高中數(shù)學(xué)教案
發(fā)布時間:2023-05-20 高中數(shù)學(xué)教案高中數(shù)學(xué)教案合集8篇。
教師會將課本的主要教學(xué)內(nèi)容整理到教案課件中,現(xiàn)在是教師開始編寫教案課件的時候。高效的教學(xué)水平可以體現(xiàn)在教師編寫的教案課件中,那么如何才能編寫出好的教案課件呢?請跟隨幼兒教師教育網(wǎng)的編輯的步伐一同了解“高中數(shù)學(xué)教案”,相信您參考后一定會有收獲!
高中數(shù)學(xué)教案(篇1)
教材分析:
三角函數(shù)的誘導(dǎo)公式是普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(人教B版)數(shù)學(xué)必修四,第一章第二節(jié)內(nèi)容,其主要內(nèi)容是公式(一)至公式(四)。本節(jié)課是第二課時,教學(xué)內(nèi)容是公式(三)。教材要求通過學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎(chǔ)上,發(fā)現(xiàn)他們與單位圓的交點(diǎn)坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)三角函數(shù)值的關(guān)系。同時教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法。
教案背景:
通過學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎(chǔ)上,發(fā)現(xiàn)他們與單位圓的交點(diǎn)坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)三角函數(shù)值的關(guān)系。同時教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法,為培養(yǎng)學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣提出了要求。因此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.
教學(xué)方法:
以學(xué)生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法,采用提出問題、啟發(fā)引導(dǎo)、共同探究、綜合應(yīng)用等教學(xué)模式。
教學(xué)目標(biāo):
借助單位圓探究誘導(dǎo)公式。
能正確運(yùn)用誘導(dǎo)公式將任意角的三角函數(shù)化為銳角三角函數(shù)。
教學(xué)重點(diǎn):
誘導(dǎo)公式(三)的推導(dǎo)及應(yīng)用。
教學(xué)難點(diǎn):
誘導(dǎo)公式的應(yīng)用。
教學(xué)手段:
多媒體。
教學(xué)情景設(shè)計:
一.復(fù)習(xí)回顧:
1. 誘導(dǎo)公式(一)(二)。
2. 角 (終邊在一條直線上)
3. 思考:下列一組角有什么特征?( )能否用式子來表示?
二.新課:
已知 由
可知
而 (課件演示,學(xué)生發(fā)現(xiàn))
所以
于是可得: (三)
設(shè)計意圖:結(jié)合幾何畫板的演示利用同一點(diǎn)的坐標(biāo)變換,導(dǎo)出公式。
由公式(一)(三)可以看出,角 角 相等。即:
.
公式(一)(二)(三)都叫誘導(dǎo)公式。利用誘導(dǎo)公式可以求三角函數(shù)式的值或化簡三角函數(shù)式。
設(shè)計意圖:結(jié)合學(xué)過的公式(一)(二),發(fā)現(xiàn)特點(diǎn),總結(jié)公式。
1. 練習(xí)
(1)
設(shè)計意圖:利用公式解決問題,發(fā)現(xiàn)新問題,小組研究討論,得到新公式。
(學(xué)生板演,老師點(diǎn)評,用彩色粉筆強(qiáng)調(diào)重點(diǎn),引導(dǎo)學(xué)生總結(jié)公式。)
三.例題
例3:求下列各三角函數(shù)值:
(1)
(2)
(3)
(4)
例4:化簡
設(shè)計意圖:利用公式解決問題。
練習(xí):
(1)
(2) (學(xué)生板演,師生點(diǎn)評)
設(shè)計意圖:觀察公式特點(diǎn),選擇公式解決問題。
四.課堂小結(jié):將任意角三角函數(shù)轉(zhuǎn)化為銳角三角函數(shù),體現(xiàn)轉(zhuǎn)化化歸,數(shù)形結(jié)合思想的應(yīng)用,培養(yǎng)了學(xué)生分析問題、解決問題的能力,熟練應(yīng)用解決問題。
五.課后作業(yè):課后練習(xí)A、B組
六.課后反思與交流
很榮幸大家來聽我的課,通過這課,我學(xué)習(xí)到如下的東西:
1.要認(rèn)真的研讀新課標(biāo),對教學(xué)的目標(biāo),重難點(diǎn)把握要到位
2.注意板書設(shè)計,注重細(xì)節(jié)的東西,語速需要改正
3.進(jìn)一步的學(xué)習(xí)網(wǎng)頁制作,讓你的網(wǎng)頁更加的完善,學(xué)生更容易操作
4.盡可能讓你的學(xué)生自主提出問題,自主的思考,能夠化被動學(xué)習(xí)為主動學(xué)習(xí),充分享受學(xué)習(xí)數(shù)學(xué)的樂趣
5.上課的生動化,形象化需要加強(qiáng)
聽課者評價:
1.評議者:網(wǎng)絡(luò)輔助教學(xué),起到了很好的效果;教態(tài)大方,作為新教師,開設(shè)校際課,勇氣可嘉!建議:感覺到老師有點(diǎn)緊張,其實(shí)可以放開點(diǎn)的,相信效果會更好的!重點(diǎn)不夠清晰,有引導(dǎo)數(shù)學(xué)時,最好值有個側(cè)重點(diǎn);網(wǎng)絡(luò)設(shè)計上,網(wǎng)頁上公開的推導(dǎo)公式為上,留有更大的空間讓學(xué)生來思考。
2.評議者:網(wǎng)絡(luò)教學(xué)效果良好,給學(xué)生自主思考,學(xué)習(xí)的空間發(fā)揮,教學(xué)設(shè)計得好;建議:課堂講課聲音,語調(diào)可以更有節(jié)奏感一些,抑揚(yáng)頓挫應(yīng)注意課堂例題練習(xí)可以多兩題。
3.評議者:學(xué)科網(wǎng)絡(luò)平臺的使用;建議:應(yīng)重視引導(dǎo)學(xué)生將一些唾手可得的有用結(jié)論總結(jié)出來,并形成自我的經(jīng)驗(yàn)。
4.評議者:引導(dǎo)學(xué)生通過網(wǎng)絡(luò)進(jìn)行探究。
建議:課件制作在線測評部分,建議不能重復(fù)選擇,應(yīng)全部做完后,顯示結(jié)果,再重復(fù)測試;多提問學(xué)生。
( 1)給學(xué)生思考的時間較長,語調(diào)相對平緩,總結(jié)時,給學(xué)生一些激勵的語言更好
( 2)這樣子的教學(xué)可以提高上課效率,讓學(xué)生更多的時間思考
( 3)網(wǎng)絡(luò)平臺的使用,使得學(xué)生的參與度明顯提高,存在問題:1.公式對稱性的誘導(dǎo),點(diǎn)與點(diǎn)的對稱的誘導(dǎo),終邊的關(guān)系的誘導(dǎo),要進(jìn)一步的修正;2.公式的概括要注意引導(dǎo)學(xué)生怎么用,學(xué)習(xí)這個誘導(dǎo)公式的作用
( 4)給學(xué)生答案,這個網(wǎng)頁要進(jìn)一步的修正,答案能否不要一點(diǎn)就出來
( 5)1.板書設(shè)計要進(jìn)一步的加強(qiáng),2.語速相對是比較快的3.練習(xí)量比較少
( 6)讓學(xué)生多探究,課堂會更熱鬧
( 7)注意引入的過程要帶有目的,帶著問題來教學(xué),學(xué)生帶著問題來學(xué)習(xí)
( 8)教學(xué)模式相對簡單重復(fù)
( 9)思路較為清晰,規(guī)范化的推理
高中數(shù)學(xué)教案(篇2)
教學(xué)目標(biāo)
1.了解映射的概念,象與原象的概念,和一一映射的概念.
(1)明確映射是特殊的對應(yīng)即由集合 ,集合 和對應(yīng)法則f三者構(gòu)成的一個整體,知道映射的特殊之處在于必須是多對一和一對一的對應(yīng);
(2)能準(zhǔn)確使用數(shù)學(xué)符號表示映射, 把握映射與一一映射的區(qū)別;
(3)會求給定映射的指定元素的象與原象,了解求象與原象的方法.
2.在概念形成過程中,培養(yǎng)學(xué)生的觀察,比較和歸納的能力.
3.通過映射概念的學(xué)習(xí),逐步提高學(xué)生對知識的探究能力.
教學(xué)建議
教材分析
(1)知識結(jié)構(gòu)
映射是一種特殊的對應(yīng),一一映射又是一種特殊的映射,而且函數(shù)也是特殊的映射,它們之間的關(guān)系可以通過下圖表示出來,如圖:
由此我們可從集合的包含關(guān)系中幫助我們把握相關(guān)概念間的區(qū)別與聯(lián)系.
(2)重點(diǎn),難點(diǎn)分析
本節(jié)的教學(xué)重點(diǎn)和難點(diǎn)是映射和一一映射概念的形成與認(rèn)識.
①映射的概念是比較抽象的概念,它是在初中所學(xué)對應(yīng)的基礎(chǔ)上發(fā)展而來.教學(xué)中應(yīng)特別強(qiáng)調(diào)對應(yīng)集合 B中的唯一這點(diǎn)要求的理解;
映射是學(xué)生在初中所學(xué)的對應(yīng)的基礎(chǔ)上學(xué)習(xí)的,對應(yīng)本身就是由三部分構(gòu)成的整體,包括集 合A和集合B及對應(yīng)法則f,由于法則的不同,對應(yīng)可分為一對一,多對一,一對多和多對多. 其中只有一對一和多對一的能構(gòu)成映射,由此可以看到映射必是“對B中之唯一”,而只要是對應(yīng)就必須保證讓A中之任一與B中元素相對應(yīng),所以滿足一對一和多對一的對應(yīng)就能體現(xiàn)出“任一對唯一”.
②而一一映射又在映射的基礎(chǔ)上增加新的要求,決定了它在學(xué)習(xí)中是比較困難的.
教法建議
(1)在映射概念引入時,可先從學(xué)生熟悉的對應(yīng)入手, 選擇一些具體的生活例子,然后再舉一些數(shù)學(xué)例子,分為一對多、多對一、多對一、一對一四種情況,讓學(xué)生認(rèn)真觀察,比較,再引導(dǎo)學(xué)生發(fā)現(xiàn)其中一對一和多對一的對應(yīng)是映射,逐步歸納概括出映射的基本特征,讓學(xué)生的認(rèn)識從感性認(rèn)識到理性認(rèn)識.
(2)在剛開始學(xué)習(xí)映射時,為了能讓學(xué)生看清映射的構(gòu)成,可以選擇用圖形表示映射,在集合的選擇上可選擇能用列舉法表示的有限集,法則盡量用語言描述,這樣的表示方法讓學(xué)生可以比較直觀的認(rèn)識映射,而后再選擇用抽象的數(shù)學(xué)符號表示映射,比如:
(3)對于學(xué)生層次較高的學(xué)??梢栽诮o出定義后讓學(xué)生根據(jù)自己的理解舉出映射的例子,教師也給出一些映射的例子,讓學(xué)生從中發(fā)現(xiàn)映射的特點(diǎn),并用自己的語言描述出來,最后教師加以概括,再從中引出一一映射概念;對于學(xué)生層次較低的學(xué)校,則可以由教師給出一些例子讓學(xué)生觀察,教師引導(dǎo)學(xué)生發(fā)現(xiàn)映射的特點(diǎn),一起概括.最后再讓學(xué)生舉例,并逐步增加要求向一一映射靠攏,引出一一映射概念.
(4)關(guān)于求象和原象的問題,應(yīng)在計算的過程中總結(jié)方法,特別是求原象的方法是解方程或方程組,還可以通過方程組解的不同情況(有唯一解,無解或有無數(shù)解)加深對映射的認(rèn)識.
(5)在教學(xué)方法上可以采用啟發(fā),討論的形式,讓學(xué)生在實(shí)例中去觀察,比較,啟發(fā)學(xué)生尋找共性,共同討論映射的特點(diǎn),共同舉例,計算,最后進(jìn)行小結(jié),教師要起到點(diǎn)撥和深化的作用.
教學(xué)設(shè)計方案
2.1映射
教學(xué)目標(biāo)(1)了解映射的概念,象與原象及一一映射的概念.
(2)在概念形成過程中,培養(yǎng)學(xué)生的觀察,分析對比,歸納的能力.
(3)通過映射概念的學(xué)習(xí),逐步提高學(xué)生的探究能力.
教學(xué)重點(diǎn)難點(diǎn)::映射概念的形成與認(rèn)識.
教學(xué)用具:實(shí)物投影儀
教學(xué)方法:啟發(fā)討論式
教學(xué)過程:
一、引入
在初中,我們已經(jīng)初步探討了函數(shù)的定義并研究了幾類簡單的常見函數(shù).在高中,將利用前面集合有關(guān)知識,利用映射的觀點(diǎn)給出函數(shù)的定義.那么映射是什么呢?這就是我們今天要詳細(xì)的概念.
二、新課
在前一章集合的初步知識中,我們學(xué)習(xí)了元素與集合及集合與集合之間的關(guān)系,而映射是重點(diǎn)研究兩個集合的元素與元素之間的對應(yīng)關(guān)系.這要先從我們熟悉的對應(yīng)說起(用投影儀打出一些對應(yīng)關(guān)系,共6個)
我們今天要研究的是一類特殊的對應(yīng),特殊在什么地方呢?
提問1:在這些對應(yīng)中有哪些是讓A中元素就對應(yīng)B中唯一一個元素?
讓學(xué)生仔細(xì)觀察后由學(xué)生回答,對有爭議的,或漏選,多選的可詳細(xì)說明理由進(jìn)行討論.最后得出(1),(2),(5),(6)是符合條件的(用投影儀將這幾個集中在一起)
提問2:能用自己的語言描述一下這幾個對應(yīng)的共性嗎?
經(jīng)過師生共同推敲,將映射的定義引出.(主體內(nèi)容由學(xué)生完成,教師做必要的補(bǔ)充)
高中數(shù)學(xué)教案(篇3)
一、自我介紹
我姓x,是你們的數(shù)學(xué)老師,因?yàn)槭菙?shù)學(xué)老師所以在自我介紹的時候喜歡給出自己的數(shù)字特征,也是希望通過這些方式能拓寬與大家交流的平臺,希望能與大家在課堂中相識,在生活中相知,不僅能成為你們知識的傳授者,方法的指引者,更希望成為你們情感上的依賴者。
二、相信大家對于高中學(xué)習(xí)都充滿著好奇,和初中相比,高中課程與初中課程有很大的不同。今天這節(jié)課我們不急于上新課,我想和大家聊一聊數(shù)學(xué),一起來思考為什么要學(xué)習(xí)數(shù)學(xué)及如何學(xué)好數(shù)學(xué)這兩個問題。
(一)為什么要學(xué)習(xí)數(shù)學(xué)
相信高一的第一節(jié)課是各位科任老師各顯神通的時候,通過各種有趣的方式來突出每門課的重要性,作為數(shù)學(xué)老師我表達(dá)上不如文科老師迂回婉轉(zhuǎn)和風(fēng)趣幽默,我們更喜歡用數(shù)字說明問題。大家知道北大最的院系是什么系嗎?早在蔡元培先生任北大校長時,就列數(shù)學(xué)系為北大第一系,這種傳統(tǒng)一直保持到現(xiàn)在。為什么數(shù)學(xué)系在高校中有如此重要的地位?課本主編寄語是這樣描述的:數(shù)學(xué)是有用的,數(shù)學(xué)有助于提高能力。
數(shù)學(xué)家華羅庚在《人民日報》精彩描述了數(shù)學(xué)在"宇宙之大,粒子之微,火箭之速,化工之巧,地球之變,生物之謎,日用之繁"等方面無處不有重要貢獻(xiàn)。
問題1:大家知道海王星是怎么發(fā)現(xiàn)的,冥王星又是怎么被請出十大行星行列的?
海王星的發(fā)現(xiàn)是在數(shù)學(xué)計算過程中發(fā)現(xiàn)的,天文望遠(yuǎn)鏡的觀測只是驗(yàn)證了人們的推論。
1812年,法國人布瓦德在計算天王星的運(yùn)動軌道時,發(fā)現(xiàn)理論計算值同觀測資料發(fā)生了一系列誤差。這使許多天文學(xué)家紛紛致力這個問題的研究,進(jìn)而發(fā)現(xiàn)天王星的脫軌與一個未知的引力的存在相關(guān)。也就是說有一個未知的天體作用于天王星。1846年9月23日。柏林天文臺收到來自法國巴黎的'一封快信。發(fā)信人就是勒威耶。信中,勒威耶預(yù)告了一顆以往沒有發(fā)現(xiàn)的新星:在摩羯座8星東約5度的地方,有一顆8等小星,每天退行69角秒。當(dāng)夜,柏林天文臺的加勒把巨大的天文望遠(yuǎn)鏡對準(zhǔn)摩羯座,果真在那里發(fā)現(xiàn)了一顆新的8等星。又過了-天,再次找到了這顆8等星,它的位置比前一天后退了70角秒。這與勒威耶預(yù)告的相差甚微。全世界都震動了。人們依照勒威耶的建議,按天文學(xué)慣例,用神話里的名字把這顆星命名為"海王星"。
1930年美國天文學(xué)家湯博發(fā)現(xiàn)冥王星,當(dāng)時錯估了冥王星的質(zhì)量,以為冥王星比地球還大,所以命名為大行星。然而,經(jīng)過近30年的進(jìn)一步觀測和計算,發(fā)現(xiàn)它的直徑只有2300公里,比月球還要小,等到冥王星的大小被確認(rèn),"冥王星是大行星"早已被寫入教科書,以后也就將錯就錯了。經(jīng)過多年的爭論,國際天文學(xué)聯(lián)合會通過投票表決做出最終決定,取消冥王星的行星資格。8月24日據(jù)國際天文學(xué)聯(lián)合會宣布,冥王星將被排除在行星行列之外,從而太陽系行星的數(shù)量將由九顆減為八顆。事實(shí)上,位居太陽系九大行星末席70多年的冥王星,自發(fā)現(xiàn)之日起地位就備受爭議。
馬克思說:"一種科學(xué)只有在成功運(yùn)用數(shù)學(xué)時,才算達(dá)到了真正完善的地步。"正因?yàn)閿?shù)學(xué)是日常生活和進(jìn)一步學(xué)習(xí)必不可少的基礎(chǔ)和工具,一切科學(xué)到了最后都?xì)w結(jié)為數(shù)學(xué)問題。
其實(shí)在我們的周圍有很多事情都是可以用數(shù)學(xué)可以來解決的,無非很多人都沒有用數(shù)學(xué)的眼光來看待。
問題2:徒認(rèn)為上帝是萬能的。你們認(rèn)為呢?如何來證明你的結(jié)論呢?(讓同學(xué)發(fā)言)
我的觀點(diǎn):上帝不是萬能的。為什么呢?仔細(xì)聽我講來。
證明:(反證法)假如上帝是萬能的
那么他能夠制作出一塊無論什么力量都搬不動的石頭
根據(jù)假設(shè),既然上帝是萬能的,那么他一定能夠搬的動他自己制造的那石頭
這與"無論什么力量都搬不動的石頭"相矛盾
所以假設(shè)不成立
所以上帝不是萬能的。問題3:抓鬮對個人來說公平嗎?5張票中有一張獎票,那么先抽還是后抽對個人還說公平嗎?
當(dāng)然,我們學(xué)習(xí)的數(shù)學(xué)只是數(shù)學(xué)學(xué)科體系中很基礎(chǔ),很小的一部分。現(xiàn)在課本上學(xué)的未必能直接應(yīng)用于生活,主要是為以后學(xué)習(xí)更高層次的理科打好基礎(chǔ),同時,也為了掌握一些數(shù)學(xué)的思考方法以及分析問題解決問題的思維方式。哲學(xué)家培根說過:"讀詩使人靈秀,讀歷史使人明智,學(xué)邏輯使人周密,學(xué)哲學(xué)使人善辯,學(xué)數(shù)學(xué)使人聰明…",也有人形象地稱數(shù)學(xué)是思維的體操。下面我們通過具體的例子來體驗(yàn)一下某些數(shù)學(xué)思想方法和思維方式。
故事一:據(jù)說國際象棋是古印度的一位宰相發(fā)明的。國王很欣賞他的這項(xiàng)發(fā)明,問他的宰相要什么賞賜。聰明的宰相說,"我所要的從一粒谷子(沒錯,是1粒,不是1兩或1斤)開始。在這個有64格的棋盤上,第一格里放1粒谷子,第二格里放2粒,第三格里放4粒,即每下一格粒數(shù)加倍,……如此下去,一直放滿到棋盤上的64格。這就是我所要的賞賜。"國王覺得宰相要的實(shí)在不多,就叫人按宰相的要求賞賜。但后來發(fā)現(xiàn)即使把全國所有的谷子抬來也遠(yuǎn)遠(yuǎn)不夠。
人們通常憑借自己掌握的數(shù)學(xué)知識耍些小聰明,使問題妙不可言。
數(shù)學(xué)游戲:兩人相繼輪流往長方形桌子上放同樣大小的硬幣,硬幣一定要平放在桌面上,后放的硬幣不能壓在先放的硬幣上,放最后一顆的硬幣的人算贏。應(yīng)該先放還是后放才有必勝的把握。
數(shù)學(xué)思想:退到最簡單、最特殊的地方。
故事二:聰明的渡邊:20世紀(jì)40年代末,手寫工具突破性進(jìn)展-圓珠筆問世,它以價廉、方便、書寫流利在社會上廣泛流傳,但寫到20萬字時就會因圓珠磨小而漏油,影響了銷售。工程師們從圓珠質(zhì)量入手,從改進(jìn)油墨性能入手進(jìn)行改良,但收效甚微。于是廠家打出廣告:解決此問題獲獎金50萬元。當(dāng)時山地制筆廠的青年工人渡邊看到女兒把圓珠筆用到快漏油時就德育不用這一現(xiàn)象中受到啟發(fā),很好地解決了這一問題,你認(rèn)為他會怎么做呢?
渡邊的成功之處就在于思維角度新,從問題的側(cè)面輕巧取勝。也正體現(xiàn)了數(shù)學(xué)學(xué)習(xí)中經(jīng)常用到的發(fā)散式思維。在數(shù)學(xué)學(xué)習(xí)中,既要有集中式思維又要有發(fā)散式思維。集中式思維是一種常用思維渠道,即為對問題的歸納,聯(lián)系思維方式,表現(xiàn)為對解題方法的模仿和繼承;而發(fā)散式思維即對問題開拓、創(chuàng)新,表現(xiàn)為對問題舉一反三,觸類旁通。在解決具體問題中,我們應(yīng)該將兩種思維方式相結(jié)合。
學(xué)數(shù)學(xué)有利于培養(yǎng)人的思維品質(zhì):結(jié)構(gòu)意識、整體意識、抽象意識、化歸意識、優(yōu)化意識、反思意識,盡管數(shù)學(xué)在培養(yǎng)學(xué)生的這些思維品質(zhì)方面和其他學(xué)科存在著交集,但數(shù)學(xué)在其中的地位是無法被代替的??傊?,學(xué)習(xí)數(shù)學(xué)可以使人思考問題更合乎邏輯,更有條理,更嚴(yán)密精確,更深入簡潔,更善于創(chuàng)造……
(二)如何學(xué)好數(shù)學(xué)
高中數(shù)學(xué)的內(nèi)容多,抽象性、理論性強(qiáng),高中很注重自學(xué)能力的培養(yǎng)的,高中不會像初中那樣老師一天到晚盯著你,在高中一定要注重自學(xué)能力的培養(yǎng),誰的自學(xué)能力強(qiáng),那么在一定的程度上影響著你的成績以及你將來你發(fā)展的前途。同時要注意以下幾點(diǎn):
第一:對數(shù)學(xué)學(xué)科特點(diǎn)有清楚的認(rèn)識
主編寄語里是這樣描述數(shù)學(xué)的特征的:數(shù)學(xué)是自然的。數(shù)學(xué)的概念、方法、思想都是人類長期實(shí)踐中自然發(fā)展形成的,以數(shù)域的發(fā)展為例,從自然數(shù)到有理數(shù)到實(shí)數(shù)再到復(fù)數(shù),都是由自然的認(rèn)知沖突引起的。因此,在學(xué)習(xí)過程中我們有必要了解知識產(chǎn)生的背景,它的形成過程以及它的應(yīng)用,讓數(shù)學(xué)顯得合情合理,渾然天成。數(shù)學(xué)中沒有含糊不清的詞,對錯分明,凡事都要講個為什么,只要按照數(shù)學(xué)規(guī)則去學(xué)去想就能融會貫通,但是如果不把來龍去脈想清楚而是"想當(dāng)然"的話,那就學(xué)不下去了。
第二:要改變一個觀念。
有人會說自己的基礎(chǔ)不好。那我問下什么是基礎(chǔ)?今天所學(xué)的知識就是明天的基礎(chǔ)。明天學(xué)習(xí)的知識就是后天的基礎(chǔ)。所以要學(xué)好每一天的內(nèi)容,那么你打的基礎(chǔ)就是最扎實(shí)的了。所以現(xiàn)在你們是在同一個起跑線上的,無所謂基礎(chǔ)好不好。過去的幾年里我分別帶過五十一中和一中的學(xué)生,兩邊學(xué)生的課堂感覺差不多,應(yīng)該說接受能力不相上下,有的時候我會選擇在五十一中開公開課,因?yàn)檎n堂氣氛活躍、輕松,但是成績差異卻是很大,原因在于我們同學(xué)外課自主時間的投入太少,學(xué)習(xí)習(xí)慣不太好。
第三:學(xué)數(shù)學(xué)要摸索自己的學(xué)習(xí)方法
學(xué)習(xí)、掌握并能靈活應(yīng)用數(shù)學(xué)的途徑有千萬條,每個人都可以有與眾不同的數(shù)學(xué)學(xué)習(xí)方法。做習(xí)題、用數(shù)學(xué)解決各種問題是必需的,理解、學(xué)會證明、領(lǐng)會思想、掌握方法也是必需的。此外,還要發(fā)揮問題的作用,學(xué)會提問,熱心幫助別人解決問題,用自己的問題和別人的問題帶動自己的學(xué)習(xí)。同時,注意前后知識的銜接,類比地學(xué)、聯(lián)系地學(xué),既要從概念中看到它的具體背景,又要在具體的例子中想到它蘊(yùn)含的一般概念。
第四:養(yǎng)成良好的學(xué)習(xí)習(xí)慣(與一中學(xué)生相比較)
㈠課前預(yù)習(xí)。怎樣預(yù)習(xí)呢?就是自己在上課之前把內(nèi)容先看一邊,把自己不懂的地方做個記號或者打個問號,以至于上課的時候重點(diǎn)聽,這樣才能夠很快提高自己的水平。但是預(yù)習(xí)不是很隨便的把課本看一邊,預(yù)習(xí)有個目標(biāo),那就是通過預(yù)習(xí)可以把書本后面的練習(xí)題可以自己獨(dú)立的完成。一中的同學(xué)預(yù)習(xí)就已經(jīng)有好幾個層次了,先是課本,再是精編,再是高考題典,上課對于他們來說是第一輪高考復(fù)習(xí)。
㈡上課認(rèn)真聽講。上課的時候準(zhǔn)備課本,一只筆,一本草稿。做不做筆記你們自己決定,不過我不大提倡數(shù)學(xué)課做筆記的。不過有一點(diǎn),有些知識點(diǎn)比較重要,課本上又沒有的,我要求你們把它寫在課本上的相應(yīng)的空白地方。還有如果你覺得某個例題比較新或者比較重要,也可以把它記在書本的相應(yīng)位置上,這樣以后復(fù)習(xí)起來就一目了然了。那么草稿要來干什么的呢?課堂上你可以自己演算還有做課堂練習(xí)。
㈢關(guān)于作業(yè)。絕對不允許有抄作業(yè)的情況發(fā)生。如果我發(fā)現(xiàn)有誰抄作業(yè),那么既然他這樣喜歡抄,我就要你把當(dāng)天的作業(yè)多抄幾遍給我。那有人會問,碰到不會做的題目怎么辦?有兩個辦法:一、向同學(xué)請教,請教做題目的思路,而不是整個過程和答案。同學(xué)之間也要相互幫助,如果你讓他抄襲你的作業(yè)這樣不是幫助他而是害他,這個道理大家應(yīng)該明白吧。我非常提倡同學(xué)之間的相互討論問題的,這樣才能夠相互促進(jìn)提高。二、向老師請教,要養(yǎng)成多想多問的習(xí)慣。我的辦公室在二樓二號,歡迎大家前來交流
㈣準(zhǔn)備一本筆記本,作為自己的問題集。把平時自己不懂的和不大理解的還有易錯的記錄下來,并且要及時的消化,不懂的地方問老師。這是一個很好的辦法,到考試的時候就可以有重點(diǎn)、有針對性的自己復(fù)習(xí)了。我高中的時候就是采用這樣的方法把數(shù)學(xué)成績提高。
好的開始是成功的一半,新的學(xué)期開始了,請大家調(diào)整好自己的思想,找到學(xué)習(xí)的原動力。播種一種思想,收獲一種行為;播種一種行為,收獲一種習(xí)慣;播種一種習(xí)慣,收獲一種性格;播種一種性格,收獲一種命運(yùn)。愿每位同學(xué)都有個好的開始。
高中數(shù)學(xué)教案(篇4)
教學(xué)目標(biāo):1.進(jìn)一步理解線性規(guī)劃的概念;會解簡單的線性規(guī)劃問題;
2.在運(yùn)用建模和數(shù)形結(jié)合等數(shù)學(xué)思想方法分析、解決問題的過程中;提高解決問題的能力;
3.進(jìn)一步提高學(xué)生的合作意識和探究意識。
教學(xué)重點(diǎn):線性規(guī)劃的概念及其解法
教學(xué)難點(diǎn):
代數(shù)問題幾何化的過程
教學(xué)方法:啟發(fā)探究式
教學(xué)手段:運(yùn)用多媒體技術(shù)
教學(xué)過程:1.實(shí)際問題引入。
問題一:小王和小李合租了一輛小轎車外出旅游.小王駕車平均速度為每小時70公里,平均耗油量為每小時6公升;小李駕車平均速度為每小時50公里,平均耗油量為每小時4公升.現(xiàn)知道油箱內(nèi)油量為60公升,兩人駕車時間累計不能超過12小時.問小王和小李分別駕車多少時間時,行駛路程最遠(yuǎn)?
