué)目標(biāo):
1.一元一次不等式與一次函數(shù)的關(guān)系.
2.會根據(jù)題意列出函數(shù)關(guān)系式,畫出函數(shù)圖象,并利用不等關(guān)系進(jìn)行比較.
1.通過一元一次不等式與一次函數(shù)的圖象之間的結(jié)合,培養(yǎng)學(xué)生的數(shù)形結(jié)合意識.
2.訓(xùn)練大家能利用數(shù)學(xué)知識去解決實際問題的能力.
體驗數(shù)、圖形是有效地描述現(xiàn)實世界的重要手段,認(rèn)識到數(shù)學(xué)是解決問題和進(jìn)行交流的重要工具,了解數(shù)學(xué)對促進(jìn)社會進(jìn)步和發(fā)展人類理性精神的作用.
自己根據(jù)題意列函數(shù)關(guān)系式,并能把函數(shù)關(guān)系式與一元一次不等式聯(lián)系起來作答.
1.張大爺買了一個手機(jī),想辦理一張電話卡,開米廣場移動通訊公司業(yè)務(wù)員對張大爺介紹說:移動通訊公司開設(shè)了兩種有關(guān)神州行的通訊業(yè)務(wù):甲類使用者先繳15元基礎(chǔ)費,然后每通話1分鐘付話費0.2元;乙類不交月基礎(chǔ)費,每通話1分鐘付話費0.3元。你能幫幫張大爺選擇一種電話卡嗎?
2.展示學(xué)習(xí)目標(biāo):
(1)、理解一次函數(shù)圖象與一元一次不等式的關(guān)系。
(2)、能夠用圖像法解一元一次不等式。
(3)、理解兩種方法的關(guān)系,會選擇適當(dāng)?shù)姆椒ń庖辉淮尾坏仁健?/p>
積極思考,嘗試回答問題,導(dǎo)出本節(jié)課題。
閱讀學(xué)習(xí)目標(biāo),明確探究方向。
問題1:結(jié)合函數(shù)y=2x-5的圖象,觀察圖象回答下列問題:
問題2:如果y=-2x-5,那么當(dāng)x取何值時,y>0?當(dāng)x取何值時,y
巡回每個小組之間,鼓勵學(xué)生用不同方法進(jìn)行嘗試,尋找最佳方案。答疑展示中存在的問題。
問題3.兄弟倆賽跑,哥哥先讓弟弟跑9m,然后自己才開始跑,已知弟弟每秒跑3m,哥哥每秒跑4m,列出函數(shù)關(guān)系式,畫出函數(shù)圖象,觀察圖象回答下列問題:
(1)何時哥哥分追上弟弟?
(2)何時弟弟跑在哥哥前面?
(3)何時哥哥跑在弟弟前面?
(4)誰先跑過20m?誰先跑過100m?
你是怎樣求解的?與同伴交流。
問題4:已知y1=-x+3,y2=3x-4,當(dāng)x取何值時,y1>y2?你是怎樣做的?與同伴交流.
讓學(xué)生體會數(shù)形結(jié)合的魅力所在。理解函數(shù)和不等式的聯(lián)系。
移動通訊公司開設(shè)了兩種長途通訊業(yè)務(wù):全球通使用者先繳50元基礎(chǔ)費,然后每通話1分鐘付話費0.4元;神州行不交月基礎(chǔ)費,每通話1分鐘付話費0.6元。若設(shè)一個月內(nèi)通話x分鐘,兩種通訊方式的費用分別為y1元和y2元,那么
(1)寫出y1、y2與x之間的函數(shù)關(guān)系式;
(2)在同一直角坐標(biāo)系中畫出兩函數(shù)的圖象;
(3)求出或?qū)で蟪鲆粋€月內(nèi)通話多少分鐘,兩種通訊方式費用相同;
(4)若某人預(yù)計一個月內(nèi)使用話費200元,應(yīng)選擇哪種通訊方式較合算?
在共同探究的過程中加強(qiáng)理解,體會數(shù)學(xué)在生活中的重大應(yīng)用,進(jìn)行能力提升。
積極完成導(dǎo)學(xué)案上的檢測內(nèi)容,相互點評。
學(xué)生回顧總結(jié)學(xué)習(xí)收獲,交流學(xué)習(xí)心得。
教材P51.習(xí)題2.6知識技能1;問題解決2,3.
一、學(xué)習(xí)與探究:
1.一元一次不等式與一次函數(shù)之間的關(guān)系;
2.做一做(根據(jù)函數(shù)圖象求不等式);
四、課后作業(yè):
- 不等式的課件 老師在開學(xué)前需要把教案課件準(zhǔn)備好,每個人都要計劃自己的教案課件了。教案是實現(xiàn)高效教學(xué)的不可或缺要素之一。如果您想深入理解這一話題不妨看看“不等式的課件”,本文的內(nèi)容必將給您帶來很多有用的收獲!...