2.探究和討論下列問題。
(1)實(shí)際問題轉(zhuǎn)化為一個怎樣的數(shù)學(xué)問題?
(2)滿足不等式組①的條件的點(diǎn)構(gòu)成的區(qū)域如何表示?
(3)關(guān)于x、y的一個表達(dá)式z=70x+50y的幾何意義是什么?
(4)z的幾何意義是什么?
(5)z的最大值如何確定?
讓學(xué)生達(dá)成以下共識:小王駕車時間x和小李駕車時間y受到時間(12小時)和油量(60公升)的限制,即
x+y≤12
6x+4y≤60 ①
x≥0
y≥0
行駛路程可以表示成關(guān)于x、y的一個表達(dá)式:z=70x+50y 由數(shù)形結(jié)合可知:經(jīng)過點(diǎn)B(6,6)的直線所對應(yīng)的z最大.
則zmax=6×70+6×50=720
結(jié)論:小王和小李分別駕車6小時時,行駛路程最遠(yuǎn)為720公里.
解題反思:
問題解決過程中體現(xiàn)了那些重要的數(shù)學(xué)思想?
3.線性規(guī)劃的有關(guān)概念。
什么是“線性規(guī)劃問題”?涉及約束條件、線性約束條件、目標(biāo)函數(shù)、線性目標(biāo)函數(shù)、可行解、可行域和最優(yōu)解等概念.
4.進(jìn)一步探究線性規(guī)劃問題的解。
問題二:若小王和小李駕車平均速度為每小時60公里和40公里,其它條件不變,問小王和小李分別駕車多少時間時,行駛路程最遠(yuǎn)?
要求:請你寫出約束條件、目標(biāo)函數(shù),作出可行域,求出最優(yōu)解。
問題三:如果把不等式組①中的兩個“≤”改為“≥”,是否存在最優(yōu)解?
5.小結(jié)。
(1)數(shù)學(xué)知識;(2)數(shù)學(xué)思想。
6.作業(yè)。
(1)閱讀教材:P.60-63;
(2)課后練習(xí):教材P.65-2,3;
(3)在自己生活中尋找一個簡單的線性規(guī)劃問題,寫出約束條件,確定目標(biāo)函數(shù),作出可行域,并求出最優(yōu)解。
《一個數(shù)列的研究》教學(xué)設(shè)計
教學(xué)目標(biāo):
1.進(jìn)一步理解和掌握數(shù)列的有關(guān)概念和性質(zhì);
2.在對一個數(shù)列的探究過程中,提高提出問題、分析問題和解決問題的能力;
3.進(jìn)一步提高問題探究意識、知識應(yīng)用意識和同伴合作意識。
教學(xué)重點(diǎn):
問題的提出與解決
教學(xué)難點(diǎn):
如何進(jìn)行問題的探究
教學(xué)方法:
啟發(fā)探究式
教學(xué)過程:
問題:已知{an}是首項(xiàng)為1,公比為 的無窮等比數(shù)列。對于數(shù)列{an},提出你的問題,并進(jìn)行研究,你能得到一些什么樣的結(jié)論?
研究方向提示:
1.?dāng)?shù)列{an}是一個等比數(shù)列,可以從等比數(shù)列角度來進(jìn)行研究;
2.研究所給數(shù)列的項(xiàng)之間的關(guān)系;
3.研究所給數(shù)列的子數(shù)列;
4.研究所給數(shù)列能構(gòu)造的新數(shù)列;
5.?dāng)?shù)列是一種特殊的函數(shù),可以從函數(shù)性質(zhì)角度來進(jìn)行研究;
6.研究所給數(shù)列與其它知識的聯(lián)系(組合數(shù)、復(fù)數(shù)、圖形、實(shí)際意義等)。
針對學(xué)生的研究情況,對所提問題進(jìn)行歸類,選擇部分類型問題共同進(jìn)行研究、分析與解決。
課堂小結(jié):
1.研究一個數(shù)列可以從哪些方面提出問題并進(jìn)行研究?
2.你最喜歡哪位同學(xué)的研究?為什么?
課后思考題: 1.將{an}推廣為一般的無窮等比數(shù)列:1,q,q2,…,qn-1,… ,上述一些研究結(jié)論會有什么變化?
2.若將{an}改為等差數(shù)列:1,1+d,2+d,…,1+(n-1)d,… ,是否可以進(jìn)行類比研究?
開展研究性學(xué)習(xí),培養(yǎng)問題解決能力
一、對“研究性學(xué)習(xí)”和“問題解決”的認(rèn)識 研究性學(xué)習(xí)是一種與接受性學(xué)習(xí)相對應(yīng)的學(xué)習(xí)方式,泛指學(xué)生主動探究問題的學(xué)習(xí)。研究性學(xué)習(xí)也可以說是一種學(xué)習(xí)活動:學(xué)生在教師指導(dǎo)下,在自己的學(xué)習(xí)生活和社會生活中選擇課題,以類似科學(xué)研究的方式去主動地獲取知識、應(yīng)用知識、解決問題。
“問題解決”(problem solving)是美國數(shù)學(xué)教育界在二十世紀(jì)八十年代的主要口號,即認(rèn)為應(yīng)當(dāng)以“問題解決”作為學(xué)校數(shù)學(xué)教育的中心。
問題解決能力是一種重要的數(shù)學(xué)能力,其核心是“創(chuàng)新精神”與“實(shí)踐能力”。在數(shù)學(xué)教學(xué)活動中開展研究性學(xué)習(xí)是培養(yǎng)問題解決能力的主要途徑。
二、“問題解決”課堂教學(xué)模式的建構(gòu)與實(shí)踐 以研究性學(xué)習(xí)活動為載體,以培養(yǎng)問題解決能力為核心的課堂教學(xué)模式(以下簡稱為“問題解決”課堂教學(xué)模式)試圖通過問題情境創(chuàng)設(shè),激發(fā)學(xué)生的求知欲,以獨(dú)立思考和交流討論的形式,發(fā)現(xiàn)、分析并解決問題,培養(yǎng)處理信息、獲取新知、應(yīng)用知識的能力,提高合作意識、探究意識和創(chuàng)新意識。
(一)關(guān)于“問題解決”課堂教學(xué)模式
通過實(shí)施“問題解決”課堂教學(xué)模式,希望能夠達(dá)到以下的功能目標(biāo):學(xué)習(xí)發(fā)現(xiàn)問題的方法,開掘創(chuàng)造性思維潛力,培養(yǎng)主動參與、團(tuán)結(jié)協(xié)作精神,增進(jìn)師生、同伴之間的情感交流,形成自覺運(yùn)用數(shù)學(xué)基礎(chǔ)知識、基本技能和數(shù)學(xué)思想方法分析問題、解決問題的能力和意識。
(二)數(shù)學(xué)學(xué)科中的問題解決能力的培養(yǎng)目標(biāo)
數(shù)學(xué)問題解決能力培養(yǎng)的目標(biāo)可以有不同層次的要求:會審題,會建模,會轉(zhuǎn)化,會歸類,會反思,會編題。
(三)“問題解決”課堂教學(xué)模式的教學(xué)流程
(四)“問題解決”課堂教學(xué)評價標(biāo)準(zhǔn)
1. 教學(xué)目標(biāo)的確定;
2. 教學(xué)方法的選擇;
3. 問題的選擇;
4. 師生主體意識的體現(xiàn);
5.教學(xué)策略的運(yùn)用。
(五)了解學(xué)生的數(shù)學(xué)問題解決能力的途徑
(六)開展研究性學(xué)習(xí)活動對教師的能力要求
高中數(shù)學(xué)教案(篇5)
[學(xué)習(xí)目標(biāo)]
(1)會用坐標(biāo)法及距離公式證明Cα+β;
(2)會用替代法、誘導(dǎo)公式、同角三角函數(shù)關(guān)系式,由Cα+β推導(dǎo)Cα—β、Sα±β、Tα±β,切實(shí)理解上述公式間的關(guān)系與相互轉(zhuǎn)化;
(3)掌握公式Cα±β、Sα±β、Tα±β,并利用簡單的三角變換,解決求值、化簡三角式、證明三角恒等式等問題。
[學(xué)習(xí)重點(diǎn)]
兩角和與差的正弦、余弦、正切公式
[學(xué)習(xí)難點(diǎn)]
余弦和角公式的推導(dǎo)
[知識結(jié)構(gòu)]
1、兩角和的余弦公式是三角函數(shù)一章和、差、倍公式系列的基礎(chǔ)。其公式的證明是用坐標(biāo)法,利用三角函數(shù)定義及平面內(nèi)兩點(diǎn)間的距離公式,把兩角和α+β的余弦,化為單角α、β的三角函數(shù)(證明過程見課本)
2、通過下面各組數(shù)的值的比較:①cos(30°—90°)與cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我們應(yīng)該得出如下結(jié)論:一般情況下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。
3、當(dāng)α、β中有一個是的整數(shù)倍時,應(yīng)首選誘導(dǎo)公式進(jìn)行變形。注意兩角和與差的三角函數(shù)是誘導(dǎo)公式等的基礎(chǔ),而誘導(dǎo)公式是兩角和與差的三角函數(shù)的特例。
4、關(guān)于公式的正用、逆用及變用
高中數(shù)學(xué)教案(篇6)
教學(xué)目標(biāo):
1。理解并掌握瞬時速度的定義;
2。會運(yùn)用瞬時速度的定義求物體在某一時刻的瞬時速度和瞬時加速度;
3。理解瞬時速度的實(shí)際背景,培養(yǎng)學(xué)生解決實(shí)際問題的能力。
教學(xué)重點(diǎn):
會運(yùn)用瞬時速度的定義求物體在某一時刻的瞬時速度和瞬時加速度。
教學(xué)難點(diǎn):
理解瞬時速度和瞬時加速度的定義。
教學(xué)過程:
一、問題情境
1。問題情境。
平均速度:物體的運(yùn)動位移與所用時間的比稱為平均速度。
問題一平均速度反映物體在某一段時間段內(nèi)運(yùn)動的快慢程度。那么如何刻畫物體在某一時刻運(yùn)動的快慢程度?
問題二跳水運(yùn)動員從10m高跳臺騰空到入水的過程中,不同時刻的速度是不同的。假設(shè)t秒后運(yùn)動員相對于水面的高度為h(t)=-4.9t2+6.5t+10,試確定t=2s時運(yùn)動員的速度.
2。探究活動:
(1)計算運(yùn)動員在2s到2.1s(t∈)內(nèi)的平均速度。
(2)計算運(yùn)動員在2s到(2+?t)s(t∈)內(nèi)的平均速度。
(3)如何計算運(yùn)動員在更短時間內(nèi)的平均速度。
探究結(jié)論:
時間區(qū)間
t
平均速度
0.1
-13.59
0.01
-13.149
0.001
-13.1049
0.0001
-13.10049
0.00001
-13.100049
0.000001
-13.1000049
當(dāng)?t?0時,?-13.1,
該常數(shù)可作為運(yùn)動員在2s時的瞬時速度。
即t=2s時,高度對于時間的瞬時變化率。
二、建構(gòu)數(shù)學(xué)
1。平均速度。
設(shè)物體作直線運(yùn)動所經(jīng)過的路程為,以為起始時刻,物體在?t時間內(nèi)的平均速度為。
可作為物體在時刻的速度的近似值,?t越小,近似的程度就越好。所以當(dāng)?t?0時,極限就是物體在時刻的瞬時速度。
三、數(shù)學(xué)運(yùn)用
例1物體作自由落體運(yùn)動,運(yùn)動方程為,其中位移單位是m,時
間單位是s,,求:
(1)物體在時間區(qū)間s上的平均速度;
(2)物體在時間區(qū)間上的平均速度;
(3)物體在t=2s時的瞬時速度。
分析
解
(1)將?t=0.1代入上式,得:=2.05g=20.5m/s。
(2)將?t=0.01代入上式,得:=2.005g=20.05m/s。
(3)當(dāng)?t?0,2+?t?2,從而平均速度的極限為:
例2設(shè)一輛轎車在公路上作直線運(yùn)動,假設(shè)時的速度為,
求當(dāng)時轎車的瞬時加速度。
解
∴當(dāng)?t無限趨于0時,無限趨于,即=。
練習(xí)
課本P12—1,2。
四、回顧小結(jié)
問題1本節(jié)課你學(xué)到了什么?
1理解瞬時速度和瞬時加速度的定義;
2實(shí)際應(yīng)用問題中瞬時速度和瞬時加速度的求解;
問題2解決瞬時速度和瞬時加速度問題需要注意什么?
注意當(dāng)?t?0時,瞬時速度和瞬時加速度的極限值。
問題3本節(jié)課體現(xiàn)了哪些數(shù)學(xué)思想方法?
2極限的思想方法。
3特殊到一般、從具體到抽象的推理方法。
五、課外作業(yè)
高中數(shù)學(xué)教案(篇7)
1. 該生能以校規(guī)班規(guī)嚴(yán)格要求自己。有較強(qiáng)的集體榮譽(yù)感,學(xué)習(xí)態(tài)度認(rèn)真,能吃苦,肯下功夫,成績穩(wěn)定。生活艱苦樸素,待人熱情大方,是個基礎(chǔ)扎實(shí),品德兼優(yōu)的好學(xué)生。
2. 該生能嚴(yán)格遵守學(xué)校的規(guī)章制度。尊敬師長,團(tuán)結(jié)同學(xué)。熱愛集體,積極配合其他同學(xué)搞好班務(wù)工作,勞動積極肯干。學(xué)習(xí)刻苦認(rèn)真,勤學(xué)好問,學(xué)習(xí)成績穩(wěn)定,學(xué)風(fēng)和工作作風(fēng)都較為踏實(shí),堅持出滿勤,并能積極參加社會實(shí)踐和文體活動,勞動積極。是一位發(fā)展全面的好學(xué)生。
3. 你是同學(xué)擁護(hù)、老師信任的班委,乖巧懂事、伶俐開朗、自信大方、樂觀合群,是同學(xué)們學(xué)習(xí)的榜樣。你愛護(hù)集體榮譽(yù),有很強(qiáng)的工作能力,總是及時協(xié)助老師完成班務(wù)工作,是老師的得力幫手。你心性坦蕩,個性鮮明,能大膽說出自己的想法,難能可貴。而你在運(yùn)動場上的爆發(fā)力更讓老師同學(xué)們驚嘆!潛力深厚,希望在高中時期能逐漸發(fā)掘出來!
4. 你是個做事小心翼翼,感情細(xì)膩豐富的女孩,每次看你認(rèn)真的樣子老師都很感動。你也是幸運(yùn)的,周邊有很多人都在關(guān)愛著你,所以,對他們,尤其是父母,記得不要太莽撞,不要太任性,要學(xué)著體諒,學(xué)著換位思考,學(xué)著懂事。另外,今后要多運(yùn)動、多鍛煉,有健康才能成就美好未來!
5. 你堅強(qiáng)勇敢、樂觀大方的性格讓老師非常欣賞。學(xué)習(xí)上始終保持著上進(jìn)好學(xué)的決心和韌性,生活中始終能做到豁達(dá)開朗,還有著良好的審美和繪畫的專長,令人欽佩!以入世的態(tài)度做事,以出世的態(tài)度做人,這是我送你的一句話,希望你保持好心態(tài),迎接新的學(xué)習(xí)生活。
6. 最有希望得成功者,并不是才干出眾的人,而是那些最善于利用時機(jī)去努力開創(chuàng)的人。你是很有才華的孩子,老師希望你能把握好機(jī)會,求得上進(jìn)。你聰明,但也有著許多人共同的毛病——粗心大意和缺乏毅力,若能集中精力持之以恒,堅定目標(biāo)致力于學(xué)習(xí),定能大限度地發(fā)揮你的聰明才智!
7. 該生遵紀(jì)守法,積極參加社會實(shí)踐和文體活動,集體觀念強(qiáng),勞動積極肯干。是一位誠實(shí)守信,思想上進(jìn),尊敬老師,團(tuán)結(jié)同學(xué),熱心助人,積極參加班集體活動,有體育特長,學(xué)習(xí)認(rèn)真,具有較好綜合素質(zhì)的優(yōu)秀學(xué)生。
8. 你聰穎活潑,渾身洋溢青春氣息。你愛好廣泛,善鉆精思,具備一定能力,潛質(zhì)無限。但是在有些時候,在面臨一些問題的時候,你總表現(xiàn)得太過緊張,其實(shí),征服畏懼、建立自信的最快最確實(shí)的方法,就是大膽地去做你認(rèn)為害怕的事,直到你獲得成功的經(jīng)驗(yàn)。繼續(xù)努力!
9. 你是對3班這個集體的成長貢獻(xiàn)很大的孩子,是老師的得力幫手。你干練沉穩(wěn),堅強(qiáng)隱忍,能從大局出發(fā)考慮問題,在很多時候能獨(dú)當(dāng)一面。你獨(dú)立能力強(qiáng),能夠吃苦,但在進(jìn)入高中的學(xué)習(xí)上卻顯得有些吃力。其實(shí)你還有很深的潛力尚未挖掘,找對方法,好好加油,世上沒有絕望的處境,只有對處境絕望的人,請樂觀一點(diǎn),踏實(shí)地走好接下來的每一步!
10. 你是個能獨(dú)立、有主見的女孩,有自己的想法,有一定的決斷力。但是獨(dú)立不代表乖張,有想法不代表恣意妄為。令人高興的是,你在這點(diǎn)上做的還是不錯的。晟君,老師希望你能一如既往地關(guān)注于學(xué)習(xí)而不懈怠,能堅持懷揣著平和感恩的心態(tài)簡單快樂地生活。
11. 你給我的第一印象是有些沉默,其實(shí)和朋友在一起時還是很有自己想法的對吧?你看,你布置的新年教室多么出彩!請繼續(xù)秀出真實(shí)而精彩的你!這半個學(xué)期的學(xué)習(xí)有點(diǎn)力不從心,請保持謹(jǐn)慎和細(xì)心,保持好的學(xué)習(xí)習(xí)慣,及時彌補(bǔ)所缺漏的環(huán)節(jié),大步向前進(jìn)!
12. 該生認(rèn)真遵守學(xué)校的規(guī)章制度,積極參加社會實(shí)踐和文體活動,集體觀念強(qiáng),勞動積極肯干。尊敬師長,團(tuán)結(jié)同學(xué)。學(xué)習(xí)態(tài)度認(rèn)真,能吃苦,肯下功夫,成績穩(wěn)定上升。是有理想有抱負(fù),基礎(chǔ)扎實(shí),心理素質(zhì)過硬、全面發(fā)展的優(yōu)秀學(xué)生。
13. 你是一個真誠待人、溫柔可愛的女生。也許是因?yàn)槟阌行┎痪o不慢的性格,所以在學(xué)習(xí)上有時候行動力不夠堅決,造成了學(xué)習(xí)成績的不穩(wěn)定。請多利用假期時間好好補(bǔ)缺補(bǔ)漏,向上的姿態(tài)才是最重要的!
14. 老師同學(xué)們都在說你是個很有責(zé)任心和上進(jìn)心的孩子,在班級需要的時候,你承擔(dān)了勞動委員的重任,經(jīng)常最后一個離開,就為了班級能有個整潔的環(huán)境。老師很感謝你!而更可貴的是,你懂得安排自己的時間,在工作的空隙抓緊時間做作業(yè)。希望下學(xué)期你的學(xué)習(xí)成績也能隨你的毅力和執(zhí)著步步攀升,加油,羽騰!
15. 其實(shí)你擁有你自己都不確知的才華,從你的文字中可以讀出這樣的信息:你時常沉醉在自己的小世界中,做自己喜歡做的事情。老師希望你能敞開心扉,多與旁人交流你快樂的體驗(yàn)和想法,不要吝嗇展示自己!還有,成功需要成本,時間也是一種成本,對時間的珍惜就是對成本的節(jié)約。請務(wù)必抓緊每寸光陰,努力學(xué)習(xí)!
16. 你知道嗎?在世界上那些最容易的事情中,拖延時間是最不費(fèi)力的。而學(xué)習(xí)卻是艱辛的勞動過程。表面安靜的你其實(shí)心里有著自己的想法和煩憂。于是在不經(jīng)意間,精力被不自覺地轉(zhuǎn)移到一些瑣事上,卻總無法完全集中心智于學(xué)業(yè)。也許你也已經(jīng)意識到,也有了些許進(jìn)步,那么請千萬記住要持之以恒,要付出比別人更多倍的努力!
17. 你是班級的數(shù)學(xué)科代表,老師很高興選擇你擔(dān)任這個職務(wù),不僅能促進(jìn)自己的進(jìn)步,而且也展現(xiàn)了你負(fù)責(zé)工作的一面。但是學(xué)習(xí)是要和工作一樣,需要一絲不茍的態(tài)度,包括上課的聽講是否及時而有效,包括功課的完成是否嚴(yán)謹(jǐn)而認(rèn)真。下學(xué)期,愿看到一個更加全神貫注更加專心致志的你!
18. 我一直難忘在運(yùn)動會上你擔(dān)任前導(dǎo)牌的樣子,為班級添光增彩了不少!你有著繪畫的特長,是個善良、真誠的女孩,有著細(xì)膩豐富的內(nèi)心,也許只需一點(diǎn)鼓勵,你便會勇敢走下去,希望能在平時多聽見你爽朗的笑聲!
19. 可愛、熱情、謹(jǐn)小慎微,這都是你的代名詞。你略為靦腆的微笑讓人印象深刻。老師一直認(rèn)為你是能夠認(rèn)真仔細(xì)地作好每一件事情、成就每一個細(xì)節(jié)的,因此,希望你能珍惜時間,提高效率,在學(xué)習(xí)上狠狠加油!
20. 其實(shí),任何事都是有重量的,那么,就看你把它變成壓力還是重力了。在這個方面,我很高興地看到你做的很好,你學(xué)習(xí)自覺,成績便是努力的證明。老師安排你做物理科代表就是希望能多培養(yǎng)你的責(zé)任意識、大局意識和管理能力,希望以后在這方面能看到你更加出色的表現(xiàn)!
21. 你是個可愛善良,懂事乖巧的女孩。作為語文科代表,兢兢業(yè)業(yè),一絲不茍。你對人也是特別真誠熱情,偶爾透露出的憂郁是旁人不易察覺的。但是你知道,成長就是破蛹成蝶的過程,高中是人生的重要階段,勇敢地邁好每一步吧,享受成長帶來的所有痛苦和快樂!
22. 你很有能力,也很潛力,但欠缺的卻是耐力和毅力。君子厚積而薄發(fā),希望你能振作精神,跟上進(jìn)度,迎頭趕上,期待你獲得更大的進(jìn)步!
23. 你曾經(jīng)和我說過你的理想,但你對理想的憧憬和你所付出的努力程度卻總是難成正比。若現(xiàn)在你覺得有障礙擋在前行之路上,那就說明你還沒有把目標(biāo)看的足夠清楚。寧在事前心力交瘁的努力,事后悠然自得;也不要在事前悠然自得,而在臨事時無法適從。你現(xiàn)在欠缺的就是對自己發(fā)狠奮進(jìn)的恒心,柏宇,“要想人前顯貴,必定人后受罪”,成功要靠實(shí)踐去爭取,而不是光靠幾句好聽的決心話!
24. 你乖巧大方,組織能力一流,但在學(xué)習(xí)上總顯得有些力不從心??祚R加鞭迎頭趕上固然是必需,但也別太心急,要知道,欲速則不達(dá),只要踏實(shí)努力,不懂就問,采用適合自己的學(xué)習(xí)方法,就會看到進(jìn)步。也許剛開始的時候進(jìn)步很小,小到你看不見,但是不要灰心,萬事開頭難!將事前的憂慮,換為事前的思考和計劃,徹底放松,加強(qiáng)鍛煉,養(yǎng)足精神再迎戰(zhàn)!你能做到的,蔡煒,加油!
25. 該生能遵守校紀(jì)班規(guī),尊敬師長,能與同學(xué)和睦相處,勤學(xué)好問,有較強(qiáng)的獨(dú)立鉆研能力,分析問題比較深入、全面,在某些問題上有獨(dú)特的見解,學(xué)習(xí)成績在班上一直能保持前茅,樂于助人,能幫助學(xué)習(xí)有困難的同學(xué)。
26. 不論在體育場還是教室里,看到你神采奕奕的樣子,總讓人聯(lián)想到“英姿颯爽”這四個字。這確是一個高中生應(yīng)該有的精神面貌。你做事認(rèn)真,顧全大局,真的非常難得。希望能保持這樣良好的狀態(tài),繼續(xù)前進(jìn)!也希望能夠多和老師同學(xué)交流,多提些對班集體建設(shè)的好建議!
27. 該生能以校規(guī)班規(guī)嚴(yán)格要求自己,積極參加社會實(shí)踐和文體活動。尊敬師長,團(tuán)結(jié)同學(xué)。集體觀念強(qiáng),勞動積極肯干。積極參加各種集體活動和社會實(shí)踐活動。學(xué)習(xí)目的明確,刻苦認(rèn)真,成績穩(wěn)定,是一個有理想、有抱負(fù),基礎(chǔ)扎實(shí),心理素質(zhì)過硬,全面發(fā)展的優(yōu)秀學(xué)生。
28. 我很高興看到你是個有上進(jìn)心,有責(zé)任感,能夠讓家人、師長寬慰的孩子。有努力就有回報,你下半學(xué)期的表現(xiàn)不就證明了這一點(diǎn)嗎?進(jìn)步是隨著時間節(jié)節(jié)上升的,不要太過急躁,要知道,若你不給自己設(shè)限,則人生中就沒有限制你發(fā)揮的藩籬。新學(xué)期要重整旗鼓,再接再勵!
29. ××× 獨(dú)立性較強(qiáng),對自己的能力也有準(zhǔn)確的定位。建議今后學(xué)習(xí)上要養(yǎng)成勤思愛問的習(xí)慣,不能做井底之蛙,滿足于現(xiàn)狀,要充分利用他人的智慧,最后達(dá)到“好風(fēng)憑借力,送我上青云”的目的。
30. ××× 每天在教室,都能看到你埋頭苦讀的身影,可見讀書的態(tài)度很端正;而你每一次考試的成績雖然不拔尖,卻是在穩(wěn)步前進(jìn),可見讀書的效率還不錯。請繼續(xù)保持這種虛心求學(xué)、穩(wěn)步前進(jìn)的態(tài)勢,相信一年半以后的高考,你必將嶄露頭角,脫穎而出。
高中數(shù)學(xué)教案(篇8)
一、內(nèi)容和內(nèi)容解析
本節(jié)課是北師大版高中數(shù)學(xué)必修5中第三章第4節(jié)的內(nèi)容。主要是二元均值不等式。它是在系統(tǒng)地學(xué)習(xí)了不等關(guān)系和不等式性質(zhì),掌握了不等式性質(zhì)的基礎(chǔ)上展開的,作為重要的基本不等式之一,為后續(xù)的學(xué)習(xí)奠定基礎(chǔ)。要進(jìn)一步了解不等式的性質(zhì)及運(yùn)用,研究最值問題,此時基本不等式是必不可缺的?;静坏仁皆谥R體系中起了承上啟下的作用,同時在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,因此它也是對學(xué)生進(jìn)行情感價值觀教育的優(yōu)良素材,所以基本不等式應(yīng)重點(diǎn)研究。
教學(xué)中注意用新課程理念處理教材,學(xué)生的數(shù)學(xué)學(xué)習(xí)活動不僅要接受、記憶、模仿和練習(xí),而且要自主探究、動手實(shí)踐、合作交流、閱讀自學(xué),師生互動,教師發(fā)揮組織者、引導(dǎo)者、合作者的作用,引導(dǎo)學(xué)生主體參與、揭示本質(zhì)、經(jīng)歷過程。
就知識的應(yīng)用價值上來看,基本不等式是從大量數(shù)學(xué)問題和現(xiàn)實(shí)問題中抽象出來的一個模型,在公式推導(dǎo)中所蘊(yùn)涵的`數(shù)學(xué)思想方法如數(shù)形結(jié)合、抽象歸納、演繹推理、分析法證明等在各種不等式的研究中均有著廣泛的應(yīng)用;另外,在解決函數(shù)最值問題中,基本不等式也起著重要的作用。
就內(nèi)容的人文價值上來看,基本不等式的探究與推導(dǎo)需要學(xué)生觀察、分析、歸納,有助于培養(yǎng)學(xué)生創(chuàng)新思維和探索精神,是培養(yǎng)學(xué)生數(shù)形結(jié)合意識和提高數(shù)學(xué)能力的良好載體。
二、教學(xué)目標(biāo)和目標(biāo)解析
教學(xué)目標(biāo):了解基本不等式的幾何背景,能在教師的引導(dǎo)下探究基本不等式的證明過程,理解基本不等式的幾何解釋,并能解決簡單的最值問題;借助于信息技術(shù)強(qiáng)化數(shù)形結(jié)合的思想方法。
在教師的逐步引導(dǎo)下,能從較為熟悉的幾何圖形中抽象出基本不等式,實(shí)現(xiàn)對基本不等式幾何背景的初步了解。
學(xué)生已經(jīng)學(xué)習(xí)了不等式的基本性質(zhì),可以運(yùn)用作差法給出基本不等式的證明,同時,介紹并滲透分析法證明的思想方法,從而完成基本不等式的代數(shù)證明。
進(jìn)一步通過探究幾何圖形,給出基本不等式的幾何解釋,加強(qiáng)學(xué)生數(shù)形結(jié)合的意識。
通過應(yīng)用問題的解決,明確解決應(yīng)用題的一般過程。這是一個過程性目標(biāo)。借助例1,引導(dǎo)學(xué)生嘗試用基本不等式解決簡單的最值問題,體會和與積的相互轉(zhuǎn)化,進(jìn)一步通過例2,引導(dǎo)學(xué)生領(lǐng)會運(yùn)用基本不等式的三個限制條件(一正二定三相等)在解決最值問題中的作用,并用幾何畫板展示函數(shù)圖形,進(jìn)一步深化數(shù)形結(jié)合的思想。結(jié)合變式訓(xùn)練完善對基本不等式結(jié)構(gòu)的理解,提升解決問題的能力,體會方法與策略。
三、教學(xué)問題診斷
在認(rèn)知上,學(xué)生已經(jīng)掌握了不等式的基本性質(zhì),并能夠根據(jù)不等式的性質(zhì)進(jìn)行數(shù)、式的大小比較,也具備了一定的平面幾何的基本知識。但是,倘若教師不加以引導(dǎo),學(xué)生并不能自覺地通過已有的知識、記憶去發(fā)展和構(gòu)建幾何圖形中的相等或不等關(guān)系,這就需要教師逐步地引導(dǎo),并選用合理的手段去激活學(xué)生的思維,增強(qiáng)數(shù)形結(jié)合的思想意識。
另外,盡可能引領(lǐng)學(xué)生充分理解兩個基本不等式等號成立的條件,為利用基本不等式解決簡單的最值問題做好鋪墊。在用基本不等式解決最值時,學(xué)生往往容易忽視基本不等式,使用的前提條件a,b>0同時又要注意區(qū)別基本不等式的使用條件為,因此,在教學(xué)過程中,借助例題落實(shí)學(xué)生領(lǐng)會基本不等式成立的三個限制條件(一正二定三相等)在解決最值問題中的作用。而對于“一正二定三相等”的進(jìn)一步強(qiáng)化和應(yīng)用,將放于下一個課時的內(nèi)容。
四、教學(xué)支持條件分析
為了能很好地展示幾何圖形,體會基本不等式的幾何背景,教學(xué)中需要有具體的圖形來幫助學(xué)生理解基本不等式的生成,感受數(shù)形結(jié)合的數(shù)學(xué)思想,所以,借助于幾何畫板軟件來加強(qiáng)幾何直觀十分必要,同時演示動畫幫助學(xué)生驗(yàn)證基本不等式等號取到的情況,并用電腦3D技術(shù)展示基本不等式的又一幾何背景,加深對基本不等式的理解,增強(qiáng)教學(xué)效果。
五、教學(xué)設(shè)計流程圖
教學(xué)過程的設(shè)計從實(shí)際的問題情境出發(fā),以基本不等式的幾何背景為著手點(diǎn),以探究活動為主線,探求基本不等式的結(jié)構(gòu)形式,并進(jìn)一步給出幾何解釋,深化對基本不等式的理解。通過典型例題的講解,明確利用基本不等式解決簡單最值問題的應(yīng)用價值。數(shù)形結(jié)合的思想貫穿于整個教學(xué)過程,并時刻體現(xiàn)在教學(xué)活動之中。
六、教法和預(yù)期效果分析
本節(jié)課通過6個教學(xué)環(huán)節(jié),強(qiáng)調(diào)過程教學(xué),在教師的引導(dǎo)下,啟動觀察、分析、感知、歸納、探究等思維活動,從各個層面認(rèn)識基本不等式,并理解其幾何背景。課堂教學(xué)以學(xué)生為主體,基本不等式為主線,在學(xué)生原有的認(rèn)知基本上,充分展示基本不等式這一知識的發(fā)生、發(fā)展及再創(chuàng)造的過程。
同時,以多媒體課件作為教學(xué)輔助手段,賦予學(xué)生直觀感受,便于觀察,從而把一個生疏的、內(nèi)在的知識,變成一個可認(rèn)知的、可交流的對象,提高了課堂效率。
通過這節(jié)課的學(xué)習(xí),引領(lǐng)學(xué)生多角度、多方位地認(rèn)識基本不等式,并了解它的幾何意義充分滲透數(shù)形結(jié)合的思想;能在教師的引導(dǎo)下,主動探索并了解基本不等式的證明過程,強(qiáng)化證明的各類方法;
會用基本不等式解決簡單的(小)值問題并注意等號取到的條件。在教學(xué)過程中始終圍繞教學(xué)目標(biāo)進(jìn)行評價,師生互動,在教學(xué)過程的不同環(huán)節(jié)中及時獲取教學(xué)反饋信息,以學(xué)生為主體,及時調(diào)節(jié)教學(xué)措施,完成教學(xué)目標(biāo),從而達(dá)到較為理想的教學(xué)效果。
Yjs21.coM更多幼兒園教案延伸讀
高中數(shù)學(xué)集合的教案設(shè)計與反思(經(jīng)典8篇)
作為一位優(yōu)秀的老師,教學(xué)是我們的任務(wù)之一,寫教學(xué)反思可以很好的把我們的教學(xué)記錄下來,那么寫教學(xué)反思需要注意哪些問題呢?下面是小編幫大家整理的集合的教學(xué)反思,歡迎閱讀,希望大家能夠喜歡。
高中數(shù)學(xué)集合的教案設(shè)計與反思 篇1
集合間的基本關(guān)系是在前面學(xué)習(xí)了集合的概念、表示方法及集合與元素的關(guān)系后來研究集合之間的一種關(guān)系,它為后面學(xué)好集合的運(yùn)算起著非常重要的作用。
從事這一節(jié)教學(xué)時,我首先根據(jù)思考利用類比的思想引入集合之間有何關(guān)系,通過例子說明集合有包含相等等關(guān)系,引入本節(jié)課的內(nèi)容。
講解子集、相等、真子集、空集概念時,讓學(xué)生認(rèn)真讀概念,理解概念中的關(guān)鍵字。通過反例深刻理解概念中關(guān)鍵字并記住。同時,對概念的三種語言進(jìn)行點(diǎn)明,概念用文字語言,符號語言及圖形語言有機(jī)結(jié)合,逐步使學(xué)生由文字語言向符號語言、圖形語言過渡。
上課時我還注意將抽象概念與實(shí)例相結(jié)合,鼓勵同學(xué)們積極發(fā)言,舉例子來理解概念,尤其是空集的例子。學(xué)生大多舉的是方程無解的例子。有的認(rèn)為{0}是空集,組織學(xué)生討論,讓學(xué)生自己辯論后認(rèn)為它不是空集,加深學(xué)生的理解。
最后,我與學(xué)生共同將子集、相等、真子集等的性質(zhì)進(jìn)行了總結(jié),還通過一一列舉得出例子的推廣,n個元素組成的集合有個子集,個真子集,個非空子集等。
通過本節(jié)課教學(xué),有以下想法:如果讓我重上這節(jié)課,我是否可以寫出本節(jié)課三大知識點(diǎn)?子集,相等,真子集讓學(xué)生自學(xué),通過例子、各小組討論,講解概念、關(guān)鍵字,得出各自的性質(zhì)。同時我在課堂更大限度的還給學(xué)生,充分發(fā)揮學(xué)生的主動積極性。
高中數(shù)學(xué)集合的教案設(shè)計與反思 篇2
今年是我走上教學(xué)崗位的第一年,這一年以來我一直是戰(zhàn)戰(zhàn)兢兢如履薄冰,生怕誤人子弟。在這學(xué)期即將結(jié)束之時,在教授完高中數(shù)學(xué)必修3和必修4之后我有如下一些反思。
因?yàn)橥冶救说膶W(xué)生時代相比較新的課程改革使課標(biāo)從理念、內(nèi)容到實(shí)施都有很大改變,作為一名數(shù)學(xué)教師應(yīng)該充分認(rèn)識數(shù)學(xué)課程改革的理念和目標(biāo)。好在教學(xué)過程中不斷地學(xué)習(xí)、調(diào)整、反思。
首先.應(yīng)該把握好課程標(biāo)準(zhǔn)的要求,不自作主張改變課程標(biāo)準(zhǔn)的意圖。例如私自增加課時,補(bǔ)充一些知識性的東西或增加教學(xué)的難度。這樣做既不利于學(xué)生學(xué)習(xí)能力的提高,又束縛學(xué)生的思維還增加學(xué)生的負(fù)擔(dān)。
其次.在教學(xué)過程中不能只注重定義、概念、結(jié)論的教學(xué)而忽略過程。如在對數(shù)運(yùn)算性質(zhì)的教學(xué)中,我更多地鼓勵學(xué)生通過指數(shù)的'運(yùn)算性質(zhì)的復(fù)習(xí)引導(dǎo)學(xué)生通過各種途徑,如類比、計算、猜測等方法去發(fā)現(xiàn)對數(shù)的運(yùn)算性質(zhì)。而不是直接給出對數(shù)的運(yùn)算的性質(zhì)然后再不斷地進(jìn)行機(jī)械訓(xùn)練。這樣就不至于今天練了明天忘。學(xué)生對自己推導(dǎo)得到的運(yùn)算性質(zhì)就不一樣了,他們能更加理解運(yùn)算規(guī)律,熟記運(yùn)算性質(zhì),熟練運(yùn)用性質(zhì)。
再者,在教學(xué)中不能單一的強(qiáng)調(diào)知識的系統(tǒng)性和邏輯性,卻忽視學(xué)生的認(rèn)知水平,對一些問題的引入常常單刀直入,讓學(xué)生沒有直觀的映象,理解起來不容易接受,在這方面可以從一般到特殊給學(xué)生以直觀映象幫助理解。這樣也符合認(rèn)知的一般規(guī)律。也可以利用多媒體輔助教學(xué),因?yàn)槎嗝襟w可以把很多立體幾何部分的圖形直觀形象地展示給學(xué)生,增加學(xué)生的感性認(rèn)識。同時多媒體也可以有效的增加課堂的容量和減少我們的板書工作量。
最后,我覺得有很多的困惑和擔(dān)心。在貫徹新課標(biāo)的過成中,總會覺得學(xué)生的解題能力變得差了很多,但是學(xué)生的升學(xué)還是以成績?yōu)橐罁?jù)的。不過這也提醒我們要時時刻刻真真誠誠的關(guān)心教育自己的學(xué)生,希望能為學(xué)生的長遠(yuǎn)發(fā)展鋪好路。
高中數(shù)學(xué)集合的教案設(shè)計與反思 篇3
教學(xué)目標(biāo):
1.讓學(xué)生經(jīng)歷韋恩圖的產(chǎn)生過程,能借助直觀圖,利用集合的思想方法解決簡單的實(shí)際問題。
2.培養(yǎng)學(xué)生善于觀察、善于思考的學(xué)習(xí)習(xí)慣。使學(xué)生感受到數(shù)學(xué)在現(xiàn)實(shí)生活中的廣泛應(yīng)用,嘗試用數(shù)學(xué)的方法解決實(shí)際生活中的問題,體驗(yàn)解決問題策略的多樣性。
教學(xué)重點(diǎn):
讓學(xué)生感知集合的思想,并利用集合的思想方法解決簡單的實(shí)際問題。
教學(xué)難點(diǎn):
學(xué)生對重疊部分的理解。
教學(xué)準(zhǔn)備:
多媒體課件、姓名卡片等。
教學(xué)過程:
(一)創(chuàng)設(shè)情境,引出新知
1.出示信息。
出示教科書例1,只出示統(tǒng)計表,不出示問題。讓學(xué)生說一說從中獲得了哪些信息。
2.提出問題,激發(fā)“沖突”
讓學(xué)生自由提出想要解決的問題,重點(diǎn)關(guān)注“參加這兩項(xiàng)比賽的共有多少人”這個問題,讓學(xué)生解答。關(guān)注不同的答案,抓住“沖突”,激發(fā)學(xué)生探究的欲望。
(二)自主探究,學(xué)習(xí)新知
1.獨(dú)立思考表達(dá)方式,經(jīng)歷知識形成過程。
師:大家對這個問題產(chǎn)生了不同的意見。你能不能借助圖、表或其他方式,讓其他人清楚地看出結(jié)果呢?
學(xué)生獨(dú)立思考,并嘗試解決。
2.匯報交流,初步感知集合概念。
(1)小組交流,互相介紹自己的作品。
(2)選擇有代表性的方案全班交流。
請每幅作品的創(chuàng)作者上臺介紹自己的思考過程,注意追問“如何表示出兩項(xiàng)比賽都參加的學(xué)生”,體會兩個集合中的公共元素構(gòu)成的交集。
預(yù)設(shè)1:把參加兩項(xiàng)比賽的學(xué)生姓名分別列出,把相同的名字連起,就找到兩項(xiàng)比賽都參加的學(xué)生了,有3人。這樣參加跳繩比賽的9人,加上參加踢毽比賽的8人,再去掉3個重復(fù)的,應(yīng)該是14人。
預(yù)設(shè)2:先寫出所有參加跳繩比賽同學(xué)的姓名,再寫參加踢毽比賽的。如果與前面的相同就不重復(fù)寫了,連線就能表示了。一共寫出了14個不同的姓名,說明參加比賽的有14人。從姓名上如果引出兩條線,就說明他兩項(xiàng)比賽都參加了。
預(yù)設(shè)3:把參加兩項(xiàng)比賽學(xué)生的`姓名分別放到兩個長方形里,再把兩項(xiàng)比賽都參加的學(xué)生的名字移到一邊,兩個長方形里都有這三個名字,把這兩個長方形的這部分重疊起來,名字只出一次就可以了。可以看出只參加跳繩比賽的有6人,兩項(xiàng)比賽都參加的有3人,只參加踢毽比賽的有5人,一共有14人。
3.對比分析,介紹韋恩圖。
(1)對比、分析,提示課題。
師:同學(xué)們解決問題的能力真強(qiáng),而且畫出了這么多不同的圖示表示。上面的三幅圖中,你更喜歡哪一幅?為什么?
預(yù)設(shè)1:喜歡第三幅,去掉了重復(fù)的學(xué)生的姓名,更清楚,很容易看出參加這兩項(xiàng)比賽的學(xué)生情況。
預(yù)設(shè)2:喜歡第三幅,用兩個長方形的重疊部分表示兩項(xiàng)比賽都參加的學(xué)生,很直觀。
師:在數(shù)學(xué)上,我們把參加跳繩比賽的學(xué)生看作一個整體,叫做一個集合;把參加踢毽比賽的學(xué)生看作一個整體,也是一個集合。今天我們就研究集合。(板書課題:集合。)
(2)介紹用韋恩圖表示集合。
師:第三幅圖先把參加跳繩的和踢毽的學(xué)生的姓名分別放在了長方形里,很直觀。回憶一下,在認(rèn)識百以內(nèi)數(shù)的時候,按要求寫數(shù)時,就把提供的數(shù)和按要求寫出的數(shù)都用類似長方形的圈圈了起,每個圈都分別表示一個集合。
師:在數(shù)學(xué)上我們常用這樣的方法,直觀地把集合中的具體事物表示出來。(多媒體課件出示左下圖,或在黑板上將姓名卡片圈起。)
師:這個圖表示什么?
預(yù)設(shè):參加跳繩比賽的學(xué)生的集合。
出示右上圖,隨學(xué)生回答將參加踢毽比賽的學(xué)生姓名填入圈中。
在填入姓名時,引導(dǎo)學(xué)生發(fā)現(xiàn),每個圈中的姓名不能重復(fù)、不能遺漏,體會集合元素的互異性;每個圈中姓名的擺放次序可以多樣,體會集合元素的無序性。
(3)介紹用韋恩圖表示集合的運(yùn)算。
提問:利用這兩個圖怎樣才能讓他人直觀地看出“參加這兩項(xiàng)比賽的人員情況”呢?
通過多媒體課件,動態(tài)展示將左右兩個圖部分重疊的過程,或操作姓名卡片,去掉重復(fù)的姓名卡片,幫助學(xué)生理解姓名出現(xiàn)兩次的學(xué)生是這兩個集合的公共元素,可以用兩個圖的重疊部分表示它們的交集。
提問:中間重疊的部分表示的是什么?
預(yù)設(shè):兩項(xiàng)比賽都參加的學(xué)生;既參加跳繩比賽又參加踢毽比賽的學(xué)生。
提問:整個圖表示的是什么?
預(yù)設(shè):參加這兩項(xiàng)比賽的學(xué)生;參加跳繩比賽或參加踢毽比賽的學(xué)生。
4.列式解答,加深對集合運(yùn)算的認(rèn)識。
(1)嘗試獨(dú)立解決。
(2)匯報交流,體會解決問題的多種方法。
預(yù)設(shè):9+8-3=14,9+(8-3)=14,8+(9-3)=14,6+3+5=14等。
讓學(xué)生通過圖示與算式結(jié)合進(jìn)行表達(dá),感悟多種集合知識。可以讓學(xué)生在韋恩圖上指一指它們求出的是哪一部分,體會并集;指一指算式中每一步表達(dá)的是哪一部分,如“8-3”和“9-3”,體會差集。
(3)比較辨析,體會基本方法。
通過對各種計算方法的比較,發(fā)現(xiàn)雖然具體列式方法不同,但都解決了問題,即求出了兩個集合的并集的元素個數(shù)。重點(diǎn)讓學(xué)生說一說9+8-3=14這一算式表達(dá)的含義,“參加跳繩比賽的人數(shù)加上參加踢毽比賽的人數(shù)再減去兩項(xiàng)比賽都參加的人數(shù)”,體會“求兩個集合的并集的元素個數(shù),就是用兩個集合的元素個數(shù)的和減去它們的交集的元素個數(shù)”這一基本方法。
(三)聯(lián)系生活,鞏固練習(xí)
1.完成“做一做”第1題。
先獨(dú)立完成,再匯報交流。
可先分別出示兩個集合圈,讓學(xué)生填入相應(yīng)的序號,再利用多媒體課件動態(tài)展示將兩個集合并的過程。
2.完成“做一做”第2題。
學(xué)生先獨(dú)立完成,再匯報交流。
提問1:你是用什么方法解答第(1)題的?要注意什么?
預(yù)設(shè):圈出重復(fù)的姓名,再數(shù)出。要認(rèn)真仔細(xì)找,不要漏掉。
提問2:第(2)題是求什么?你是用什么方法解答的?