- 2024-05-15 閱讀全文
- 2023一元二次不等式課件 今天筆者為大家?guī)砹艘黄P(guān)于一元二次不等式課件的精彩文章,歡迎保存本網(wǎng)站,并時刻關(guān)注我們的最新動態(tài)。每位教師都應(yīng)該在授課前準(zhǔn)備充分的教案課件,只要在課前認(rèn)真編寫好教案,便可以有效地促進(jìn)學(xué)校的不斷發(fā)展。教案是推進(jìn)教育教學(xué)創(chuàng)新的有力工具。...
- 2023-06-02 閱讀全文
- 基本不等式課件 古人云,工欲善其事,必先利其器。在每學(xué)期開學(xué)之前,幼兒園的老師們都要為自己之后的教學(xué)做準(zhǔn)備。為了防止學(xué)生抓不住重點,教案就顯得非常重要,有了教案上課才能夠為同學(xué)講更多的,更全面的知識。所以你在寫幼兒園教案時要注意些什么呢?以下內(nèi)容是小編特地整理的“基本不等式課件”,在此提醒你收藏本頁,以方便閱讀!1...
- 2024-09-27 閱讀全文
- 不等式課件精選九篇 為了促進(jìn)學(xué)生掌握上課知識點,老師需要提前準(zhǔn)備教案,老師在寫教案課件時還需要花點心思去寫。?教案和課件優(yōu)化可使教學(xué)任務(wù)的完成更加精細(xì)化。幼兒教師教育網(wǎng)小編特意為大家收集整理了“不等式課件”,歡迎參考愿您成為更好的自己!...
- 2024-02-23 閱讀全文
- 不等式的課件收藏 經(jīng)驗時常告訴我們,做事要提前做好準(zhǔn)備。在幼兒教育工作中,我們都有會準(zhǔn)備一寫需要用到資料。資料包含著人類在社會實踐,科學(xué)實驗和研究過程中所匯集的經(jīng)驗。有了資料的協(xié)助我們的工作會變得更加順利!所以,關(guān)于幼師資料你究竟了解多少呢?小編現(xiàn)在推薦你閱讀一下不等式的課件收藏,相信能對大家有所幫助?;静坏仁绞浅?..
- 2023-08-05 閱讀全文
老師在開學(xué)前需要把教案課件準(zhǔn)備好,每個人都要計劃自己的教案課件了。教案是實現(xiàn)高效教學(xué)的不可或缺要素之一。如果您想深入理解這一話題不妨看看“不等式的課件”,本文的內(nèi)容必將給您帶來很多有用的收獲!...
今天筆者為大家?guī)砹艘黄P(guān)于一元二次不等式課件的精彩文章,歡迎保存本網(wǎng)站,并時刻關(guān)注我們的最新動態(tài)。每位教師都應(yīng)該在授課前準(zhǔn)備充分的教案課件,只要在課前認(rèn)真編寫好教案,便可以有效地促進(jìn)學(xué)校的不斷發(fā)展。教案是推進(jìn)教育教學(xué)創(chuàng)新的有力工具。...
古人云,工欲善其事,必先利其器。在每學(xué)期開學(xué)之前,幼兒園的老師們都要為自己之后的教學(xué)做準(zhǔn)備。為了防止學(xué)生抓不住重點,教案就顯得非常重要,有了教案上課才能夠為同學(xué)講更多的,更全面的知識。所以你在寫幼兒園教案時要注意些什么呢?以下內(nèi)容是小編特地整理的“基本不等式課件”,在此提醒你收藏本頁,以方便閱讀!1...
為了促進(jìn)學(xué)生掌握上課知識點,老師需要提前準(zhǔn)備教案,老師在寫教案課件時還需要花點心思去寫。?教案和課件優(yōu)化可使教學(xué)任務(wù)的完成更加精細(xì)化。幼兒教師教育網(wǎng)小編特意為大家收集整理了“不等式課件”,歡迎參考愿您成為更好的自己!...
經(jīng)驗時常告訴我們,做事要提前做好準(zhǔn)備。在幼兒教育工作中,我們都有會準(zhǔn)備一寫需要用到資料。資料包含著人類在社會實踐,科學(xué)實驗和研究過程中所匯集的經(jīng)驗。有了資料的協(xié)助我們的工作會變得更加順利!所以,關(guān)于幼師資料你究竟了解多少呢?小編現(xiàn)在推薦你閱讀一下不等式的課件收藏,相信能對大家有所幫助?;静坏仁绞浅?..