預(yù)設(shè):第(2)題求的是獲得“語文之星”或“數(shù)學(xué)之星”的一共有多少人,只要獲得了任何一個獎都要計算進(jìn)去。先數(shù)出獲得“語文之星”的集合的人數(shù),再數(shù)出獲得“數(shù)學(xué)之星”的集合的人數(shù),相加后,再去掉既獲得“語文之星”又獲得“數(shù)學(xué)之星”的人數(shù)。如果學(xué)生理解題意有困難,可以借助韋恩圖幫助學(xué)生理解。
(四)全課小結(jié)
師:今天我們學(xué)習(xí)了集合的知識,還會運(yùn)用集合知識解決生活中的問題。說一說今天你有什么收獲。
高中數(shù)學(xué)集合的教案設(shè)計與反思 篇4
對于許多學(xué)生來說,學(xué)習(xí)數(shù)學(xué)的目標(biāo)僅僅是應(yīng)對考試,其實(shí)不然,學(xué)習(xí)數(shù)學(xué)的一個更重要的目的是要學(xué)會數(shù)學(xué)的思考,用數(shù)學(xué)的眼光去看世界,去了解世界。而對于我們數(shù)學(xué)教師而言,我們還要從教的角度去看待數(shù)學(xué),去發(fā)現(xiàn)數(shù)學(xué),不僅要自己能做、能理解,更重要的是要能夠教會學(xué)生去做、去理解,因此教師對教學(xué)概念的反思應(yīng)當(dāng)從邏輯的、歷史的、辨證的等方面去發(fā)展。比如:
從邏輯的角度看
函數(shù)概念主要包含定義域、值域、對應(yīng)關(guān)系三個要素,以及函數(shù)的單調(diào)性、奇偶性、周期性、對稱性等性質(zhì)和一些具體的特殊函數(shù),如指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)等這些內(nèi)容是函數(shù)教學(xué)的基礎(chǔ),但不是函數(shù)的全部。
從關(guān)系的角度來看
不僅函數(shù)的主要內(nèi)容之間存在著種種實(shí)質(zhì)性的聯(lián)系,比如定義域和對應(yīng)關(guān)系確定了值域,函數(shù)與其他數(shù)學(xué)內(nèi)容之間也存在著密切的聯(lián)系。
方程的根可以作為這個方程對應(yīng)函數(shù)的圖象與坐標(biāo)軸交點(diǎn)的橫坐標(biāo);不等式的解就是這個不等式對應(yīng)函數(shù)的圖象在軸上方或者下方的那一部分所對應(yīng)的橫坐標(biāo)的集合;數(shù)列也就是定義在自然數(shù)集合上的函數(shù);同樣的幾何部分也與函數(shù)有著密切的聯(lián)系。
在新課程背景下的數(shù)學(xué)課堂教學(xué)中,要提高教學(xué)質(zhì)量,提高學(xué)生的學(xué)習(xí)效率,我們應(yīng)該多思考,多準(zhǔn)備,充分做到備教材、備學(xué)生、備教法,提高自身的`教學(xué)機(jī)智,發(fā)揮自身的主導(dǎo)作用。不僅要求學(xué)生學(xué)會,而且要讓學(xué)生會學(xué),特別是自學(xué),尤其是在課堂上,不僅要發(fā)展學(xué)生的智力因素,而且要在有限的時間內(nèi),出色的完成教學(xué)任務(wù),不能穿新鞋走老路。
教師在教學(xué)生時不能把他們看作是空的容器,按照自己的意愿往這些空的容器里灌輸數(shù)學(xué)知識就完了,這樣往往會進(jìn)入誤區(qū),因?yàn)閹熒g在數(shù)學(xué)知識、數(shù)學(xué)活動經(jīng)驗(yàn)、興趣愛好、社會生活閱歷等方面都存在著非常大的差異,這些差異會使得他們對同一個教學(xué)活動的感覺常常是不一樣的。在教學(xué)中,為了更好的教會學(xué)生學(xué)習(xí),一個比較有效的方式就是在教學(xué)的過程中盡量把學(xué)生頭腦中問題擠出來,讓他們把解決問題的思維過程顯露出來。
在數(shù)學(xué)教學(xué)方法上,要有明確的教學(xué)目標(biāo),要能突出重點(diǎn)、化解難點(diǎn),要善于應(yīng)用現(xiàn)代化教學(xué)手段,要根據(jù)具體的教學(xué)內(nèi)容選擇恰當(dāng)?shù)慕虒W(xué)方法,對學(xué)生及時鼓勵、關(guān)愛學(xué)生,充分調(diào)動學(xué)生的積極性,發(fā)揮學(xué)生學(xué)習(xí)的主體作用,重視基礎(chǔ)知識、基本技能和基本方法,滲透教學(xué)思想方法,培養(yǎng)學(xué)生的綜合運(yùn)用能力。
高中數(shù)學(xué)集合的教案設(shè)計與反思 篇5
這一課教學(xué)過程基本上實(shí)現(xiàn)了教學(xué)設(shè)計的意圖,讓學(xué)生體會到了"集合"這一基礎(chǔ)數(shù)學(xué)思想在生活中實(shí)現(xiàn)運(yùn)用,以及這一知識對解決我們生活的實(shí)際問題的重要性。學(xué)生在整個教學(xué)過程能積極參與到數(shù)學(xué)活動中來,積極運(yùn)用所學(xué)的知識解決問題,體會到數(shù)學(xué)知識的有用價值,同時也激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和愛好。主要表現(xiàn)在以下幾方面:
一、創(chuàng)設(shè)問題情境,激發(fā)探索創(chuàng)新的興趣。
當(dāng)學(xué)生解決兩比賽一共有多少人時,答案有了爭議,兩種答案的學(xué)生都說出了自己的理由,學(xué)生的思維得到了碰撞,學(xué)生都想正確的答案是多少。而老師此時沒有及時肯定哪個答案,而又創(chuàng)設(shè)了另一個問題情境,讓學(xué)生設(shè)計圖案來解決這個問題。從而使學(xué)生的思維得到了發(fā)展,提倡學(xué)生思維的開放性和創(chuàng)造性,鼓勵學(xué)生根據(jù)自己的已有知識經(jīng)驗(yàn)和獨(dú)特體驗(yàn),用自己的方法來發(fā)現(xiàn)創(chuàng)造。學(xué)生在一次次的肯定中,學(xué)習(xí)動機(jī)得到激勵,進(jìn)而產(chǎn)生更強(qiáng)的學(xué)習(xí)動機(jī)。
二、注重知識的形成過程,提供學(xué)生實(shí)踐操作的機(jī)會。
現(xiàn)代教育理論主張"讓學(xué)生動手去做科學(xué),而不是用耳朵聽科學(xué)。"因此教學(xué)要給學(xué)生留有足夠的實(shí)踐活動空間,教師是教學(xué)過程的組織者、引導(dǎo)者,使學(xué)生真正成為學(xué)習(xí)的主人。本節(jié)課創(chuàng)設(shè)了讓學(xué)生設(shè)計圖案,學(xué)生設(shè)計的圖案很多??梢?,創(chuàng)造源于實(shí)踐,提供實(shí)踐操作平臺,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和熱情的同時也培養(yǎng)學(xué)生的創(chuàng)新思維
三、注重解決問題方法的多樣化,發(fā)展學(xué)生思維。
不同的學(xué)生有不同的思維方式以及不同的發(fā)展?jié)撃堋=虒W(xué)中關(guān)注學(xué)生的這些個性差異,應(yīng)允許學(xué)生存在思維方式的多樣化和思維水平的不同層次。本節(jié)課學(xué)生共用了5種方法來計算兩個比賽一共有多少人?我也給學(xué)生足夠的時間和空間,鼓勵學(xué)生大膽地發(fā)表自己的觀點(diǎn)和想法。新課改下的數(shù)學(xué)課不僅是讓學(xué)生掌握固定的運(yùn)算方法,也要發(fā)展學(xué)生的思維能力,讓課堂煥發(fā)生命的活力。
本節(jié)課雖然完成了教學(xué)目標(biāo),也有不足之處:
1、強(qiáng)調(diào)過程與教學(xué)時間的矛盾依然存在。
《數(shù)學(xué)新課程標(biāo)準(zhǔn)》十分強(qiáng)調(diào)數(shù)學(xué)教學(xué)要注重過程,強(qiáng)調(diào)學(xué)生的動手操作,實(shí)踐感知,強(qiáng)調(diào)學(xué)生的體驗(yàn),這是新課改的方向。我在本課設(shè)計中,比較注重過程,注重學(xué)生的體驗(yàn),注重培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。教學(xué)過程中讓學(xué)生設(shè)計圖案并填寫名單,匯報就有少數(shù)同學(xué)說沒寫好。要是等所有的同學(xué)都寫好,本課教學(xué)任務(wù)就很難完成,還有展示學(xué)生作品時,許多學(xué)生都設(shè)計得很好,由于時間的關(guān)系,不能一一展示。應(yīng)該說強(qiáng)調(diào)過程與教學(xué)時間的矛盾仍然存在,但如何處理好強(qiáng)調(diào)過程與教學(xué)時間之間的關(guān)系,需要進(jìn)一步地探索和研究。
2、應(yīng)該關(guān)注不同層次的學(xué)生。
教學(xué)活動中教師是引導(dǎo)者、組織者,應(yīng)該讓所有的學(xué)生都參與學(xué)習(xí)中。這樣才能讓不同的學(xué)生有不同的收獲。我在本課利用直觀集合圖說各部分表示的意義時,找了少數(shù)的同學(xué)說了一下,就過渡到下一環(huán)節(jié)。但到了后面的列算式解答時,學(xué)生根據(jù)直觀圖寫出了不同的算式,說算式的意義時有同學(xué)不會說了。部分學(xué)生還沒理解直觀圖左側(cè)和右側(cè)的意義。教師應(yīng)組織學(xué)生討論、交流三個部分的意義,學(xué)生印象深刻了,全體學(xué)生有了思考的過程,這樣后面就不會出現(xiàn)問題了。
高中數(shù)學(xué)集合的教案設(shè)計與反思 篇6
教學(xué)目標(biāo):
1、理解集合的概念和性質(zhì)。
2、了解元素與集合的表示方法。
3、熟記有關(guān)數(shù)集。
4、培養(yǎng)學(xué)生認(rèn)識事物的能力。
教學(xué)重點(diǎn):
集合概念、性質(zhì)
教學(xué)難點(diǎn):
集合概念的理解
教學(xué)過程:
1、定義:
集合:一般地,某些指定的對象集在一起就成為一個集合(集)。元素:集合中每個對象叫做這個集合的元素。
由此上述例中集合的元素是什么?
例(1)的元素為1、3、5、7,
例(2)的元素為到兩定點(diǎn)距離等于兩定點(diǎn)間距離的點(diǎn),
例(3)的元素為滿足不等式3x—2> x+3的`實(shí)數(shù)x,
例(4)的元素為所有直角三角形,
例(5)為高一·六班全體男同學(xué)。
一般用大括號表示集合,{?}如{我校的籃球隊員},{太平洋、大西洋、印度洋、北冰洋}。則上幾例可表示為??
為方便,常用大寫的拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(1)確定性;(2)互異性;(3)無序性。
3、元素與集合的關(guān)系:隸屬關(guān)系
元素與集合的關(guān)系有“屬于∈”及“不屬于?(?也可表示為)兩種。如A={2,4,8,16},則4∈A,8∈A,32?A。
集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集A記作a?A,相反,a不屬于集A記作a?A(或)
注:1、集合通常用大寫的拉丁字母表示,如A、B、C、P、Q??
元素通常用小寫的拉丁字母表示,如a、b、c、p、q??
2、“∈”的開口方向,不能把a(bǔ)∈A顛倒過來寫。
4
注:(1)自然數(shù)集與非負(fù)整數(shù)集是相同的,也就是說,自然數(shù)集包括數(shù)0。
(2)非負(fù)整數(shù)集內(nèi)排除0的集。記作NXX或N+ 。Q、Z、R等其它數(shù)集內(nèi)排除0
的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成ZXX
請回答:已知a+b+c=m,A={x|ax2+bx+c=m},判斷1與A的關(guān)系。
高中數(shù)學(xué)集合的教案設(shè)計與反思 篇7
新課程倡導(dǎo)的是教師是學(xué)生學(xué)習(xí)的引導(dǎo)者、組織者、合作者、促進(jìn)者,是平等的,而不再是“傳道”“解惑”的權(quán)威,更不是學(xué)生學(xué)習(xí)知識的“批發(fā)商”。將學(xué)習(xí)的主動權(quán)交還給學(xué)生,是這節(jié)課給我的最大的啟示。
首先,我讓他們先感受多米諾骨現(xiàn)象,通過播放一段影片并且聯(lián)系生活中的事物和現(xiàn)象,比較這些現(xiàn)象之間的相似之處,感受多米諾骨牌的原理,并在引導(dǎo)他們類比到數(shù)學(xué)的證明題中,引出數(shù)學(xué)歸納法,分析三個步驟間的邏輯推理關(guān)系。
接著,選取三道由易到難的練習(xí),以填空到不做任何提示的方式過渡,讓學(xué)生經(jīng)歷“嘗試——熟練運(yùn)用”的過程,強(qiáng)化使用數(shù)學(xué)歸納法的步驟和注意事項(xiàng)。設(shè)置課堂教學(xué)如果以灌輸為主的,總以為只要抓緊時間將基礎(chǔ)知識講完,然后進(jìn)行大量的練習(xí)和講評、多講些例題,就能提高學(xué)生的數(shù)學(xué)成績。這樣的課看起來效率很高,其實(shí)不然。因?yàn)橛行╊}目講過幾遍,學(xué)生依然會做錯,原因就在于灌輸?shù)恼n堂往往不能從學(xué)生的實(shí)際出發(fā),糾正學(xué)生本來的錯誤,而是把教師的想法和解法填鴨給學(xué)生,幾乎沒有師生之間的交流與互動,這與新課程改革的方向相背離。于是我大膽采取以練為主,例題練習(xí)合二為一的方式,學(xué)生剛明白數(shù)學(xué)歸納法的原理,就動手運(yùn)用,避免不了的.要犯錯誤,我再抓住時機(jī)糾正這些錯誤,一邊強(qiáng)化使用歸納法的步驟,一邊規(guī)范解題的過程,
這樣的教學(xué)方式學(xué)生自然是更感興趣的,提前發(fā)現(xiàn)錯誤肯定比等到做作業(yè)和練習(xí)甚至考試時再發(fā)現(xiàn)更好,所以這樣的課堂教學(xué)也是更高效的。
最后我以微軟的一道面試題結(jié)束整節(jié)課,目的是想學(xué)生們知道自己今天所學(xué)的雖然是數(shù)學(xué)上的一種證明方法,但其實(shí)也是一種思維方法,甚至在關(guān)系自己前程的一場面試中,只要會運(yùn)用它,就能取得成功。
高中數(shù)學(xué)集合的教案設(shè)計與反思 篇8
《矛和盾的集合》這篇課文寫的是發(fā)明家手持矛和盾,在與朋友對打比賽時,由矛和盾的長處想到了發(fā)明坦克。由此說明“誰善于把別人的長處集于一身,誰就會是勝利者”的道理。這篇課文由三部分組成:第一部分講發(fā)明家手持矛和盾,與朋友對打過程中,為了保護(hù)自己,由盾想到了鐵屋子;為了進(jìn)攻,由矛想到了炮口,把兩者結(jié)合起來,發(fā)明了坦克。第二部分講發(fā)明的坦克在戰(zhàn)場上打敗敵軍,大顯神威。第三部分由坦克的發(fā)明引出“誰善于把別人的長處集于一身,誰就會是勝利者”這一道理。作者按發(fā)明坦克的過程──坦克的實(shí)際應(yīng)用──從中引發(fā)道理的順序敘述。
在教學(xué)本課時,學(xué)生對于課文的內(nèi)容并不難理解,他們讀完課文對文中滲透的`道理“誰善于把別人的長處集于一身,誰就會是勝利者”理解到位,但是,很多學(xué)生在讀這篇文章時,對于發(fā)明家發(fā)明坦克的過程卻是一帶而過,這也正是學(xué)生理解的難點(diǎn),也就是說,要把別人的長處集于一身,這是有前提條件的。發(fā)明家一定是一位善于思考的人,因此,我引導(dǎo)學(xué)生,在讀課文的時候,看發(fā)明家遇到了哪些難題,遇到問題后他是如何想辦法解決的?學(xué)生帶著這個問題再讀課文時就會多了一層思考,看來發(fā)明家遇到問題時沒有退縮,而是積極主動地思考,想辦法,因此,我認(rèn)為,這是學(xué)習(xí)著一課除了讓學(xué)生理解“誰善于把別人的長處集于一身,誰就會是勝利者”之外也非常重要的一點(diǎn)。
當(dāng)然,語文課不能上成品德課,在學(xué)生理解的基礎(chǔ)上,老師還要引導(dǎo)學(xué)生用事例加以說明的表達(dá)方法,以及如何把這個過程寫清楚寫具體,這一點(diǎn),我認(rèn)為做的還不夠細(xì)致,這也是下一步需要引起重視并且需要下一番功夫的地方。
數(shù)學(xué)高中教案錦集
每個老師上課需要準(zhǔn)備的東西是教案課件,我們需要靜下心來寫教案課件。只有老師教案課件寫的越好,在教學(xué)過程學(xué)生也更容易理解。以下的“數(shù)學(xué)高中教案”主題相關(guān)內(nèi)容,是幼兒教師教育網(wǎng)小編特意整理的,感謝您的支持希望您能收藏我們的網(wǎng)站隨時獲取最新訊息!
數(shù)學(xué)高中教案(篇1)
一.教材依據(jù)
《江蘇教育出版社》必修5 第二章 第二節(jié)“等差數(shù)列”
二.設(shè)計思想
數(shù)列是刻畫一類離散現(xiàn)象的數(shù)學(xué)模型,在我們的日常生活中,會遇到如存款利息、構(gòu)房貸款、資產(chǎn)折舊等一些計算問題,數(shù)列模型可以幫助我們解決這類實(shí)際問題,學(xué)習(xí)數(shù)列知識對進(jìn)一步理解函數(shù)的概念和體會數(shù)學(xué)的應(yīng)用價值具有重要的意義。
本章主要通過對日常生活中大量的實(shí)際問題的分析,建立等差數(shù)列和等比數(shù)列這兩種數(shù)列模型,探索并掌握它們的一些性質(zhì),感受這兩種數(shù)列模型的廣泛應(yīng)用,并利用它們解決一些實(shí)際問題。
“等差數(shù)列”第一課時是以概念為主的一節(jié)課,內(nèi)容主要是等差數(shù)列的定義和通項(xiàng)公式。等差數(shù)列的通項(xiàng)公式與前n項(xiàng)和的公式的導(dǎo)出都離不開等差數(shù)列的定義,因此,教學(xué)中首先要講清等差數(shù)列的定義,并且自始自終都要緊扣這個定義。
由于等差數(shù)列的定義學(xué)生較易理解,而且學(xué)生也具備這方面的基礎(chǔ),所以在本節(jié)內(nèi)容的教學(xué)設(shè)計上,充分體現(xiàn)學(xué)生是學(xué)習(xí)的主體這一特點(diǎn),首先從實(shí)際問題和學(xué)生已有知識出發(fā),提供一組具體數(shù)列,然后引導(dǎo)學(xué)生通過觀察、分析它們的規(guī)律,歸納出等差數(shù)列的定義。緊接著教師提出一個開放性的問題:“在等差數(shù)列 中,若公差為d,請根據(jù)等差數(shù)列的定義,寫出與之相關(guān)的等式”。并用實(shí)物投影展示有代表性的學(xué)生的列式,由學(xué)生評價、補(bǔ)充。在這過程中,學(xué)生通過數(shù)學(xué)符號語言與文字語言的互譯,加深了對定義的理解。而且用不同的方法推導(dǎo)出了通項(xiàng)公式,把等差數(shù)列的定義與通項(xiàng)公式有機(jī)地聯(lián)系起來。讓學(xué)生充分體驗(yàn)數(shù)學(xué)知識的形成過程,盡可能地讓學(xué)生通過觀察、分析、猜想、歸納、類比、推理等在發(fā)現(xiàn)探索知識的過程中體驗(yàn)數(shù)學(xué),讓學(xué)生在自主探求知識的同時,獲得了分析問題、解決問題的能力,培養(yǎng)了創(chuàng)新意識。在教學(xué)設(shè)計上突出了數(shù)學(xué)思想方法,如對數(shù)列概念的介紹和通項(xiàng)公式的探究中充分體現(xiàn)函數(shù)思想和類比思想;在公式的運(yùn)算中體現(xiàn)方程思想和數(shù)形結(jié)合思想。
在通項(xiàng)公式的應(yīng)用中,有針對性地選擇例題,充分挖掘教材例題的內(nèi)涵。通過例1(教材例4)的教學(xué),讓學(xué)生感受等差數(shù)列與一次函數(shù)的關(guān)系,聯(lián)系教材36頁的“思考”進(jìn)行教學(xué)設(shè)計,引導(dǎo)學(xué)生發(fā)現(xiàn)等差數(shù)列的公差d便是數(shù)列的各點(diǎn)所在直線的斜率,進(jìn)一步得出公差d與等差數(shù)列函數(shù)單調(diào)性的關(guān)系。在例2(教材例2)的教學(xué)中,讓學(xué)生初步感受數(shù)列通項(xiàng)公式的應(yīng)用,并引導(dǎo)學(xué)生發(fā)現(xiàn)a6=a3+6d,進(jìn)一步探索通項(xiàng)公式更一般的形式。
三.教學(xué)目標(biāo)
1.認(rèn)知目標(biāo):理解等差數(shù)列的定義,掌握等差數(shù)列通項(xiàng)公式的推導(dǎo)方法以及它的簡單應(yīng)用。
2.能力目標(biāo):在定義的理解和通項(xiàng)公式的推導(dǎo)、應(yīng)用過程中,培養(yǎng)學(xué)生的觀察、分析、歸納能力和嚴(yán)密的邏輯思維能力。
3.情感目標(biāo):通過學(xué)生自主的探索活動,獲得新知識,讓學(xué)生感受到成功的喜悅,從中培養(yǎng)他們的創(chuàng)新意識。
四.教學(xué)重點(diǎn):
理解等差數(shù)列的定義,掌握等差數(shù)列通項(xiàng)公式的推導(dǎo)方法。
五.教學(xué)難點(diǎn):
對等差數(shù)列通項(xiàng)公式的透徹理解以及通項(xiàng)公式的函數(shù)意義。
六.教學(xué)準(zhǔn)備:
1、認(rèn)真研讀“數(shù)列”這一章新舊教材,比較它們的異同,以便備課時能更好地體現(xiàn)新課程理念。
2、課前發(fā)給每位同學(xué)一張白紙,要求學(xué)生帶黑色水筆,以備課堂實(shí)物投影所需。
3、老師制作投影片,課前檢查實(shí)物投影儀。
七.教學(xué)過程:
㈠引言:
從學(xué)生上一課所學(xué)的“劇場座位”的數(shù)列實(shí)例(教材P29)導(dǎo)入新課。
教師出示【投影片1】 某劇場有30排座位,第一排有20個座位,從第二排起,后一排都比前一排多2個座位,那么各排的座位數(shù)依次為20,22,24,26,28,…。
思考:第30排有多少個座位?
㈡關(guān)于等差數(shù)列定義的學(xué)習(xí)過程:
實(shí)例展示,引出定義
⑴教師出示【投影片2】并提出問題:觀察下列數(shù)列有何共同特點(diǎn)?
(設(shè)計目的:①逐步引導(dǎo)學(xué)生自己描述出這些數(shù)列的共同特征,從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個常數(shù)。②培養(yǎng)學(xué)生的觀察能力和歸納、表達(dá)能力。)
⑵教師:揭示課題(板書),出示【投影片3】:
如果一個數(shù)列從第2項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的差都等于同一個常數(shù),這個數(shù)列就叫做等差數(shù)列。
(設(shè)計目的:加深對定義中關(guān)鍵詞的理解。)
對定義的再認(rèn)識:
⑴教師再次出示【投影片2】,并提出問題:以上四個等差數(shù)列從第2項(xiàng)起,每一項(xiàng)與前一項(xiàng)的差是多少?
(設(shè)計目的:引出公差的概念及符號表示。)
⑵教師提出問題:如果等差數(shù)列 : ,公差為d,根據(jù)等差數(shù)列的定義,寫出與之相關(guān)的等式,選擇列式有代表性的學(xué)生板演。(估計學(xué)生會出現(xiàn)以下幾種狀況)
狀況一: 狀況二:
數(shù)學(xué)高中教案(篇2)
教材分析:
1、內(nèi)容簡析:
本節(jié)主要內(nèi)容是等比數(shù)列的概念及通項(xiàng)公式,它是繼等差數(shù)列后有一個特殊數(shù)列,是研究數(shù)列的重要載體,與實(shí)際生活有密切的聯(lián)系,如細(xì)胞分裂、銀行貸款問題等都要用等比數(shù)列的知識來解決,在研究過程中體現(xiàn)了由特殊到一般的數(shù)學(xué)思想、函數(shù)思想和方程思想,在高考中占有重要地位。
2、教學(xué)目標(biāo)確定:
從知識結(jié)構(gòu)來看,本節(jié)核心內(nèi)容是等比數(shù)列的概念及通項(xiàng)公式,可從等比數(shù)列的“等比”的特點(diǎn)入手,結(jié)合具體的例子來學(xué)習(xí)等比數(shù)列的概念,同時,還要注意“比”的特性。在學(xué)習(xí)等比數(shù)列的定義的基礎(chǔ)上,導(dǎo)出等比數(shù)列的通項(xiàng)公式以及一些常用的性質(zhì)。從而可以確定如下教學(xué)目標(biāo)(三維目標(biāo)):
第一課時:
(1)理解等比數(shù)列的概念 ,掌握等比數(shù)列的通項(xiàng)公式及公式的推導(dǎo)
(2)在教學(xué)過程中滲透方程、函數(shù)、特殊到一般等數(shù)學(xué)思想,提高學(xué)生觀察、歸納、猜想、證明等邏輯思維能力
(3)通過對等比數(shù)列通項(xiàng)公式的推導(dǎo),培養(yǎng)學(xué)生發(fā)現(xiàn)意識、創(chuàng)新意識
第二課時:
(1)加深對等比數(shù)列概念理解,靈活運(yùn)用等比數(shù)列的定義及通項(xiàng)公式,了解等比中項(xiàng)概念,掌握等比數(shù)列的性質(zhì)
(2)運(yùn)用等比數(shù)列的定義及通項(xiàng)公式解決問題,增強(qiáng)學(xué)生的應(yīng)用
3、教學(xué)重點(diǎn)與難點(diǎn):
第一課時:
重點(diǎn):等比數(shù)列的定義及通項(xiàng)公式
難點(diǎn):應(yīng)用等比數(shù)列的定義及通項(xiàng)公式,解決相關(guān)簡單問題
第二課時:
重點(diǎn):等比中項(xiàng)的理解與運(yùn)用,及等比數(shù)列定義及通項(xiàng)公式的應(yīng)用
難點(diǎn):靈活應(yīng)用等比數(shù)列的定義及通項(xiàng)公式、性質(zhì)解決相關(guān)問題
學(xué)情分析:
從整個中學(xué)數(shù)學(xué)教材體系安排分析,前面已安排了函數(shù)知識的學(xué)習(xí),以及等差數(shù)列的有關(guān)知識的學(xué)習(xí),但是對于國際象棋故事中的問題,學(xué)生還是不能解決,存在疑問。本課正是由此入手來引發(fā)學(xué)生的認(rèn)知沖突,產(chǎn)生求知的欲望。而矛盾解決的關(guān)鍵依然依賴于學(xué)生原有的認(rèn)知結(jié)構(gòu)──在研究等差數(shù)列中用到的思想方法,于是從幾個特殊的對應(yīng)觀察、分析、歸納、概括得出等比數(shù)列的定義及通項(xiàng)公式。
高一學(xué)生正處于從初中到高中的過度階段,對數(shù)學(xué)思想和方法的認(rèn)識還不夠,思維能力比較欠缺,他們重視具體問題的運(yùn)算而輕視對問題的抽象分析。同時,高一階段又是學(xué)生形成良好的思維能力的關(guān)鍵時期。因此,本節(jié)教學(xué)設(shè)計一方面遵循從特殊到一般的認(rèn)知規(guī)律,另一方面也加強(qiáng)觀察、分析、歸納、概括能力培養(yǎng)。
多數(shù)學(xué)生愿意積極參與,積極思考,表現(xiàn)自我。所以教師可以把盡可能多的時間、空間讓給學(xué)生,讓學(xué)生在參與的過程中,學(xué)習(xí)的自信心和學(xué)習(xí)熱情等個性心理品質(zhì)得到很好的培養(yǎng)。這也體現(xiàn)了教學(xué)工作中學(xué)生的主體作用。
教法選擇與學(xué)法指導(dǎo):
由于等比數(shù)列與等差數(shù)列僅一字之差,在知識內(nèi)容上是平行的,可用比較法來學(xué)習(xí)等比數(shù)列的相關(guān)知識。在深刻理解等差數(shù)列與等比數(shù)列的區(qū)別與聯(lián)系的基礎(chǔ)上,牢固掌握數(shù)列的相關(guān)知識。因此,在教法和學(xué)法上可做如下考慮:
1、教法:采用問題啟發(fā)與比較探究式相結(jié)合的教學(xué)方法
教法構(gòu)思如下:提出問題 引發(fā)認(rèn)知沖突 觀察分析 歸納概括 得出結(jié)論 總結(jié)提高。在教師的精心組織下,對學(xué)生各種能力進(jìn)行培養(yǎng),并以促進(jìn)學(xué)生發(fā)展,又以學(xué)生的發(fā)展帶動其學(xué)習(xí)。同時,它也能促進(jìn)學(xué)生學(xué)會如何學(xué)習(xí),因而特別有利于培養(yǎng)學(xué)生的探索能力。
2、學(xué)法指導(dǎo):
學(xué)生學(xué)習(xí)的目的在于學(xué)會學(xué)習(xí)、思考,達(dá)到創(chuàng)新的目的,掌握科學(xué)有效的學(xué)習(xí)方法,可增強(qiáng)學(xué)生的學(xué)習(xí)信心,培養(yǎng)其學(xué)習(xí)興趣,提高學(xué)習(xí)效率,從而激發(fā)強(qiáng)烈的學(xué)習(xí)積極性。我考慮從以下幾方面來進(jìn)行學(xué)法指導(dǎo):
把隱含在教材中的思想方法顯化。如等比數(shù)列通項(xiàng)公式的推導(dǎo)體現(xiàn)了從特殊到一般的方法。其通項(xiàng)公式 是以n為字變量的函數(shù),可利用函數(shù)思想來解決數(shù)列有關(guān)問題。思想方法的顯化對提高學(xué)生數(shù)學(xué)修養(yǎng)有幫助。
注重從科學(xué)方法論的高度指導(dǎo)學(xué)生的學(xué)習(xí)。通過提問、分析、解答、總結(jié),培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題、解決問題的能力。訓(xùn)練邏輯思維的嚴(yán)密性和深刻性的目的。
教學(xué)過程設(shè)計:
第一課時
1、創(chuàng)設(shè)情境,提出問題 (閱讀本章引言并打出幻燈片)
情境1:本章引言內(nèi)容
提出問題:同學(xué)們,國王有能力滿足發(fā)明者的要求嗎?
引導(dǎo)學(xué)生寫出各個格子里的麥粒數(shù)依次為:
1,2, ……, (1)
于是發(fā)明者要求的麥??倲?shù)是
情境2:某人從銀行貸款10000元人民幣,年利率為r,若此人一年后還款,二年后還款,三年后還款,……,還款數(shù)額依次滿足什么規(guī)律?
10000(1+r),10000 ,10000 ,…… (2)
情境3:將長度為1米的木棒取其一半,將所得的一半再取其一半,再將所得的木棒繼續(xù)取其一半,……各次取得的木棒長度依次為多少? …… (3)
問:你能算出第7次取一半后的長度是多少嗎?觀察、歸納、猜想得
2、自主探究,找出規(guī)律:
學(xué)生對數(shù)列(1),(2),(3)分析討論,發(fā)現(xiàn)共同特點(diǎn):從第二項(xiàng)起,每一項(xiàng)與前一項(xiàng)的比都等于同一常數(shù)。也就是說這些數(shù)列從第二項(xiàng)起,每一項(xiàng)與前一項(xiàng)的比都具有“相等”的特點(diǎn)。于是得到等比數(shù)列的定義:
一般地,如果一個數(shù)列從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一個常數(shù),那么這個數(shù)列叫做等比數(shù)列。這個常數(shù)叫做等比數(shù)列的公比,公比常用字母 表示,即 。
如數(shù)列(1),(2),(3)都是等比數(shù)列,它們的公比依次是2,1+r,
點(diǎn)評:等比數(shù)列與等差數(shù)列僅一字之差,對比知從第二項(xiàng)起,每一項(xiàng)與前一項(xiàng)之“差”為常數(shù),則為等差數(shù)列,之“比”為常數(shù),則為等比數(shù)列,此常數(shù)稱為“公差”或“公比”。
3、觀察判斷,分析總結(jié):
觀察以下數(shù)列,判斷它是否為等比數(shù)列,若是,找出公比,若不是,說出理由,然后回答下面問題:
1,3,9,27,……
……
1,-2,4,-8,……
-1,-1,-1,-1,……
1,0,1,0,……
思考:①公比 能為0嗎?為什么?首項(xiàng)能為0嗎?
②公比 是什么數(shù)列?
③ 數(shù)列遞增嗎? 數(shù)列遞減嗎?
④等比數(shù)列的定義也恰好給出了等比數(shù)列的遞推關(guān)系式:
這一遞推式正是我們證明等比數(shù)列的重要工具。
選題分析;因?yàn)榈炔顢?shù)列公差 可以取任意實(shí)數(shù),所以學(xué)生對公比 往往忘卻它不能取0和能取1的特殊情況,以致于在不為具體數(shù)字(即為字母運(yùn)算)時不會討論以上兩種情況,故給出問題以揭示學(xué)生對公比 有防患意識,問題③是讓學(xué)生明白 時等比數(shù)列的單調(diào)性不定,而 時數(shù)列為擺動數(shù)列,要注意與等差數(shù)列的區(qū)別。
備選題:已知 則 …… ,……成等比數(shù)列的從要條件是什么?
4、觀察猜想,求通項(xiàng):
方法1:由定義知道 ……歸納得:等比數(shù)列的通項(xiàng)公式為:
(說明:推得結(jié)論的這一方法稱為歸納法,不是公式的證明,要想對這一方式的結(jié)論給出嚴(yán)格的證明,需在學(xué)習(xí)數(shù)學(xué)歸納法后完成,現(xiàn)階段我們只承認(rèn)它是正確的就可以了)
方法2:迭代法
根據(jù)等比數(shù)列的定義有
……
方法3:由遞推關(guān)系式或定義寫出: …… ,通過觀察發(fā)現(xiàn) …… ……
,即:
(此證明方法稱為“累商法”,在以后的數(shù)列證明中有重要應(yīng)用)
公式 的特征及結(jié)構(gòu)分析:
數(shù)學(xué)高中教案(篇3)
【課題名稱】
《等差數(shù)列》的導(dǎo)入
【授課年級】
高中二年級
【教學(xué)重點(diǎn)】
理解等差數(shù)列的概念,能夠運(yùn)用等差數(shù)列的定義判斷一個數(shù)列是否為等差數(shù)列。
【教學(xué)難點(diǎn)】
等差數(shù)列的性質(zhì)、等差數(shù)列“等差”特點(diǎn)的理解,
【教具準(zhǔn)備】多媒體課件、投影儀
【三維目標(biāo)】
㈠知識目標(biāo):
了解公差的概念,明確一個等差數(shù)列的限定條件,能根據(jù)定義判斷一個等差數(shù)列是否是一個等差數(shù)列;
㈡能力目標(biāo):
通過尋找等差數(shù)列的共同特征,培養(yǎng)學(xué)生的觀察力以及歸納推理的能力;
㈢情感目標(biāo):
通過對等差數(shù)列概念的歸納概括,培養(yǎng)學(xué)生的觀察、分析資料的能力。
【教學(xué)過程】
導(dǎo)入新課
師:上兩節(jié)課我們已經(jīng)學(xué)習(xí)了數(shù)列的定義以及給出表示數(shù)列的幾種方法—列舉法、通項(xiàng)法,遞推公式、圖像法。這些方法分別從不同的角度反映了數(shù)列的特點(diǎn)。下面我們觀察以下的幾個數(shù)列的例子:
(1)我們經(jīng)常這樣數(shù)數(shù),從0開始,每個5個數(shù)可以得到數(shù)列:0,5,10,15,20,()
(2)2000年,在澳大利亞悉尼舉行的奧運(yùn)會上,女子舉重被正式列為比賽項(xiàng)目,該項(xiàng)目工設(shè)置了7個級別,其中較輕的4個級別體重組成的數(shù)列(單位:kg)為48,53,58,63,()試問第五個級別體重多少?
(3)為了保證優(yōu)質(zhì)魚類有良好的生活環(huán)境,水庫管理員定期放水清庫以清除水庫中的雜魚。如果一個水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m。即可得到一個數(shù)列:18,15.5,13,10.5,8,(),則第六個數(shù)應(yīng)為多少?
(4)10072,10144,10216,( ),10360
請同學(xué)們回答以上的四個問題
生:第一個數(shù)列的第6項(xiàng)為25,第二個數(shù)列的第5個數(shù)為68,第三個數(shù)列的第6個數(shù)為5.5,第四個數(shù)列的第4個數(shù)為10288。
師:我來問一下,你是依據(jù)什么得到了這幾個數(shù)的呢?請以第二個數(shù)列為例說明一下。
生:第二個數(shù)列的后一項(xiàng)總比前一項(xiàng)多5,依據(jù)這個規(guī)律我就得到了這個數(shù)列的第5個數(shù)為68.
師:說的很好!同學(xué)們再仔細(xì)地觀察一下以上的四個數(shù)列,看看以上的四個數(shù)列是否有什么共同特征?請注意,是共同特征。
生1:相鄰的兩項(xiàng)的差都等于同一個常數(shù)。
師:很好!那作差是否有順序?是否可以顛倒?
生2:作差的順序是后項(xiàng)減去前項(xiàng),不能顛倒!
師:正如生1的總結(jié),這四個數(shù)列有共同的特征:從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差都等于同一個常數(shù)(即等差)。我們叫這樣的數(shù)列為等差數(shù)列。這就是我們這節(jié)課要研究的內(nèi)容。
推進(jìn)新課
等差數(shù)列的定義:一般地,如果一個數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差都等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列,這個常數(shù)就叫做等差數(shù)列的公差,公差常用字母d表示。從剛才的分析,同學(xué)們應(yīng)該注意公差d一定是由后項(xiàng)減前項(xiàng)。
師:有哪個同學(xué)知道定義中的關(guān)鍵字是什么?
生2:“從第二項(xiàng)起”和“同一個常數(shù)”
高中數(shù)學(xué)優(yōu)秀教案?篇2
一、教學(xué)目標(biāo)
【知識與技能】
在掌握圓的標(biāo)準(zhǔn)方程的基礎(chǔ)上,理解記憶圓的一般方程的代數(shù)特征,由圓的一般方程確定圓的`圓心半徑,掌握方程x+y+Dx+Ey+F=0表示圓的條件。
【過程與方法】
通過對方程x+y+Dx+Ey+F=0表示圓的的條件的探究,學(xué)生探索發(fā)現(xiàn)及分析解決問題的實(shí)際能力得到提高。
【情感態(tài)度與價值觀】
滲透數(shù)形結(jié)合、化歸與轉(zhuǎn)化等數(shù)學(xué)思想方法,提高學(xué)生的整體素質(zhì),激勵學(xué)生創(chuàng)新,勇于探索。
二、教學(xué)重難點(diǎn)
【重點(diǎn)】
掌握圓的一般方程,以及用待定系數(shù)法求圓的一般方程。
【難點(diǎn)】
二元二次方程與圓的一般方程及標(biāo)準(zhǔn)圓方程的關(guān)系。
三、教學(xué)過程
(一)復(fù)習(xí)舊知,引出課題
1、復(fù)習(xí)圓的標(biāo)準(zhǔn)方程,圓心、半徑。
2、提問1:已知圓心為(1,—2)、半徑為2的圓的方程是什么?
高中數(shù)學(xué)優(yōu)秀教案?篇3
[學(xué)習(xí)目標(biāo)]
(1)會用坐標(biāo)法及距離公式證明Cα+β;
(2)會用替代法、誘導(dǎo)公式、同角三角函數(shù)關(guān)系式,由Cα+β推導(dǎo)Cα—β、Sα±β、Tα±β,切實(shí)理解上述公式間的關(guān)系與相互轉(zhuǎn)化;
(3)掌握公式Cα±β、Sα±β、Tα±β,并利用簡單的三角變換,解決求值、化簡三角式、證明三角恒等式等問題。
[學(xué)習(xí)重點(diǎn)]
兩角和與差的正弦、余弦、正切公式
[學(xué)習(xí)難點(diǎn)]
余弦和角公式的推導(dǎo)
[知識結(jié)構(gòu)]
1、兩角和的余弦公式是三角函數(shù)一章和、差、倍公式系列的基礎(chǔ)。其公式的證明是用坐標(biāo)法,利用三角函數(shù)定義及平面內(nèi)兩點(diǎn)間的距離公式,把兩角和α+β的余弦,化為單角α、β的三角函數(shù)(證明過程見課本)
2、通過下面各組數(shù)的值的比較:①cos(30°—90°)與cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我們應(yīng)該得出如下結(jié)論:一般情況下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。
3、當(dāng)α、β中有一個是的整數(shù)倍時,應(yīng)首選誘導(dǎo)公式進(jìn)行變形。注意兩角和與差的三角函數(shù)是誘導(dǎo)公式等的基礎(chǔ),而誘導(dǎo)公式是兩角和與差的三角函數(shù)的特例。
4、關(guān)于公式的正用、逆用及變用
高中數(shù)學(xué)優(yōu)秀教案?篇4
一、教學(xué)內(nèi)容分析
圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無數(shù)次實(shí)踐后的高度抽象。恰當(dāng)?shù)乩枚x解題,許多時候能以簡馭繁。因此,在學(xué)習(xí)了橢圓、雙曲線、拋物線的定義及標(biāo)準(zhǔn)方程、幾何性質(zhì)后,再一次強(qiáng)調(diào)定義,學(xué)會利用圓錐曲線定義來熟練的解題”。
二、學(xué)生學(xué)習(xí)情況分析
我所任教班級的學(xué)生參與課堂教學(xué)活動的積極性強(qiáng),思維活躍,但計算能力較差,推理能力較弱,使用數(shù)學(xué)語言的表達(dá)能力也略顯不足。
三、設(shè)計思想
由于這部分知識較為抽象,如果離開感性認(rèn)識,容易使學(xué)生陷入困境,降低學(xué)習(xí)熱情。在教學(xué)時,借助多媒體動畫,引導(dǎo)學(xué)生主動發(fā)現(xiàn)問題、解決問題,主動參與教學(xué),在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學(xué)效率。
四、教學(xué)目標(biāo)
1、深刻理解并熟練掌握圓錐曲線的定義,能靈活應(yīng)用定義解決問題;熟練掌握焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)、焦距、離心率、準(zhǔn)線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識求解圓錐曲線的方程。
2、通過對練習(xí),強(qiáng)化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設(shè)問,引導(dǎo)學(xué)生學(xué)習(xí)解題的一般方法。
3、借助多媒體輔助教學(xué),激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣。
五、教學(xué)重點(diǎn)與難點(diǎn):
教學(xué)重點(diǎn)
1、對圓錐曲線定義的理解
2、利用圓錐曲線的定義求“最值”
3、“定義法”求軌跡方程
教學(xué)難點(diǎn):
巧用圓錐曲線定義解題
六、教學(xué)過程設(shè)計
【設(shè)計思路】
(一)開門見山,提出問題
一上課,我就直截了當(dāng)?shù)亟o出——
例題1:(1)已知A(—2,0),B(2,0)動點(diǎn)M滿足|MA|+|MB|=2,則點(diǎn)M的軌跡是()。
(A)橢圓(B)雙曲線(C)線段(D)不存在
(2)已知動點(diǎn)M(x,y)滿足(x1)2(y2)2|3x4y|,則點(diǎn)M的軌跡是()。
(A)橢圓(B)雙曲線(C)拋物線(D)兩條相交直線
【設(shè)計意圖】
定義是揭示概念內(nèi)涵的邏輯方法,熟悉不同概念的不同定義方式,是學(xué)習(xí)和研究數(shù)學(xué)的一個必備條件,而通過一個階段的學(xué)習(xí)之后,學(xué)生們對圓錐曲線的定義已有了一定的認(rèn)識,他們是否能真正掌握它們的本質(zhì),是我本節(jié)課首先要弄清楚的問題。
為了加深學(xué)生對圓錐曲線定義理解,我以圓錐曲線的定義的運(yùn)用為主線,精心準(zhǔn)備了兩道練習(xí)題。
【學(xué)情預(yù)設(shè)】
估計多數(shù)學(xué)生能夠很快回答出正確答案,但是部分學(xué)生對于圓錐曲線的定義可能并未真正理解,因此,在學(xué)生們回答后,我將要求學(xué)生接著說出:若想答案是其他選項(xiàng)的話,條件要怎么改?這對于已學(xué)完圓錐曲線這部分知識的學(xué)生來說,并不是什么難事。但問題(2)就可能讓學(xué)生們費(fèi)一番周折——如果有學(xué)生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對原等式做變形:(x1)2(y2)25這樣,很快就能得出正確結(jié)果。如若不然,我將啟發(fā)他們從等式兩端的式子|3x4y|5入手,考慮通過適當(dāng)?shù)淖冃危D(zhuǎn)化為學(xué)生們熟知的兩個距離公式。
在對學(xué)生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標(biāo)是,實(shí)軸長為,焦距為。以深化對概念的理解。
(二)理解定義、解決問題
例2(1)已知動圓A過定圓B:x2y26x70的圓心,且與定圓C:xy6x910相內(nèi)切,求△ABC面積的最大值。
(2)在(1)的條件下,給定點(diǎn)P(—2,2),求|PA|
【設(shè)計意圖】
運(yùn)用圓錐曲線定義中的數(shù)量關(guān)系進(jìn)行轉(zhuǎn)化,使問題化歸為幾何中求最大(小)值的模式,是解析幾何問題中的一種常見題型,也是學(xué)生們比較容易混淆的一類問題。例2的設(shè)置就是為了方便學(xué)生的辨析。
【學(xué)情預(yù)設(shè)】
根據(jù)以往的經(jīng)驗(yàn),多數(shù)學(xué)生看上去都能順利解答本題,但真正能完整解答的可能并不多。事實(shí)上,解決本題的關(guān)鍵在于能準(zhǔn)確寫出點(diǎn)A的軌跡,有了練習(xí)題1的鋪墊,這個問題對學(xué)生們來講就顯得頗為簡單,因此面對例2(1),多數(shù)學(xué)生應(yīng)該能準(zhǔn)確給出解答,但是對于例2(2)這樣相對比較陌生的問題,學(xué)生就無從下手。我提醒學(xué)生把3/5和離心率聯(lián)系起來,這樣就容易和第二定義聯(lián)系起來,從而找到解決本題的突破口。
(三)自主探究、深化認(rèn)識
如果時間允許,練習(xí)題將為學(xué)生們提供一次數(shù)學(xué)猜想、試驗(yàn)的機(jī)會——
練習(xí):設(shè)點(diǎn)Q是圓C:(x1)2225|AB|的最小值。3y225上動點(diǎn),點(diǎn)A(1,0)是圓內(nèi)一點(diǎn),AQ的垂直平分線與CQ交于點(diǎn)M,求點(diǎn)M的軌跡方程。
引申:若將點(diǎn)A移到圓C外,點(diǎn)M的軌跡會是什么?
【設(shè)計意圖】練習(xí)題設(shè)置的目的是為學(xué)生課外自主探究學(xué)習(xí)提供平臺,當(dāng)然,如果課堂上時間允許的話,
可借助“多媒體課件”,引導(dǎo)學(xué)生對自己的結(jié)論進(jìn)行驗(yàn)證。
【知識鏈接】
(一)圓錐曲線的定義
1、圓錐曲線的第一定義
2、圓錐曲線的統(tǒng)一定義
(二)圓錐曲線定義的應(yīng)用舉例
1、雙曲線1的兩焦點(diǎn)為F1、F2,P為曲線上一點(diǎn),若P到左焦點(diǎn)F1的距離為12,求P到右準(zhǔn)線的距離。
2、|PF1||PF2|2。P為等軸雙曲線x2y2a2上一點(diǎn),F(xiàn)1、F2為兩焦點(diǎn),O為雙曲線的中心,求的|PO|取值范圍。
3、在拋物線y22px上有一點(diǎn)A(4,m),A點(diǎn)到拋物線的焦點(diǎn)F的距離為5,求拋物線的方程和點(diǎn)A的坐標(biāo)。
4、(1)已知點(diǎn)F是橢圓1的右焦點(diǎn),M是這橢圓上的動點(diǎn),A(2,2)是一個定點(diǎn),求|MA|+|MF|的最小值。
(2)已知A(,3)為一定點(diǎn),F(xiàn)為雙曲線1的右焦點(diǎn),M在雙曲線右支上移動,當(dāng)|AM||MF|最小時,求M點(diǎn)的坐標(biāo)。
(3)已知點(diǎn)P(—2,3)及焦點(diǎn)為F的拋物線y,在拋物線上求一點(diǎn)M,使|PM|+|FM|最小。
5、已知A(4,0),B(2,2)是橢圓1內(nèi)的點(diǎn),M是橢圓上的動點(diǎn),求|MA|+|MB|的最小值與最大值。
七、教學(xué)反思
1、本課將借助于,將使全體學(xué)生參與活動成為可能,使原來令人難以理解的抽象的數(shù)學(xué)理論變得形象,生動且通俗易懂,同時,運(yùn)用“多媒體課件”輔助教學(xué),節(jié)省了板演的時間,從而給學(xué)生留出更多的時間自悟、自練、自查,充分發(fā)揮學(xué)生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學(xué)理念的有機(jī)結(jié)合的教學(xué)優(yōu)勢。
2、利用兩個例題及其引申,通過一題多變,層層深入的探索,以及對猜測結(jié)果的檢測研究,培養(yǎng)學(xué)生思維能力,使學(xué)生從學(xué)會一個問題的求解到掌握一類問題的解決方法。循序漸進(jìn)的讓學(xué)生把握這類問題的解法;將學(xué)生容易混淆的兩類求“最值問題”并為一道題,方便學(xué)生進(jìn)行比較、分析。雖然從表面上看,我這一堂課的教學(xué)容量不大,但事實(shí)上,學(xué)生們的思維運(yùn)動量并不會小。
總之,如何更好地選擇符合學(xué)生具體情況,滿足教學(xué)目標(biāo)的例題與練習(xí)、靈活把握課堂教學(xué)節(jié)奏仍是我今后工作中的一個重要研究課題。而要能真正進(jìn)行素質(zhì)教育,培養(yǎng)學(xué)生的創(chuàng)新意識,自己首先必須更新觀念——在教學(xué)中適度使用多媒體技術(shù),讓學(xué)生有參與教學(xué)實(shí)踐的機(jī)會,能夠使學(xué)生在學(xué)習(xí)新知識的同時,激發(fā)起求知的欲望,在尋求解決問題的辦法的過程中獲得自信和成功的體驗(yàn),于不知不覺中改善了他們的思維品質(zhì),提高了數(shù)學(xué)思維能力。
高中數(shù)學(xué)優(yōu)秀教案?篇5
一、教學(xué)目標(biāo)
【知識與技能】
在掌握圓的標(biāo)準(zhǔn)方程的基礎(chǔ)上,理解記憶圓的一般方程的代數(shù)特征,由圓的一般方程確定圓的圓心半徑,掌握方程x+y+Dx+Ey+F=0表示圓的條件。
【過程與方法】
通過對方程x+y+Dx+Ey+F=0表示圓的的條件的探究,學(xué)生探索發(fā)現(xiàn)及分析解決問題的實(shí)際能力得到提高。
【情感態(tài)度與價值觀】
滲透數(shù)形結(jié)合、化歸與轉(zhuǎn)化等數(shù)學(xué)思想方法,提高學(xué)生的整體素質(zhì),激勵學(xué)生創(chuàng)新,勇于探索。
二、教學(xué)重難點(diǎn)
【重點(diǎn)】
掌握圓的一般方程,以及用待定系數(shù)法求圓的一般方程。
【難點(diǎn)】
二元二次方程與圓的一般方程及標(biāo)準(zhǔn)圓方程的關(guān)系。
三、教學(xué)過程
(一)復(fù)習(xí)舊知,引出課題
1、復(fù)習(xí)圓的標(biāo)準(zhǔn)方程,圓心、半徑。
2、提問1:已知圓心為(1,—2)、半徑為2的圓的方程是什么?
數(shù)學(xué)高中教案(篇4)
我們前面學(xué)習(xí)了指數(shù)運(yùn)算,在此基礎(chǔ)上,今天我們要來研究一類新的常見函數(shù)-------.
這類函數(shù)之所以重點(diǎn)介紹的原因就是它是實(shí)際生活中的一種需要.比如我們看下面的問題:
問題1:某種細(xì)胞分裂時,由1個分裂成2個,2個分裂成4個,……一個這樣的細(xì)胞分裂 次后,得到的細(xì)胞分裂的個數(shù) 與 之間,構(gòu)成一個函數(shù)關(guān)系,能寫出 與 之間的函數(shù)關(guān)系式嗎?
問題2:有一根1米長的繩子,第一次剪去繩長一半,第二次再剪去剩余繩子的一半,……剪了 次后繩子剩余的長度為 米,試寫出 與 之間的函數(shù)關(guān)系.
在以上兩個實(shí)例中我們可以看到這兩個函數(shù)與我們前面研究的函數(shù)有所區(qū)別,從形式上冪的形式,且自變量 均在指數(shù)的位置上,那么就把形如這樣的函數(shù)稱為.
1.定義:形如 的函數(shù)稱為.(板書)教師在給出定義之后再對定義作幾點(diǎn)說明.
(1) 關(guān)于對 的規(guī)定:
教師首先提出問題:為什么要規(guī)定底數(shù)大于0且不等于1呢?(若學(xué)生感到有困難,可將問題分解為若 會有什么問題?如 ,此時 , 等在實(shí)數(shù)范圍內(nèi)相應(yīng)的函數(shù)值不存在.
若 對于 都無意義,若 則 無論 取何值,它總是1,對它沒有研究的必要.為了避免上述各種情況的發(fā)生,所以規(guī)定 且 .
教師引導(dǎo)學(xué)生回顧指數(shù)范圍,發(fā)現(xiàn)指數(shù)可以取有理數(shù).此時教師可指出,其實(shí)當(dāng)指數(shù)為無理數(shù)時, 也是一個確定的實(shí)數(shù),對于無理指數(shù)冪,學(xué)過的有理指數(shù)冪的性質(zhì)和運(yùn)算法則它都適用,所以將指數(shù)范圍擴(kuò)充為實(shí)數(shù)范圍,所以的定義域?yàn)?.擴(kuò)充的另一個原因是因?yàn)槭顾叽砀袘?yīng)用價值.
剛才分別認(rèn)識了中底數(shù),指數(shù)的要求,下面我們從整體的角度來認(rèn)識一下,根據(jù)定義我們知道什么樣的函數(shù)是,請看下面函數(shù)是否是.
學(xué)生回答并說明理由,教師根據(jù)情況作點(diǎn)評,指出只有(1)和(3)是,其中(3) 可以寫成 ,也是指數(shù)圖象.
最后提醒學(xué)生的定義是形式定義,就必須在形式上一摸一樣才行,然后把問題引向深入,有了定義域和初步研究的函數(shù)的性質(zhì),此時研究的關(guān)鍵在于畫出它的圖象,再細(xì)致歸納性質(zhì).
作圖的用什么方法.用列表描點(diǎn)發(fā)現(xiàn),教師準(zhǔn)備明確性質(zhì),再由學(xué)生回答.
對于性質(zhì)1和2可以兩條合在一起說,并追問起什么作用.(確定圖象存在的大致位置)對第3條還應(yīng)會證明.對于單調(diào)性,我建議找一些特殊點(diǎn).,先看一看,再下定論.對最后一條也是指導(dǎo)函數(shù)圖象畫圖的依據(jù).(圖象位于 軸上方,且與 軸不相交.)
在此基礎(chǔ)上,教師可指導(dǎo)學(xué)生列表,描點(diǎn)了.取點(diǎn)時還要提醒學(xué)生由于不具備對稱性,故 的值應(yīng)有正有負(fù),且由于單調(diào)性不清,所取點(diǎn)的個數(shù)不能太少.
此處教師可利用計算機(jī)列表描點(diǎn),給出十組數(shù)據(jù),而學(xué)生自己列表描點(diǎn),至少六組數(shù)據(jù).連點(diǎn)成線時,一定提醒學(xué)生圖象的變化趨勢(當(dāng) 越小,圖象越靠近軸, 越大,圖象上升的越快),并連出光滑曲線.
2.草圖:
當(dāng)畫完第一個圖象之后,可問學(xué)生是否需要再畫第二個?它是否具有代表性?(教師可提示底數(shù)的條件是 且 ,取值可分為兩段)讓學(xué)生明白需再畫第二個,不妨取 為例.
此時畫它的圖象的方法應(yīng)讓學(xué)生來選擇,應(yīng)讓學(xué)生意識到列表描點(diǎn)不是唯一的方法,而圖象變換的方法更為簡單.即 = 與 圖象之間關(guān)于 軸對稱,而此時 的圖象已經(jīng)有了,具備了變換的條件.讓學(xué)生自己做對稱,教師借助計算機(jī)畫圖,在同一坐標(biāo)系下得到 的圖象.
最后問學(xué)生是否需要再畫.(可能有兩種可能性,若學(xué)生認(rèn)為無需再畫,則追問其原因并要求其說出性質(zhì),若認(rèn)為還需畫,則教師可利用計算機(jī)再畫出如 的圖象一起比較,再找共性)
由于圖象是形的特征,所以先從幾何角度看它們有什么特征.教師可列一個表,如下:
以上內(nèi)容學(xué)生說不齊的,教師可適當(dāng)提出觀察角度讓學(xué)生去描述,然后再讓學(xué)生將幾何的特征,翻譯為函數(shù)的性質(zhì),即從代數(shù)角度的描述,將表中另一部分填滿.
填好后,讓學(xué)生仿照此例再列一個 的表,將相應(yīng)的內(nèi)容填好.為進(jìn)一步整理性質(zhì),教師可提出從另一個角度來分類,整理函數(shù)的性質(zhì).
3.性質(zhì).
(1)無論 為何值, 都有定義域?yàn)?,值域?yàn)?,都過點(diǎn) .
(2) 時, 在定義域內(nèi)為增函數(shù), 時, 為減函數(shù).
(3) 時, , 時, .
總結(jié)之后,特別提醒學(xué)生記住函數(shù)的圖象,有了圖,從圖中就可以能讀出性質(zhì).
一類函數(shù)研究完它的概念,圖象和性質(zhì)后,最重要的是利用它解決一些簡單的問題.首先我們來看下面的問題.
首先讓學(xué)生觀察兩個數(shù)的特點(diǎn),有什么相同?由學(xué)生指出它們底數(shù)相同,指數(shù)不同.再追問根據(jù)這個特點(diǎn),用什么方法來比較它們的大小呢?讓學(xué)生聯(lián)想,提出構(gòu)造函數(shù)的方法,即把這兩個數(shù)看作某個函數(shù)的函數(shù)值,利用它的單調(diào)性比較大小.然后以第(1)題為例,給出解答過程.
解: 在 上是增函數(shù),且
(1) 構(gòu)造函數(shù)并指明函數(shù)的單調(diào)區(qū)間及相應(yīng)的單調(diào)性.
(2) 自變量的大小比較.
(3) 函數(shù)值的大小比較.
后兩個題的過程略.要求學(xué)生仿照第(1)題敘述過程.
例2.比較下列各組數(shù)的大小(1) 與 ; (2) 與 ;(3) 與 .(板書)
先讓學(xué)生觀察例2中各組數(shù)與例1中的區(qū)別,再思考解決的方法.引導(dǎo)學(xué)生發(fā)現(xiàn)對(1)來說 可以寫成 ,這樣就可以轉(zhuǎn)化成同底的問題,再用例1的方法解決,對(2)來說 可以寫成 ,也可轉(zhuǎn)化成同底的,而(3)前面的方法就不適用了,考慮新的轉(zhuǎn)化方法,由學(xué)生思考解決.(教師可提示學(xué)生的函數(shù)值與1有關(guān),可以用1來起橋梁作用)
最后由學(xué)生說出 >1, .
(1) 構(gòu)造函數(shù)的方法: 數(shù)的特征是同底不同指(包括可轉(zhuǎn)化為同底的)
數(shù)學(xué)高中教案(篇5)
本節(jié)課是數(shù)列的起始課,著重研究數(shù)列的概念,明確數(shù)列與函數(shù)的關(guān)系,用函數(shù)的思想看待數(shù)列。通過引導(dǎo)學(xué)生通過對實(shí)例的分析體會數(shù)列的有關(guān)概念,并與集合類比,通過類比,學(xué)生能認(rèn)識到數(shù)列的明確性、有序性和可重復(fù)性的特點(diǎn)。在體會數(shù)列與集合的區(qū)別中,學(xué)生意識到數(shù)列中的每一項(xiàng)與所在位置有關(guān),并通研究數(shù)列的表示法,學(xué)生意識到數(shù)列中還有潛在的自變量——序號,從而發(fā)現(xiàn)數(shù)列也是一種特殊的函數(shù),能用函數(shù)的觀點(diǎn)重新看待數(shù)列。
1. 通過自然界和生活中實(shí)例,學(xué)生意識到有序的數(shù)是存在的,能概況出數(shù)列的概念,并能辨析出數(shù)列和集合的區(qū)別;
2. 通過思考數(shù)列的表示,學(xué)生意識到可以用表達(dá)式簡潔的表達(dá)數(shù)列,能分析出數(shù)列的項(xiàng)是與序號相關(guān),需要借助于序號來表示數(shù)列的項(xiàng);
3. 在用表達(dá)式表示數(shù)列的過程中,學(xué)生發(fā)現(xiàn)項(xiàng)與序號的對應(yīng)關(guān)系,認(rèn)識到數(shù)列是一種特殊的函數(shù),能用函數(shù)的觀點(diǎn)重新研究數(shù)列;
4. 通過對一列數(shù)的觀察,能用聯(lián)系的觀點(diǎn)看待數(shù)列,寫出符合條件的一個通項(xiàng)公式,培養(yǎng)學(xué)生的觀察能力和抽象概括能力.
重點(diǎn):理解數(shù)列的概念,認(rèn)識數(shù)列是反映自然規(guī)律的基本數(shù)學(xué)模型 難點(diǎn):認(rèn)識數(shù)列是一種特殊的函數(shù),發(fā)現(xiàn)數(shù)列與函數(shù)之間的關(guān)系
情境1: 各年樹木的枝干數(shù): 1,1,2,3,5,8,... 情境2:某彗星出現(xiàn)的年份: 1740,1823,1906,1989,2072,...
情境3:細(xì)胞分裂的個數(shù): 1,2,4,8,16,... 情境4 : A同學(xué)最近6次考試的名次 17, 18, 5, 8, 10, 8
問題1:以上各情境中都有一系列的數(shù),你看了這些數(shù),有什么感受?
或者有什么共同特征?
(2)順序不能交換,否則意義不一樣.
設(shè)計思想:通過例子,學(xué)生感受到數(shù)列在現(xiàn)實(shí)生活中是大量存在的,一列數(shù)的順序是蘊(yùn)含信息的,從而感受到數(shù)列的有序性。
(1)數(shù)列、項(xiàng)的定義:
通過上述的例子,讓學(xué)生思考以上一列數(shù)據(jù)共同的特征,從而歸納出數(shù)列的定義:
按照一定次序排列的一列數(shù)稱為數(shù)列,數(shù)列中的每一個數(shù)叫做這個數(shù)列的項(xiàng)。 問題2:能否用準(zhǔn)確的語言給我描述一下情境4中的數(shù)列?
設(shè)計思想:通過讓學(xué)生描述,學(xué)生再次體會數(shù)列中除了數(shù)之外,還蘊(yùn)含著重要的信息:序號。
不一樣,第四項(xiàng),第六項(xiàng),即每一項(xiàng)結(jié)合序號才有意義,所以,描述數(shù)列的項(xiàng)時必須包含位置信息,即序號。
a1,a2,a3,...,an,...,記為 ?an?
通過與集合的特點(diǎn)進(jìn)行對比,更清楚的數(shù)列的特點(diǎn)。
讓學(xué)生與前一章學(xué)習(xí)的集合做比較,可以更清楚的了解到數(shù)列的本質(zhì)性的定義。也符合建構(gòu)主義的舊知基礎(chǔ)上形成新知的有效學(xué)習(xí)。
(3)數(shù)列的分類?能不能不講?
問題7: 對于上述情境中的數(shù)列,有沒有更簡潔的表示方式?
學(xué)生活動:學(xué)生可能會用序號n來表示,問學(xué)生為什么用n來表示,引出通項(xiàng)公式的概念
一般地,如果數(shù)列?an?的第n項(xiàng)與序號n之間的關(guān)系可以用一個公式來表示.那么這個公式叫做這個數(shù)列的通項(xiàng)公式.
問題9:在數(shù)列?an?中,對于每一個正整數(shù)n(或n??1,2,...,k?),是不是都有一個數(shù)an與之對應(yīng)?
通過前鋪墊,學(xué)生觀察數(shù)列的項(xiàng)與它數(shù)列中的序號之間的對應(yīng)關(guān)系,讓學(xué)生理解數(shù)列是函數(shù)。
把序號看作看作自變量,數(shù)列中的項(xiàng)看作隨之變動的量,用函數(shù)的觀點(diǎn)來深化數(shù)列的概念。
問題11:所以,除了用解析式表示數(shù)列,還有哪些方法?
再從函數(shù)的表示方法過渡到數(shù)列的三種表示方法:列表法,圖象法,通項(xiàng)公式法。學(xué)生通過觀察發(fā)現(xiàn)數(shù)列的圖象是一些離散的點(diǎn)。
例2.已知數(shù)列?an?的通項(xiàng)公式,寫出這個數(shù)列的前5項(xiàng),并作出它的圖象: (?1)nn(1)an?; (2).an?n n?12
數(shù)列的圖象是一些孤立的點(diǎn)。
通過學(xué)生觀察數(shù)列的項(xiàng)與它數(shù)列中的序號之間的對應(yīng)關(guān)系,讓學(xué)生理解數(shù)列是以特殊的函數(shù),再從函數(shù)的表示方法過度到數(shù)列的三種表示方法:列表法,圖象法,數(shù)列的通項(xiàng)。學(xué)生通過觀察發(fā)現(xiàn)數(shù)列的圖象是一些離散的點(diǎn)。最后通過通項(xiàng)求數(shù)列的項(xiàng),進(jìn)而升華到觀察數(shù)列的前幾項(xiàng)寫出數(shù)列的通項(xiàng)。
1.數(shù)列的概念;
2.求數(shù)列的通項(xiàng)公式的要領(lǐng).
數(shù)學(xué)高中教案(篇6)
我本節(jié)課說課的內(nèi)容是高中數(shù)學(xué)第一冊第二章第六節(jié)“指數(shù)函數(shù)”的第一課時——指數(shù)函數(shù)的定義,圖像及性質(zhì)。我將嘗試運(yùn)用新課標(biāo)的理念指導(dǎo)本節(jié)課的教學(xué)。新課標(biāo)指出,學(xué)生是教學(xué)的主體,教師的教要應(yīng)本著從學(xué)生的認(rèn)知規(guī)律出發(fā),以學(xué)生活動為主線,在原有知識的基礎(chǔ)上,建構(gòu)新的知識體系。我將以此為基礎(chǔ)從教材分析,教學(xué)目標(biāo)分析,教法學(xué)法分析和教學(xué)過程分析這幾個方面加以說明。
一、教材分析
1、教材的地位和作用: 函數(shù)是高中數(shù)學(xué)學(xué)習(xí)的重點(diǎn)和難點(diǎn),函數(shù)的貫穿于整個高中數(shù)學(xué)之中。本節(jié)課是學(xué)生在已掌握了函數(shù)的一般性質(zhì)和簡單的指數(shù)運(yùn)算的基礎(chǔ)上,進(jìn)一步研究指數(shù)函數(shù),以及指數(shù)函數(shù)的圖像與性質(zhì),同時也為今后研究對數(shù)函數(shù)以及等比數(shù)列的性質(zhì)打下堅實(shí)的基礎(chǔ)。因此,本節(jié)課的內(nèi)容十分重要,它對知識起到了承上啟下的作用。
2、教學(xué)的重點(diǎn)和難點(diǎn):根據(jù)這一節(jié)課的內(nèi)容特點(diǎn)以及學(xué)生的實(shí)際情況,我將本節(jié)課教學(xué)重點(diǎn)定為指數(shù)函數(shù)的圖像、性質(zhì)及其運(yùn)用,本節(jié)課的難點(diǎn)是指數(shù)函數(shù)圖像和性質(zhì)的發(fā)現(xiàn)過程,及指數(shù)函數(shù)圖像與底的關(guān)系。
二、教學(xué)目標(biāo)分析
基于對教材的理解和分析,我制定了以下的教學(xué)目標(biāo)
1、知識目標(biāo)(直接性目標(biāo)):理解指數(shù)函數(shù)的定義,掌握指數(shù)函數(shù)的圖像、性質(zhì)及其簡單應(yīng)用
2、能力目標(biāo)(發(fā)展性目標(biāo)):通過教學(xué)培養(yǎng)學(xué)生觀察、分析、歸納等思維能力,體會數(shù)形結(jié)合和分類討論,增強(qiáng)學(xué)生識圖用圖的能力
3、情感目標(biāo)(可持續(xù)性目標(biāo)): 通過學(xué)習(xí),使學(xué)生學(xué)會認(rèn)識事物的特殊性與一般性之間的關(guān)系,培養(yǎng)學(xué)生勇于提問,善于探索的思維品質(zhì)。
三、教法學(xué)法分析
1、教學(xué)策略:首先從實(shí)際問題出發(fā),激發(fā)學(xué)生的學(xué)習(xí)興趣。第二步,學(xué)生歸納指數(shù)的圖像和性質(zhì)。第三步,典型例題分析,加深學(xué)生對指數(shù)函數(shù)的理解。
2、教學(xué): 貫徹引導(dǎo)發(fā)現(xiàn)式教學(xué)原則,在教學(xué)中既注重知識的直觀素材和背景材料,又要激活相關(guān)知識和引導(dǎo)學(xué)生思考、探究、創(chuàng)設(shè)有趣的問題。
3、教法分析:根據(jù)教學(xué)內(nèi)容和學(xué)生的狀況, 本節(jié)課我采用引導(dǎo)發(fā)現(xiàn)式的教學(xué)方法并充分利用多媒體輔助教學(xué)。
數(shù)學(xué)高中教案(篇7)
我們在初中的學(xué)習(xí)過程中,已了解了整數(shù)指數(shù)冪的概念和運(yùn)算性質(zhì).從本節(jié)開始我們將在回顧平方根和立方根的基礎(chǔ)上,類比出正數(shù)的n次方根的定義,從而把指數(shù)推廣到分?jǐn)?shù)指數(shù).進(jìn)而推廣到有理數(shù)指數(shù),再推廣到實(shí)數(shù)指數(shù),并將冪的運(yùn)算性質(zhì)由整數(shù)指數(shù)冪推廣到實(shí)數(shù)指數(shù)冪.
教材為了讓學(xué)生在學(xué)習(xí)之外就感受到指數(shù)函數(shù)的實(shí)際背景,先給出兩個具體例子:GDP的增長問題和碳14的衰減問題.前一個問題,既讓學(xué)生回顧了初中學(xué)過的整數(shù)指數(shù)冪,也讓學(xué)生感受到其中的函數(shù)模型,并且還有思想教育價值.后一個問題讓學(xué)生體會其中的函數(shù)模型的同時,激發(fā)學(xué)生探究分?jǐn)?shù)指數(shù)冪、無理數(shù)指數(shù)冪的興趣與欲望,為新知識的學(xué)習(xí)作了鋪墊.
本節(jié)安排的內(nèi)容蘊(yùn)涵了許多重要的數(shù)學(xué)思想方法,如推廣的思想(指數(shù)冪運(yùn)算律的推廣)、類比的思想、逼近的思想(有理數(shù)指數(shù)冪逼近無理數(shù)指數(shù)冪)、數(shù)形結(jié)合的思想(用指數(shù)函數(shù)的圖象研究指數(shù)函數(shù)的性質(zhì))等,同時,充分關(guān)注與實(shí)際問題的結(jié)合,體現(xiàn)數(shù)學(xué)的應(yīng)用價值.
根據(jù)本節(jié)內(nèi)容的特點(diǎn),教學(xué)中要注意發(fā)揮信息技術(shù)的力量,盡量利用計算器和計算機(jī)創(chuàng)設(shè)教學(xué)情境,為學(xué)生的數(shù)學(xué)探究與數(shù)學(xué)思維提供支持.
1.通過與初中所學(xué)的知識進(jìn)行類比,理解分?jǐn)?shù)指數(shù)冪的概念,進(jìn)而學(xué)習(xí)指數(shù)冪的性質(zhì).掌握分?jǐn)?shù)指數(shù)冪和根式之間的互化,掌握分?jǐn)?shù)指數(shù)冪的運(yùn)算性質(zhì).培養(yǎng)學(xué)生觀察分析、抽象類比的能力.
2.掌握根式與分?jǐn)?shù)指數(shù)冪的互化,滲透“轉(zhuǎn)化”的數(shù)學(xué)思想.通過運(yùn)算訓(xùn)練,養(yǎng)成學(xué)生嚴(yán)謹(jǐn)治學(xué),一絲不茍的學(xué)習(xí)習(xí)慣,讓學(xué)生了解數(shù)學(xué)來自生活,數(shù)學(xué)又服務(wù)于生活的哲理.
3.能熟練地運(yùn)用有理指數(shù)冪運(yùn)算性質(zhì)進(jìn)行化簡、求值,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)乃季S和科學(xué)正確的計算能力.
4.通過訓(xùn)練及點(diǎn)評,讓學(xué)生更能熟練掌握指數(shù)冪的運(yùn)算性質(zhì).展示函數(shù)圖象,讓學(xué)生通過觀察,進(jìn)而研究指數(shù)函數(shù)的性質(zhì),讓學(xué)生體驗(yàn)數(shù)學(xué)的簡潔美和統(tǒng)一美.
(1)分?jǐn)?shù)指數(shù)冪和根式概念的理解.
(2)掌握并運(yùn)用分?jǐn)?shù)指數(shù)冪的運(yùn)算性質(zhì).
(3)運(yùn)用有理指數(shù)冪的性質(zhì)進(jìn)行化簡、求值.
(1)分?jǐn)?shù)指數(shù)冪及根式概念的理解.
思路1.同學(xué)們在預(yù)習(xí)的過程中能否知道考古學(xué)家如何判斷生物的發(fā)展與進(jìn)化,又怎樣判斷它們所處的年代?(考古學(xué)家是通過對生物化石的研究來判斷生物的發(fā)展與進(jìn)化的,第二個問題我們不太清楚)考古學(xué)家是按照這樣一條規(guī)律推測生物所處的年代的.教師板書本節(jié)課題:指數(shù)函數(shù)——指數(shù)與指數(shù)冪的運(yùn)算.
思路2.同學(xué)們,我們在初中學(xué)習(xí)了平方根、立方根,那么有沒有四次方根、五次方根…n次方根呢?答案是肯定的,這就是我們本堂課研究的課題:指數(shù)函數(shù)——指數(shù)與指數(shù)冪的運(yùn)算.
(1)什么是平方根?什么是立方根?一個數(shù)的平方根有幾個,立方根呢?
(2)如x4=a,x5=a,x6=a,根據(jù)上面的結(jié)論我們又能得到什么呢?
(3)根據(jù)上面的結(jié)論我們能得到一般性的結(jié)論嗎?
(4)可否用一個式子表達(dá)呢?
活動:教師提示,引導(dǎo)學(xué)生回憶初中的時候已經(jīng)學(xué)過的平方根、立方根是如何定義的,對照類比平方根、立方根的定義解釋上面的式子,對問題(2)的結(jié)論進(jìn)行引申、推廣,相互交流討論后回答,教師及時啟發(fā)學(xué)生,具體問題一般化,歸納類比出n次方根的概念,評價學(xué)生的思維.
討論結(jié)果:(1)若x2=a,則x叫做a的平方根,正實(shí)數(shù)的平方根有兩個,它們互為相反數(shù),如:4的平方根為±2,負(fù)數(shù)沒有平方根,同理,若x3=a,則x叫做a的立方根,一個數(shù)的立方根只有一個,如:-8的立方根為-2.
(2)類比平方根、立方根的定義,一個數(shù)的四次方等于a,則這個數(shù)叫a的四次方根.一個數(shù)的五次方等于a,則這個數(shù)叫a的五次方根.一個數(shù)的六次方等于a,則這個數(shù)叫a的六次方根.
(3)類比(2)得到一個數(shù)的n次方等于a,則這個數(shù)叫a的n次方根.
(4)用一個式子表達(dá)是,若xn=a,則x叫a的n次方根.
教師板書n次方根的意義:
一般地,如果xn=a,那么x叫做a的n次方根(n th root),其中n>1且n∈正整數(shù)集.
可以看出數(shù)的平方根、立方根的概念是n次方根的概念的特例.
(1)你能根據(jù)n次方根的意義求出下列數(shù)的n次方根嗎?(多媒體顯示以下題目).
①4的平方根;②±8的立方根;③16的4次方根;④32的5次方根;⑤-32的5次方根;⑥0的7次方根;⑦a6的立方根.
(2)平方根,立方根,4次方根,5次方根,7次方根,分別對應(yīng)的方根的指數(shù)是什么數(shù),有什么特點(diǎn)?4,±8,16,-32,32,0,a6分別對應(yīng)什么性質(zhì) 的數(shù),有什么特點(diǎn)?
(3)問題(2)中,既然方根有奇次的也有偶次的,數(shù)a有正有負(fù),還有零,結(jié)論有一個的,也有兩個的,你能否總結(jié)一般規(guī)律呢?
(4)任何一個數(shù)a的偶次方根是否存在呢?
活動:教師提示學(xué)生切實(shí)緊扣n次方根的概念,求一個數(shù)a的n次方根,就是求出的那個數(shù)的n次方等于a,及時點(diǎn)撥學(xué)生,從數(shù)的分類考慮,可以把具體的數(shù)寫出來,觀察數(shù)的 特點(diǎn),對問題(2)中的結(jié)論,類比推廣引申,考慮要全面,對回答正確的學(xué)生及時表揚(yáng),對回答不準(zhǔn)確的學(xué)生提示引導(dǎo)考慮問題的思路.
討論結(jié)果:(1)因?yàn)椤?的平方等于4,±2的立方等于±8,±2的4次方等于16,2的5次方等于32,-2的5次方等于-32,0的7次方等于0,a2的立方等于a6,所 以4的平方根,±8的立方根,16的4次方根,32的5次方根,-32的5次方根,0的7次方根,a6的立方根分別是±2,±2,±2,2,-2,0,a2.
(2)方根的指數(shù)是2,3,4,5,7…特點(diǎn)是有奇數(shù)和偶數(shù).總的來看,這些數(shù)包括正數(shù),負(fù)數(shù)和零.
(3)一個數(shù)a的奇次方根只有一個,一個正數(shù)a的偶次方根有兩個,是互為相反數(shù).0的任何次方根都是0.
(4)任何一個數(shù)a的偶次方根不一定存在,如負(fù)數(shù)的偶次方根就不存在,因?yàn)闆]有一個數(shù)的偶次方是一個負(fù)數(shù).
類比前面的平方根、立方根,結(jié)合剛才的討論,歸納出一般情形,得到n次方根的性質(zhì):
①當(dāng)n為偶數(shù)時,正數(shù)a的n次方根有兩個,是互為相反數(shù),正的n次方根用na表示,如果是負(fù)數(shù),負(fù)的n次方根用-na表示,正的n次方根與負(fù)的n次方根合并寫成±na(a>0).
②n為奇數(shù)時,正數(shù)的n次方根是一個正數(shù),負(fù)數(shù)的n次方根是一個負(fù)數(shù),這時a的n次方根用符號na表示.
③負(fù)數(shù)沒有偶次方根;0的任何次方根都是零.
上面的文字語言可用下面的式子表示:
a為正數(shù):n為奇數(shù), a的n次方根有一個為na,n為偶數(shù), a的n次方根有兩個為±na.
a為負(fù)數(shù):n為奇數(shù), a的n次方根只有一個為na,n為偶數(shù), a的n次方根不存在.
零的n次方根為零,記為n0=0.
可以看出數(shù)的平方根、立方根的性質(zhì)是n次方根的性質(zhì)的特例.
根據(jù)n次方根的性質(zhì)能否舉例說明上述幾種情況?
活動:教師提示學(xué)生對方根的性質(zhì)要分類掌握,即正數(shù)的奇偶次方根,負(fù)數(shù)的奇次方根,零的任何次方根,這樣才不重不漏,同時巡視學(xué)生,隨機(jī)給出一個數(shù),我們寫出它的平方根,立方根,四次方根等,看是否有意義,注意觀察方根的形式,及時糾正學(xué)生在舉例過程中的問題.
解:答案不,比如,64的立方根是4,16的四次方根為±2,-27的5次方根為5-27,而-27的4次方根不存在等.其中5-27也表示方根,它類似于na的形式,現(xiàn)在我們給式子na一個名稱——根式.
根式的概念:
式子na叫做根式,其中a叫做被開方數(shù),n叫做根指數(shù).
nan表示an的n次方根,式子nan=a一定成立嗎?如果不一定成立,那么nan等于什么?
活動:教師讓學(xué)生注意討論n為奇偶數(shù)和a的符號,充分讓學(xué)生多舉實(shí)例,分組討論.教師點(diǎn)撥,注意歸納整理.
〔如3(-3)3=3-27=-3,4(-8)4=|-8|=8〕.
n為偶數(shù),nan=|a|=a,-a,a≥0,a
因此我們得到n次方根的運(yùn)算性質(zhì):
①(na)n=a.先開方,再乘方(同次),結(jié)果為被開方數(shù).
②n為奇數(shù),nan=a.先奇次乘方,再開方(同次),結(jié)果為被開方數(shù).
n為偶數(shù),nan=|a|=a,-a,a≥0,a
例 求下列各式的值:
(1)3(-8)3;(2)(-10)2;(3)4(3-π)4;(4)(a-b)2(a>b).
活動:求某些式子的值,首先考慮的應(yīng)是什么,明確題目的要求是什么,都用到哪些知識,關(guān)鍵是啥,搞清這些之后,再針對每一個題目仔細(xì)分析.觀察學(xué)生的解題情況,讓學(xué)生展示結(jié)果,抓住學(xué)生在解題過程中出現(xiàn)的問題并對癥下藥.求下列各式的值實(shí)際上是求數(shù)的方根,可按方根的運(yùn)算性質(zhì)來解,首先要搞清楚運(yùn)算順序,目的是把被開方數(shù)的符號定準(zhǔn),然后看根指數(shù)是奇數(shù)還是偶數(shù),如果是奇數(shù),無需考慮符號,如果是偶數(shù),開方的結(jié)果必須是非負(fù)數(shù).
(2)(-10)2=10;
(3)4(3-π)4=π-3;
(4)(a-b)2=a-b(a>b).
點(diǎn)評:不注意n的奇偶性對式子nan的值的影響 ,是導(dǎo)致問題出現(xiàn)的一個重要原因,要在理解的基礎(chǔ)上,記準(zhǔn),記熟,會用,活用.
(2)3(3a-3)3(a≤1);
(2)3(3a-3)3(a≤1)=3a-3,
(3)4(3a-3)4=
點(diǎn)評:本題易錯的是第(3)題,往往忽視a與1大小的討論,造成錯解.
活動:教師提示,這是一道選擇題,本題考查n次方根的運(yùn)算性質(zhì),應(yīng)首先考慮根據(jù)方根的意義和運(yùn)算性質(zhì)來解,既要考慮被開方數(shù),又要考慮根指數(shù),嚴(yán)格按求方根的步驟,體會方根運(yùn)算的實(shí)質(zhì),學(xué)生先思考哪些地方容易出錯,再回答.
解析:(1)4a4=a,考查n次方根的運(yùn)算性質(zhì),當(dāng)n為偶數(shù)時,應(yīng)先寫nan=|a|,故A項(xiàng)錯.
(2)6(-2)2=3-2,本質(zhì)上與上題相同,是一個正數(shù)的偶次方根,根據(jù)運(yùn)算順序也應(yīng)如此,結(jié)論為6(-2)2=32,故B項(xiàng)錯.
(3)a0=1是有條件的,即a≠0,故C項(xiàng)也錯.
(4)D項(xiàng)是一個正數(shù)的偶次方根,根據(jù)運(yùn)算順序也應(yīng)如此,故D項(xiàng)正確.所以答案選D.
點(diǎn)評:本題由于考查n次方根的運(yùn)算性質(zhì)與運(yùn)算順序,有時極易選錯,選四個答案的情況都會有,因此解題時千萬要細(xì)心.
例2 3+22+3-22=__________.
活動:讓同學(xué)們積極思考,交流討論,本題乍一看內(nèi)容與本節(jié)無關(guān),但仔細(xì)一想,我們學(xué)習(xí)的內(nèi)容是方根,這里是帶有雙重根號的式子,去掉一層根號,根據(jù)方根的運(yùn)算求出結(jié)果是解題的關(guān)鍵,因此將根號下面的式子化成一個完全平方式就更為關(guān)鍵了,從何處入手?需利用和的平方公式與差的平方公式化為完全平方式.正確分析題意是關(guān)鍵,教師提示,引導(dǎo)學(xué)生解題的思路.
解析:因?yàn)?+22=1+22+(2)2=(1+2)2=2+1,
3-22=(2)2-22+1=(2-1)2=2-1,
點(diǎn)評:不難看出3-22與3+22形式上有些特點(diǎn),即是對稱根式,是A±2B形式的式子,我們總能找到辦法把其化成一個完全平方式.
上面的例2還有別的解法嗎?
活動:教師引導(dǎo),去根號常常利用完全平方公式,有時平方差公式也可,同學(xué)們觀察兩個式子的特點(diǎn),具有對稱性,再考慮并交流討論,一個是“+”,一個是“-”,去掉一層根號后,相加正好抵消.同時借助平方差,又可去掉根號,因此把兩個式子的和看成一個整體,兩邊平方即可,探討得另一種解法.
兩邊平方,得x2=3+22+3-22+2(3+22)(3-22)=6+232-(22)2=6+2=8,所以x=22.
點(diǎn)評:對雙重二次根式,特別是A±2B形式的式子,我們總能找到辦法將根號下面的式子化成一個完全平方式,問題迎刃而解,另外對A+2B±A-2B的式子,我們可以把它們看成一個整體利用完全平方公式和平方差公式去解.
若a2-2a+1=a-1,求a的取值范圍.
解:因?yàn)閍2-2a+1=a-1,而a2-2a+1=(a-1)2=|a-1|=a-1,
即a-1≥0,
所以a≥1.
點(diǎn)評:利用方根的運(yùn)算性質(zhì)轉(zhuǎn)化為去絕對值符號,是解題的關(guān)鍵.
2.化簡下列各式:
(1)664;(2)4(-3)2;(3)4x8;(4)6x6y3;(5)(x-y)2.
答案:(1)2;(2)3;(3)x2;(4)|x|y;(5)|x-y|.
3.計算7+40+7-40=__________.
問題:nan=a與(na)n=a(n>1,n∈N)哪一個是恒等式,為什么?請舉例說明.
活動:組織學(xué)生結(jié)合前面的例題及其解答,進(jìn)行分析討論,解決這一問題要緊扣n次方根的定義.
通過歸納,得出問題結(jié)果,對a是正數(shù)和零,n為偶數(shù)時,n為奇數(shù)時討論一下.再對a是負(fù)數(shù),n為偶數(shù)時,n為奇數(shù)時討論一下,就可得到相應(yīng)的結(jié)論.
解:(1)(na)n=a(n>1,n∈N).
如果xn=a(n>1,且n∈N)有意義,則無論n是奇數(shù)或偶數(shù),x=na一定是它的一個n次方根,所以(na)n=a恒成立.
(2)nan=a,|a|,當(dāng)n為奇數(shù),當(dāng)n為偶數(shù).
當(dāng)n為奇數(shù)時,a∈R,nan=a恒成立.
當(dāng)n為偶數(shù)時,a∈R,an≥0,nan表示正的n次方根或0,所以如果a≥0,那么nan=a.例如434=3,40=0;如果a
即(na)n=a(n>1,n∈N)是恒等式,nan=a(n>1,n∈N)是有條件的.
點(diǎn)評:實(shí)質(zhì)上是對n次方根的概念、性質(zhì)以及運(yùn)算性質(zhì)的深刻理解.
學(xué)生仔細(xì)交流討論后,在筆記上寫出本節(jié)課的學(xué)習(xí)收獲,教師用多媒體顯示在屏幕上.
1.如果xn=a,那么x叫a的n次方根,其中n>1且n∈正整數(shù)集.用式子na表示,式子na叫根式,其中a叫被開方數(shù),n叫根指數(shù).
(1)當(dāng)n為偶數(shù)時,a的n次方根有兩個,是互為相反數(shù),正的n次方根用na表示,如果是負(fù)數(shù),負(fù)的n次方根用-na表示,正的n次方根與負(fù)的n次方根合并寫成±na(a>0).
(2)n為奇數(shù)時,正數(shù)的n次方根是一個正數(shù),負(fù)數(shù)的n次方根是一個負(fù)數(shù),這時a的n次方根用符號na表示.
(3)負(fù)數(shù)沒有偶次方根.0的任何次方根都是零.
2.掌握兩個公式:n為奇數(shù)時,(na)n=a,n為偶數(shù)時,nan=|a|=a,-a,a≥0,a
課本習(xí)題2.1A組 1.
(1)681;(2)15-32;(3)6a2b4.
(2)15-32=-1525=-32;
(3)6a2b4=6(|a|?b2)2=3|a|?b2.
3.5+26+5-26=__________.
解析:對雙重二次根式,我們覺得難以下筆,我們考慮只有在開方的前提下才可能解出,由此提示我們想辦法去掉一層根式,
不難看出5+26=(3+2)2=3+2.
同理5-26=(3-2)2=3-2.
學(xué)生已經(jīng)學(xué)習(xí)了數(shù)的平方根和立方根,根式的內(nèi)容是這些內(nèi)容的推廣,本節(jié)課由于方根和根式的概念和性質(zhì)難以理解,在引入根式的概念時,要結(jié)合已學(xué)內(nèi)容,列舉具體實(shí)例,根式na的講解要分n是奇數(shù)和偶數(shù)兩種情況來進(jìn)行,每種情況又分a>0,a
思路1.碳14測年法.原來宇宙射線在大氣層中能夠產(chǎn)生放射性碳14,并與氧結(jié)合成二氧化碳后進(jìn)入所有活組織,先為植物吸收,再為動物吸收,只要植物和動物生存著,它們就會不斷地吸收碳14在機(jī)體內(nèi)保持一定的水平.而當(dāng)有機(jī)體死亡后,即會停止吸收碳14,其組織內(nèi)的碳14便以約5 730年的半衰期開始衰變并消失.對于任何含碳物質(zhì)只要測定剩下的放射性碳14的含量,便可推斷其年代(半衰期:經(jīng)過一定的時間,變?yōu)樵瓉淼囊话?.引出本節(jié)課題:指數(shù)與指數(shù)冪的運(yùn)算之分?jǐn)?shù)指數(shù)冪.
思路2.同學(xué)們,我們在初中學(xué)習(xí)了整數(shù)指數(shù)冪及其運(yùn)算性質(zhì),那么整數(shù)指數(shù)冪是否可以推廣呢?答案是肯定的.這就是本節(jié)的主講內(nèi)容,教師板書本節(jié)課題——指數(shù)與指數(shù)冪的運(yùn)算之分?jǐn)?shù)指數(shù)冪.
(1)整數(shù)指數(shù)冪的運(yùn)算性質(zhì)是什么?
②a8=(a4)2=a4= ,;
③4a12=4(a3)4=a3= ;
④2a10=2(a5)2=a5= .
(3)利用(2)的規(guī)律,你能表示下列式子嗎?
, , , (x>0,m,n∈正整數(shù)集,且n>1).
(4)你能用方根的意義來解釋(3)的式子嗎?
(5)你能推廣到一般的情形嗎?
活動:學(xué)生回顧初中學(xué)習(xí)的整數(shù)指數(shù)冪及運(yùn)算性質(zhì),仔細(xì)觀察,特別是每題的開始和最后兩步的指數(shù)之間的關(guān)系,教師引導(dǎo)學(xué)生體會方根的意義,用方根的意義加以解釋,指點(diǎn)啟發(fā)學(xué)生類比(2)的規(guī)律表示,借鑒(2)(3),我們把具體推廣到一般,對寫正確的同學(xué)及時表揚(yáng),其他學(xué)生鼓勵提示.
討論結(jié)果:(1)整數(shù)指數(shù)冪的運(yùn)算性質(zhì):an=a?a?a?…?a,a0=1(a≠0);00無意義;
a-n=1an(a≠0);am?an=am+n;(am)n=amn;(an)m=amn;(ab)n=anbn.
(2)①a2是a10的5次方根;②a4是a8的2次方根;③a3是a12的4次方根;④a5是a10的2次方根.實(shí)質(zhì)上①5a10= ,②a8= ,③4a12= ,④2a10= 結(jié)果的a的指數(shù)是2,4,3,5分別寫成了105,82,124,105,形式上變了,本質(zhì)沒變.
根據(jù)4個式子的最后結(jié)果可以總結(jié):當(dāng)根式的被開方數(shù)的指數(shù)能被根指數(shù)整除時,根式可以寫成分?jǐn)?shù)作為指數(shù)的形式(分?jǐn)?shù)指數(shù)冪形式).
(3)利用(2)的規(guī)律,453= ,375= ,5a7= ,nxm= .
(4)53的四次方根是 ,75的三次方根是 ,a7的五次方根是 ,xm的n次方根是 .
結(jié)果表明方根的結(jié)果和分?jǐn)?shù)指數(shù)冪是相通的.
(5)如果a>0,那么am的n次方根可表示為nam= ,即 =nam(a>0,m,n∈正整數(shù)集,n>1).
綜上所述,我們得到正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義,教師板書:
規(guī)定:正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義是 =nam(a>0,m,n∈正整數(shù)集,n>1).
(1)負(fù)整數(shù)指數(shù)冪的意義是怎樣規(guī)定的?
(2)你能得出負(fù)分?jǐn)?shù)指數(shù)冪的意義嗎?
(3)你認(rèn)為應(yīng)怎樣規(guī)定零的分?jǐn)?shù)指數(shù)冪的意義?
(4)綜合上述,如何規(guī)定分?jǐn)?shù)指數(shù)冪的意義?
(5)分?jǐn)?shù)指數(shù)冪的意義中,為什么規(guī)定a>0,去掉這個規(guī)定會產(chǎn)生什么樣的后果?
(6)既然指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)是否也適用于有理數(shù)指數(shù)冪呢?
活動:學(xué)生回想初中學(xué)習(xí)的情形,結(jié)合 自己的學(xué)習(xí)體會回答,根據(jù)零的整數(shù)指數(shù)冪的意義和負(fù)整數(shù)指數(shù)冪的意義來類比,把正分?jǐn)?shù)指數(shù)冪的意義與負(fù)分?jǐn)?shù)指數(shù)冪的意義融合起來,與整數(shù)指數(shù)冪的運(yùn)算性質(zhì)類比可得有理數(shù)指數(shù)冪的運(yùn)算性質(zhì),教師在黑板上板書,學(xué)生合作交流,以具體的實(shí)例說明a>0的必要性,教師及時作出評價.
(2)既然負(fù)整數(shù)指數(shù)冪的意義是這樣規(guī)定的,類比正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義可得正數(shù)的負(fù)分?jǐn)?shù)指數(shù)冪的意義.
規(guī)定:正數(shù)的負(fù)分?jǐn)?shù)指數(shù)冪的意義是 = =1nam(a>0,m,n∈=N+,n>1).
(3)規(guī)定:零的分?jǐn)?shù)指數(shù)冪的意義是:零的正分?jǐn)?shù)次冪等于零,零的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義.
(4)教師板書分?jǐn)?shù)指數(shù)冪的意義.分?jǐn)?shù)指數(shù)冪的意義就是:
正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義是 =nam(a>0,m,n∈正整數(shù)集,n>1),正數(shù)的負(fù)分?jǐn)?shù)指數(shù)冪的意義是 = =1nam(a>0,m,n∈正整數(shù)集,n>1),零的正分?jǐn)?shù)次冪等于零,零的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義.
(5)若沒有a>0這個條件會怎樣呢?
如 =3-1=-1, =6(-1)2=1具有同樣意義的兩個式子出現(xiàn)了截然不同的結(jié)果,這只說明分?jǐn)?shù)指數(shù)冪在底數(shù)小于零時是無意義的.因此在把根式化成分?jǐn)?shù)指數(shù)時,切記要使底數(shù)大于零,如無a>0的條件,比如式子3a2= ,同時負(fù)數(shù)開奇次方是有意義的,負(fù)數(shù)開奇次方時,應(yīng)把負(fù)號移到根式的外邊,然后再按規(guī)定化成分?jǐn)?shù)指數(shù)冪,也就是說,負(fù)分?jǐn)?shù)指數(shù)冪在有意義的情況下總表示正數(shù),而不是負(fù)數(shù),負(fù)數(shù)只是出現(xiàn)在指數(shù)上.
(6)規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù).
有理數(shù)指數(shù)冪的運(yùn)算性質(zhì):對任意的有理數(shù)r,s,均有下面的運(yùn)算性質(zhì):
①ar?as=ar+s(a>0,r,s∈Q),
②(ar)s=ars(a>0,r,s∈Q),
③(a?b)r=arbr(a>0,b>0,r∈Q).
我們利用分?jǐn)?shù)指數(shù)冪的意義和有理數(shù)指數(shù)冪的運(yùn)算性質(zhì)可以解決一些問題,來看下面的例題.
例1 求值:(1) ;(2) ;(3)12-5;(4) .
活動:教師引導(dǎo)學(xué)生考慮解題的方法,利用冪的運(yùn)算性質(zhì)計算出數(shù)值或化成最簡根式,根據(jù)題目要求,把底數(shù)寫成冪的形式,8寫成23,25寫成52,12寫成2-1,1681寫成234,利用有理數(shù)冪的運(yùn)算性質(zhì)可以解答,完成后,把自己的答案用投影儀展示出來.
(2) =5-1=15;
(3)12-5=(2-1)-5=2-1×(-5)=32;
(4) =23-3=278.
點(diǎn)評:本例主要考查冪值運(yùn)算,要按規(guī)定來解.在進(jìn)行冪值運(yùn)算時,要首先考慮轉(zhuǎn)化為指數(shù)運(yùn)算,而不是首先轉(zhuǎn)化為熟悉的根式運(yùn)算,如 =382=364=4.
例2 用分?jǐn)?shù)指數(shù)冪的形式表示下列各式.
a3?a;a2?3a2;a3a(a>0).
活動:學(xué)生觀察、思考,根據(jù)解題的順序,把根式化為分?jǐn)?shù)指數(shù)冪,再由冪的運(yùn)算性質(zhì)來運(yùn)算,根式化為分?jǐn)?shù)指數(shù)冪時,要由里往外依次進(jìn)行,把握好運(yùn)算性質(zhì)和順序,學(xué)生討論交流自己的解題步驟,教師評價學(xué)生的解題情況,鼓勵學(xué)生注意總結(jié).
a2?3a2=a2? = ;
a3a= .
點(diǎn)評:利用分?jǐn)?shù)指數(shù)冪的意義和有理數(shù)指數(shù)冪的運(yùn)算性質(zhì)進(jìn)行根式運(yùn)算時,其順序是先把根式化為分?jǐn)?shù)指數(shù) 冪,再由冪的運(yùn)算性質(zhì)來運(yùn)算.對于計算的結(jié)果,不強(qiáng)求統(tǒng)一用什么形式來表示,沒有特別要求,就用分?jǐn)?shù)指數(shù)冪的形式來表示,但結(jié)果不能既有分?jǐn)?shù)指數(shù)又有根式,也不能既有分母又有負(fù)指數(shù).
例3 計算下列各式(式中字母都是正數(shù)).
(1) ;
(2) .
活動:先由學(xué)生觀察以上兩個式子的特征,然后分析,四則運(yùn)算的順序是先算乘方,再算乘除,最后算加減,有括號的先算括號內(nèi)的,整數(shù)冪的運(yùn)算性質(zhì)及運(yùn)算規(guī)律擴(kuò)充到分?jǐn)?shù)指數(shù)冪后,其運(yùn)算順序仍符合我們以前的四則運(yùn)算順序,再解答,把自己的答案用投影儀展示出來,相互交流,其中要注意到(1)小題是單項(xiàng)式的乘除運(yùn)算,可以用單項(xiàng)式的乘除法運(yùn)算順序進(jìn)行,要注意符號,第(2)小題是乘方運(yùn)算,可先按積的乘方計算,再按冪的乘方進(jìn)行計算,熟悉后可以簡化步驟.
解:(1)原式=[2×(-6)÷(-3)] =4ab0=4a;
(2) =m2n-3=m2n3.
點(diǎn)評:分?jǐn)?shù)指數(shù)冪不表示相同因式的積,而是根式的另一種寫法.有了分?jǐn)?shù)指數(shù)冪,就可把根式轉(zhuǎn)化成分?jǐn)?shù)指數(shù)冪的形式,用分?jǐn)?shù)指數(shù)冪的運(yùn)算法則進(jìn)行運(yùn)算了.
本例主要是指數(shù)冪的運(yùn)算法則的綜合考查和應(yīng)用.
(2)627m3125n64.
(2)627m3125n64= =9m225n4=925m2n-4.
例4 計算下列各式:
(1)(325-125)÷425;
(2)a2a?3a2(a>0).
活動:先由學(xué)生觀察以上兩個式子的特 征,然后分析,化為同底.利用分?jǐn)?shù)指數(shù)冪計算,在第(1)小題中,只含有根式,且不是同次根式,比較難計算,但把根式先化為分?jǐn)?shù)指數(shù)冪再計算,這樣就簡便多了,第(2)小題也是先把根式轉(zhuǎn)化為分?jǐn)?shù)指數(shù)冪后再由運(yùn)算法則計算,最后寫出解答.
= =65-5;
教師用實(shí)物投影儀把題目投射到屏幕上讓學(xué)生解答,教師巡視,啟發(fā),對做得好的同學(xué)給予表揚(yáng)鼓勵.
(2)下列各式①4(-4)2n,②4(-4)2n+1,③5a4,④4a5(各式的n∈N,a∈R)中,有意義的是( )
(4)把根式-25(a-b)-2改寫成分?jǐn)?shù)指數(shù)冪的形式為( )
A. B.
2.計算:(1) --17-2+ -3-1+(2-1)0=__________.
(2)設(shè)5x=4,5y=2,則52x-y=__________.
3.已知x+y=12,xy=9且x答案:1.(1)D (2)B (3)B (4)A (5)C 2.(1)19 (2)8因?yàn)閤+y=12,xy=9,所以(x-y)2=(x+y)2-4xy=144-36=108=4×27.又因?yàn)閤活動:學(xué)生觀察式子特點(diǎn),考慮x的指數(shù)之間的關(guān)系可以得到解題思路,應(yīng)對原式進(jìn)行因式分解,根據(jù)本題的特點(diǎn),注意到:x-1= -13= ;x+1= +13= ;.構(gòu)建解題思路教師適時啟發(fā)提示.=a-b,=a± +b,=a±b.2.已知 ,探究下列各式的值的求法.(1)a+a-1;(2)a2+a-2;(3) .解:(1)將 ,兩邊平方,得a+a-1+2=9,即a+a-1=7;(2)將a+a-1=7兩邊平方,得a2+a-2+2=49,即a2+ a-2=47;(3)由于 ,所以有 =a+a-1+1=8.點(diǎn)撥:對“條件求值”問題,一定要弄清已知與未知的聯(lián)系,然后采取“整體代換”或“求值后代換”兩種方法求值.活動:教師,本節(jié)課同學(xué)們有哪些收獲?請把你的學(xué)習(xí)收獲記錄在你的筆記本上,同學(xué)們之間相互交流.同時教師用投影儀顯示本堂課的知識要點(diǎn):(1)分?jǐn)?shù)指數(shù)冪的意義就是:正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義是 =nam(a>0,m,n∈正整數(shù)集,n>1),正數(shù)的負(fù)分?jǐn)?shù)指數(shù)冪的意義是 = =1nam(a>0,m,n∈正整數(shù)集,n>1),零的正分?jǐn)?shù)次冪等于零,零的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義.(2)規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù).(3)有理數(shù)指數(shù)冪的運(yùn)算性質(zhì):對任意的有理數(shù)r,s,均有下面的運(yùn)算性質(zhì):①ar?as=ar+s(a>0,r,s∈Q),②(ar)s=ars(a>0,r,s∈Q),③(a?b)r=arbr(a>0,b>0,r∈Q).(4)說明兩點(diǎn):①分?jǐn)?shù)指數(shù)冪的意義是一種規(guī)定,我們前面所舉的例子只表明這種規(guī)定的合理性,其中沒有推出關(guān)系.②整數(shù)指數(shù)冪的運(yùn)算性質(zhì)對任意的有理數(shù)指數(shù)冪也同樣適用.因而分?jǐn)?shù)指數(shù)冪與根式可以互化,也可以利用 =am來計算.本節(jié)課是分?jǐn)?shù)指數(shù)冪的意義的引出及應(yīng)用,分?jǐn)?shù)指數(shù)是指數(shù)概念的又一次擴(kuò)充,要讓學(xué)生反復(fù)理解分?jǐn)?shù)指數(shù)冪的意義,教學(xué)中可以通過根式與分?jǐn)?shù)指數(shù)冪的互化來鞏固加深對這一概念的理解,用觀察、歸納和類比的方法完成,由于是硬性的規(guī)定,沒有合理的解釋,因此多安排一些練習(xí),強(qiáng)化訓(xùn)練,鞏固知識,要輔助以信息技術(shù)的手段來完成大容量的課堂教學(xué)任務(wù).思路1.同學(xué)們,既然我們把指數(shù)從正整數(shù)推廣到整數(shù),又從整數(shù)推廣到正分?jǐn)?shù)到負(fù)分?jǐn)?shù),這樣指數(shù)就推廣到有理數(shù),那么它是否也和數(shù)的推廣一樣,到底有沒有無理數(shù)指數(shù)冪呢?回顧數(shù)的擴(kuò)充過程,自然數(shù)到整數(shù),整數(shù)到分?jǐn)?shù)(有理數(shù)),有理數(shù)到實(shí)數(shù).并且知道,在有理數(shù)到實(shí)數(shù)的擴(kuò)充過程中,增添的數(shù)是無理數(shù).對無理數(shù)指數(shù)冪,也是這樣擴(kuò)充而來.既然如此,我們這節(jié)課的主要內(nèi)容是:教師板書本堂課的課題〔指數(shù)與指數(shù)冪的運(yùn)算(3)〕之無理數(shù)指數(shù)冪.思路2.同學(xué)們,在初中我們學(xué)習(xí)了函數(shù)的知識,對函數(shù)有了一個初步的了解,到了高中,我們又對函數(shù)的概念進(jìn)行了進(jìn)一步的學(xué)習(xí),有了更深的理解,我們僅僅學(xué)了幾種簡單的函數(shù),如一次函數(shù)、二次函數(shù)、正比例函數(shù)、反比例函數(shù)、三角函數(shù)等,這些遠(yuǎn)遠(yuǎn)不能滿足我們的需要,隨著科學(xué)的發(fā)展,社會的進(jìn)步,我們還要學(xué)習(xí)許多函數(shù),其中就有指數(shù)函數(shù),為了學(xué)習(xí)指數(shù)函數(shù)的知識,我們必須學(xué)習(xí)實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì),為此,我們必須把指數(shù)冪從有理數(shù)指數(shù)冪擴(kuò)充到實(shí)數(shù)指數(shù)冪,因此我們本節(jié)課學(xué)習(xí):指數(shù)與指數(shù)冪的運(yùn)算(3)之無理數(shù)指數(shù)冪,教師板書本節(jié)課的課題.(1)我們知道2=1.414 213 56…,那么1.41,1.414,1.414 2,1.414 21,…,是2的什么近似值?而1.42,1.415,1.414 3,1.414 22,…,是2的什么近似值?(2)多媒體顯示以下圖表:同學(xué)們從上面的兩個表中,能發(fā)現(xiàn)什么樣的規(guī)律?… …(3)你能給上述思想起個名字嗎?(4)一個正數(shù)的無理數(shù)次冪到底是一個什么性質(zhì)的數(shù)呢?如 ,根據(jù)你學(xué)過的知識,能作出判斷并合理地解釋嗎?(5)借助上面的結(jié)論你能說出一般性的結(jié)論嗎?活動:教師引導(dǎo),學(xué)生回憶,教師提問,學(xué)生回答,積極交流,及時評價學(xué)生,學(xué)生有困惑時加以解釋,可用多媒體顯示輔助內(nèi)容:問題(1)從近似值的分類來考慮,一方面從大于2的方向,另一方面從小于2的方向.問題(2)對圖表的觀察一方面從上往下看,再一方面從左向右看,注意其關(guān)聯(lián).問題(3)上述方法實(shí)際上是無限接近,最后是逼近.問題(4)對問題給予大膽猜測,從數(shù)軸的觀點(diǎn)加以解釋.問題(5)在(3)(4)的基礎(chǔ)上,推廣到一般的情形,即由特殊到一般.討論結(jié)果:(1)1.41,1.414,1.414 2,1.414 21,…這些數(shù)都小于2,稱2的不足近似值,而1.42,1.415,1.414 3,1.414 22,…,這些數(shù)都大于2,稱2的過剩近似值.(2)第一個表:從大于2的方向逼近2時, 就從51.5,51.42,51.415,51.414 3,51.414 22,…,即大于 的方向逼近.第二個表:從小于2的方向逼近2時, 就從51.4,51.41,51.414,51.414 2,51.414 21,…,即小于 的方向逼近.從另一角度來看這個問題,在數(shù)軸上近似地表示這些點(diǎn),數(shù)軸上的數(shù)字表明一方面 從51.4,51.41,51.414,51.414 2,51.414 21,…,即小于 的方向接近,而另一方面 從51.5,51.42,51.415,51.414 3,51.414 22,…,即大于 的方向接近,可以說從兩個方向無限地接近,即逼近,所以 是一串有理數(shù)指數(shù)冪51.4,51.41,51.414,51.414 2,51.414 21,…,和另一串有理數(shù)指數(shù)冪51.5,51.42,51.415,51.414 3,51.414 22,…,按上述變化規(guī)律變化的結(jié)果,事實(shí)上表示這些數(shù)的點(diǎn)從兩個方向向表示 的點(diǎn)靠近,但這個點(diǎn)一定在數(shù)軸上,由此我們可得到的結(jié)論是 一定是一個實(shí)數(shù),即51.40,α是無理數(shù))是一個確定的實(shí)數(shù).也就是說無理數(shù)可以作為指數(shù),并且它的結(jié)果是一個實(shí)數(shù),這樣指數(shù)概念又一次得到推廣,在數(shù)的擴(kuò)充過程中,我們知道有理數(shù)和無理數(shù)統(tǒng)稱為實(shí)數(shù).我們規(guī)定了無理數(shù)指數(shù)冪的意義,知道它是一個確定的實(shí)數(shù),結(jié)合前面的有理數(shù)指數(shù)冪,那么,指數(shù)冪就從有理數(shù)指數(shù)冪擴(kuò)充到實(shí)數(shù)指數(shù)冪.(1)為什么在規(guī)定無理數(shù)指數(shù)冪的意義時,必須規(guī)定底數(shù)是正數(shù)?(2)無理數(shù)指數(shù)冪的運(yùn)算法則是怎樣的?是否與有理數(shù)指數(shù)冪的運(yùn)算法則相通呢?(3)你能給出實(shí)數(shù)指數(shù)冪的運(yùn)算法則嗎?活動:教師組織學(xué)生互助合作,交流探討,引導(dǎo)他們用反例說明問題,注意類比,歸納.對問題(1)回顧我們學(xué)習(xí)分?jǐn)?shù)指數(shù)冪的意義時對底數(shù)的規(guī)定,舉例說明.對問題(2)結(jié)合有理數(shù)指數(shù)冪的運(yùn)算法則,既然無理數(shù)指數(shù)冪aα(a>0,α是無理數(shù))是一個確定的實(shí)數(shù),那么無理數(shù)指數(shù)冪的運(yùn)算法則應(yīng)當(dāng)與有理數(shù)指數(shù)冪的運(yùn)算法則類似,并且相通.對問題(3)有了有理數(shù)指數(shù)冪的運(yùn)算法則和無理數(shù)指數(shù)冪的運(yùn)算法則,實(shí)數(shù)的運(yùn)算法則自然就得到了.討論結(jié)果:(1)底數(shù)大于零的必要性,若a=-1,那么aα是+1還是-1就無法確定了,這樣就造成混亂,規(guī)定了底數(shù)是正數(shù)后,無理數(shù)指數(shù)冪aα是一個確定的實(shí)數(shù),就不會再造成混亂.(2)因?yàn)闊o理數(shù)指數(shù)冪是一個確定的實(shí)數(shù),所以能進(jìn)行指數(shù)的運(yùn)算,也能進(jìn)行冪的運(yùn)算,有理數(shù)指數(shù)冪的運(yùn)算性質(zhì),同樣也適用于無理數(shù)指數(shù)冪.類比有理數(shù)指數(shù)冪的運(yùn)算性質(zhì)可以得到無理數(shù)指數(shù)冪的運(yùn)算法則:①ar?as=ar+s(a>0,r,s都是無理數(shù)).②(ar)s=ars(a>0,r,s都是無理數(shù)).③(a?b)r=arbr(a>0,b>0,r是無理數(shù)).(3)指數(shù)冪擴(kuò)充到實(shí)數(shù)后,指數(shù)冪的運(yùn)算性質(zhì)也就推廣到了實(shí)數(shù)指數(shù)冪.實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì):對任意的實(shí)數(shù)r,s,均有下面的運(yùn)算性質(zhì):①ar?as=ar+s(a>0,r,s∈R).②(ar)s=ars(a>0,r,s∈R).③(a?b)r=arbr(a>0,b>0,r∈R).(1)0.32.1;(2)3.14-3;(3) ;(4) .活動:教師教會學(xué)生利用函數(shù)計算器計算,熟悉計算器的各鍵的功能,正確輸入各類數(shù),算出數(shù)值,對于(1),可先按底數(shù)0.3,再按xy鍵,再按冪指數(shù)2.1,最后按=,即可求得它的值;對于(2),先按底數(shù)3.14,再按xy鍵,再按負(fù)號-鍵,再按3,最后按=即可;對于(3),先按底數(shù)3.1,再按xy鍵,再按3÷4,最后按=即可;對于(4),這種無理指數(shù)冪,可先按底數(shù)3,其次按xy鍵,再按 鍵,再按3,最后按=鍵.有時也可按2ndf或shift鍵,使用鍵上面的功能去運(yùn)算.學(xué)生可以相互交流,挖掘計算器的用途.解:(1)0.32.1≈0.080;(2)3.14-3≈0.032;(3) ≈2.336;(4) ≈6.705.點(diǎn)評:熟練掌握用計算器計算冪的值的方法與步驟,感受現(xiàn)代技術(shù)的威力,逐步把自己融入現(xiàn)代信息社會;用四舍五入法求近似值,若保留小數(shù)點(diǎn)后n位,只需看第(n+1)位能否進(jìn)位即可.例2 求值或化簡.(1)a-4b23ab2(a>0,b>0);(2) (a>0,b>0);(3)5-26+7-43-6-42.活動:學(xué)生觀察,思考,所謂化簡,即若能化為常數(shù)則化為常數(shù),若不能化為常數(shù)則應(yīng)使所化式子達(dá)到最簡,對既有分?jǐn)?shù)指數(shù)冪又有根式的式子,應(yīng)該把根式統(tǒng)一化為分?jǐn)?shù)指數(shù)冪的形式,便于運(yùn)算,教師有針對性地提示引導(dǎo),對(1)由里向外把根式化成分?jǐn)?shù)指數(shù)冪,要緊扣分?jǐn)?shù)指數(shù)冪的意義和運(yùn)算性質(zhì),對(2)既有分?jǐn)?shù)指數(shù)冪又有根式,應(yīng)當(dāng)統(tǒng)一起來,化為分?jǐn)?shù)指數(shù)冪,對(3)有多重根號的式子,應(yīng)先去根號,這里是二次根式,被開方數(shù)應(yīng)湊完全平方,這樣,把5,7,6拆成(3)2+(2)2,22+(3)2,22+(2)2,并對學(xué)生作及時的評價,注意總結(jié)解題的方法和規(guī)律.解:(1)a-4b23ab2= =3b46a11 .點(diǎn)評:根式的運(yùn)算常常化成冪的運(yùn)算進(jìn)行,計算結(jié)果如沒有特殊要求,就用根式的形式來表示.==425a0b0=425.點(diǎn)評:化簡這類式子一般有兩種辦法,一是首先用負(fù)指數(shù)冪的定義把負(fù)指數(shù)化成正指數(shù),另一個方法是采用分式的基本性質(zhì)把負(fù)指數(shù)化成正指數(shù).=3-2+2-3-2+2=0.點(diǎn)評:考慮根號里面的數(shù)是一個完全平方數(shù),千萬注意方根的性質(zhì)的運(yùn)用.例3 已知 ,n∈正整數(shù)集,求(x+1+x2)n的值.活動:學(xué)生思考,觀察題目的特點(diǎn),從整體上看,應(yīng)先化簡,然后再求值,要有預(yù)見性, 與 具有對稱性,它們的積是常數(shù)1,為我們解題提供了思路,教師引導(dǎo)學(xué)生考慮問題的思路,必要時給予提示.= .這時應(yīng)看到1+x2= ,這樣先算出1+x2,再算出1+x2,代入即可.所以(x+1+x2)n=== =5.點(diǎn)評:運(yùn)用整體思想和完全平方公式是解決本題的關(guān)鍵,要深刻理解這種做法.課本習(xí)題2.1A組 3.C. D.解析:根據(jù)本題的特點(diǎn),注意到它的整體性,特別是指數(shù)的規(guī)律性,我們可以進(jìn)行適當(dāng)?shù)淖冃?因?yàn)?,所以原式的分子分母同乘以 .2.計算2790.5+0.1-2+ -3π0+9-0.5+490.5×2-4.=53+100+916-3+13+716=100.3.計算a+2a-1+a-2a-1(a≥1).解:原式=(a-1+1)2+(a-1-1)2=a-1+1+|a-1-1|(a≥1).本題可以繼續(xù)向下做,去掉絕對值,作為思考留作課下練習(xí).4.設(shè)a>0, ,則(x+1+x2)n的值為__________.這樣先算出1+x2,再算出1+x2,將 代入1+x2,得1+x2= .所以(x+1+x2)n=參照我們說明無理數(shù)指數(shù)冪的意義的過程,請你說明無理數(shù)指數(shù)冪 的意義.活動:教師引導(dǎo)學(xué)生回顧無理數(shù)指數(shù)冪 的意義的過程,利用計算器計算出3的近似值,取它的過剩近似值和不足近似值,根據(jù)這些近似值計算 的過剩近似值和不足近似值,利用逼近思想,“逼出” 的意義,學(xué)生合作交流,在投影儀上展示自己的探究結(jié)果.解:3=1.732 050 80…,取它的過剩近似值和不足近似值如下表.1.8 3.482 202 253 1.7 3.249 009 5851.74 3.340 351 678 1.73 3.317 278 1831.733 3.324 183 446 1.731 3.319 578 3421.732 1 3.322 110 36 1.731 9 3.321 649 8491.732 06 3.322 018 252 1.732 04 3.321 972 21.732 051 3.321 997 529 1.732 049 3.321 992 9231.732 050 9 3.321 997 298 1.732 050 7 3.321 996 8381.732 050 81 3.321 997 091 1.732 050 79 3.321 997 045… … … …我們把用2作底數(shù),3的不足近似值作指數(shù)的各個冪排成從小到大的一列數(shù)21.7,21.72,21.731,21.731 9,…,同樣把用2作底數(shù),3的過剩近似值作指數(shù)的各個冪排成從大到小的一列數(shù):21.8,21.74,21.733,21.732 1,…,不難看出3的過剩近似值和不足近似值相同的位數(shù)越多,即3的近似值精確度越高,以其過剩近似值和不足近似值為指數(shù)的冪2α?xí)絹碓节吔谕粋€數(shù),我們把這個數(shù)記為 ,即21.70,α是無理數(shù)) 是一個確定的實(shí)數(shù).(2)實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì):對任意的實(shí)數(shù)r,s,均有下面的運(yùn)算性質(zhì):①ar?as=ar+s(a>0,r,s∈R).②(ar)s=ars(a>0,r,s∈R).③(a?b)r=arbr(a>0,b>0,r∈R).無理數(shù)指數(shù)是指數(shù)概念的又一次擴(kuò)充, 教學(xué)中要讓學(xué)生通過多媒體的演示,理解無理數(shù)指數(shù)冪的意義,教學(xué)中也可以讓學(xué)生自己通過實(shí)際情況去探索,自己得出結(jié)論,加深對概念的理解,本堂課內(nèi)容較為抽象,又不能進(jìn)行推理,只能通過多媒體的教學(xué)手段,讓學(xué)生體會,特別是逼近的思想、類比的思想,多作練習(xí),提高學(xué)生理解問題、分析問題的能力.要使式子x-2x-1=x-2x-1成立,需x-1>0,x-2≥0,即x≥2.若x≥2,則式子x-2x-1=x-2x-1成立.故選D.方法二:對A,式子x-2x-1≥0連式子成立也保證不了,尤其x-2≤0,x-10,∴x-1=0,即x=1.∴32+5+32-5=1.
高一數(shù)學(xué)教案8篇
老師會對課本中的主要教學(xué)內(nèi)容整理到教案課件中,所以老師寫教案可不能隨便對待。教案是評估學(xué)生學(xué)習(xí)效果的有效依據(jù),好的教案課件是怎么寫成的?我們聽了一場關(guān)于“高一數(shù)學(xué)教案”的演講讓我們思考了很多,經(jīng)過閱讀本頁你的認(rèn)識會更加全面!
高一數(shù)學(xué)教案【篇1】
目標(biāo):
(1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及其記法
(2)使學(xué)生初步了解“屬于”關(guān)系的意義
(3)使學(xué)生初步了解有限集、無限集、空集的意義
重點(diǎn):集合的基本概念
教學(xué)過程:
1.引入
(1)章頭導(dǎo)言
(2)集合論與集合論的-----康托爾(有關(guān)介紹可引用附錄中的內(nèi)容)
2.講授新課
閱讀教材,并思考下列問題:
(1)有那些概念?
(2)有那些符號?
(3)集合中元素的特性是什么?
(4)如何給集合分類?
(一)有關(guān)概念:
1、集合的概念
(1)對象:我們可以感覺到的客觀存在以及我們思想中的事物或抽象符號,都可以稱作對象.
(2)集合:把一些能夠確定的不同的對象看成一個整體,就說這個整體是由這些對象的全體構(gòu)成的集合.
(3)元素:集合中每個對象叫做這個集合的元素.
集合通常用大寫的拉丁字母表示,如A、B、C、……元素通常用小寫的拉丁字母表示,如a、b、c、……
2、元素與集合的關(guān)系
(1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A
(2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作
要注意“∈”的方向,不能把a(bǔ)∈A顛倒過來寫.
3、集合中元素的特性
(1)確定性:給定一個集合,任何對象是不是這個集合的元素是確定的了.
(2)互異性:集合中的元素一定是不同的.
(3)無序性:集合中的元素沒有固定的順序.
4、集合分類
根據(jù)集合所含元素個屬不同,可把集合分為如下幾類:
(1)把不含任何元素的集合叫做空集Ф
(2)含有有限個元素的集合叫做有限集
(3)含有無窮個元素的集合叫做無限集
注:應(yīng)區(qū)分,0等符號的含義
5、常用數(shù)集及其表示方法
(1)非負(fù)整數(shù)集(自然數(shù)集):全體非負(fù)整數(shù)的集合.記作N
(2)正整數(shù)集:非負(fù)整數(shù)集內(nèi)排除0的集.記作N_或N+
(3)整數(shù)集:全體整數(shù)的集合.記作Z
(4)有理數(shù)集:全體有理數(shù)的集合.記作Q
(5)實(shí)數(shù)集:全體實(shí)數(shù)的集合.記作R
注:(1)自然數(shù)集包括數(shù)0.
(2)非負(fù)整數(shù)集內(nèi)排除0的集.記作N_或N+,Q、Z、R等其它數(shù)集內(nèi)排除0的集,也這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z_
課堂練習(xí):教材第5頁練習(xí)A、B
小結(jié):本節(jié)課我們了解集合論的發(fā)展,學(xué)習(xí)了集合的概念及有關(guān)性質(zhì)
課后作業(yè):第十頁習(xí)題1-1B第3題
高一數(shù)學(xué)教案【篇2】
一、教材
《直線與圓的位置關(guān)系》是高中人教版必修2第四章第二節(jié)的內(nèi)容,直線和圓的位置關(guān)系是本章的重點(diǎn)內(nèi)容之一。從知識體系上看,它既是點(diǎn)與圓的位置關(guān)系的延續(xù)與提高,又是學(xué)習(xí)切線的判定定理、圓與圓的位置關(guān)系的基礎(chǔ)。從數(shù)學(xué)思想方法層面上看它運(yùn)用運(yùn)動變化的觀點(diǎn)揭示了知識的發(fā)生過程以及相關(guān)知識間的內(nèi)在聯(lián)系,滲透了數(shù)形結(jié)合、分類討論、類比、化歸等數(shù)學(xué)思想方法,有助于提高學(xué)生的思維品質(zhì)。
二、學(xué)情
學(xué)生初中已經(jīng)接觸過直線與圓相交、相切、相離的定義和判定;且在上節(jié)的學(xué)習(xí)過程中掌握了點(diǎn)的坐標(biāo)、直線的方程、圓的方程以及點(diǎn)到直線的距離公式;掌握利用方程組的方法來求直線的交點(diǎn);具有用坐標(biāo)法研究點(diǎn)與圓的位置關(guān)系的基礎(chǔ);具有一定的數(shù)形結(jié)合解題思想的基礎(chǔ)。
三、教學(xué)目標(biāo)
(一)知識與技能目標(biāo)
能夠準(zhǔn)確用圖形表示出直線與圓的三種位置關(guān)系;可以利用聯(lián)立方程的方法和求點(diǎn)到直線的距離的方法簡單判斷出直線與圓的關(guān)系。
(二)過程與方法目標(biāo)
經(jīng)歷操作、觀察、探索、總結(jié)直線與圓的位置關(guān)系的判斷方法,從而鍛煉觀察、比較、概括的邏輯思維能力。
(三)情感態(tài)度價值觀目標(biāo)
激發(fā)求知欲和學(xué)習(xí)興趣,鍛煉積極探索、發(fā)現(xiàn)新知識、總結(jié)規(guī)律的能力,解題時養(yǎng)成歸納總結(jié)的良好習(xí)慣。
四、教學(xué)重難點(diǎn)
(一)重點(diǎn)
用解析法研究直線與圓的位置關(guān)系。
(二)難點(diǎn)
體會用解析法解決問題的數(shù)學(xué)思想。
五、教學(xué)方法
根據(jù)本節(jié)課教材內(nèi)容的特點(diǎn),為了更直觀、形象地突出重點(diǎn),突破難點(diǎn),借助信息技術(shù)工具,以幾何畫板為平臺,通過圖形的動態(tài)演示,變抽象為直觀,為學(xué)生的數(shù)學(xué)探究與數(shù)學(xué)思維提供支持.在教學(xué)中采用小組合作學(xué)習(xí)的方式,這樣可以為不同認(rèn)知基礎(chǔ)的學(xué)生提供學(xué)習(xí)機(jī)會,同時有利于發(fā)揮各層次學(xué)生的作用,教師始終堅持啟發(fā)式教學(xué)原則,設(shè)計一系列問題串,以引導(dǎo)學(xué)生的數(shù)學(xué)思維活動。
六、教學(xué)過程
(一)導(dǎo)入新課
教師借助多媒體創(chuàng)設(shè)泰坦尼克號的情景,并從中抽象出數(shù)學(xué)模型:已知冰山的分布是一個半徑為r的圓形區(qū)域,圓心位于輪船正西的l處,問,輪船如何航行能夠避免撞到冰山呢?如何行駛便又會撞到冰山呢?
教師引導(dǎo)學(xué)生回顧初中已經(jīng)學(xué)習(xí)的直線與圓的位置關(guān)系,將所想到的航行路線轉(zhuǎn)化成數(shù)學(xué)簡圖,即相交、相切、相離。
設(shè)計意圖:在已有的知識基礎(chǔ)上,提出新的問題,有利于保持學(xué)生知識結(jié)構(gòu)的連續(xù)性,同時開闊視野,激發(fā)學(xué)生的學(xué)習(xí)興趣。
(二)新課教學(xué)——探究新知
教師提問如何判斷直線與圓的位置關(guān)系,學(xué)生先獨(dú)立思考幾分鐘,然后同桌兩人為一組交流,并整理出本組同學(xué)所想到的思路。在整個交流討論中,教師既要有對正確認(rèn)識的贊賞,又要有對錯誤見解的分析及對該學(xué)生的鼓勵。
判斷方法:
(1)定義法:看直線與圓公共點(diǎn)個數(shù)
即研究方程組解的個數(shù),具體做法是聯(lián)立兩個方程,消去x(或y)后所得一元二次方程,判斷△和0的大小關(guān)系。
(2)比較法:圓心到直線的距離d與圓的半徑r做比較,
(三)合作探究——深化新知
教師進(jìn)一步拋出疑問,對比兩種方法,由學(xué)生觀察實(shí)踐發(fā)現(xiàn),兩種方法本質(zhì)相同,但比較法只適合于直線與圓,而定義法適用范圍更廣。教師展示較為基礎(chǔ)的題目,學(xué)生解答,總結(jié)思路。
已知直線3x+4y-5=0與圓x2+y2=1,判斷它們的位置關(guān)系?
讓學(xué)生自主探索,討論交流,并闡述自己的解題思路。
當(dāng)已知了直線與圓的方程之后,圓心坐標(biāo)和半徑r易得到,問題的關(guān)鍵是如何得到圓心到直線的距離d,他的本質(zhì)是點(diǎn)到直線的距離,便可以直接利用點(diǎn)到直線的距離公式求d。類比前面所學(xué)利用直線方程求兩直線交點(diǎn)的方法,聯(lián)立直線與圓的方程,組成方程組,通過方程組解得個數(shù)確定直線與圓的交點(diǎn)個數(shù),進(jìn)一步確定他們的位置關(guān)系。最后明確解題步驟。
(四)歸納總結(jié)——鞏固新知
為了將結(jié)論由特殊推廣到一般引導(dǎo)學(xué)生思考:
可由方程組的解的不同情況來判斷:
當(dāng)方程組有兩組實(shí)數(shù)解時,直線l與圓C相交;
當(dāng)方程組有一組實(shí)數(shù)解時,直線l與圓C相切;
當(dāng)方程組沒有實(shí)數(shù)解時,直線l與圓C相離。
活動:我將抽取兩位同學(xué)在黑板上扮演,并在巡視過程中對部分學(xué)生加以指導(dǎo)。最后對黑板上的兩名學(xué)生的解題過程加以分析完善。通過對基礎(chǔ)題的練習(xí),鞏固兩種判斷直線與圓的位置關(guān)系判斷方法,并使每一個學(xué)生獲得后續(xù)學(xué)習(xí)的信心。
(五)小結(jié)作業(yè)
在小結(jié)環(huán)節(jié),我會以口頭提問的方式:
(1)這節(jié)課學(xué)習(xí)的主要內(nèi)容是什么?
(2)在數(shù)學(xué)問題的解決過程中運(yùn)用了哪些數(shù)學(xué)思想?
設(shè)計意圖:啟發(fā)式的課堂小結(jié)方式能讓學(xué)生主動回顧本節(jié)課所學(xué)的知識點(diǎn)。也促使學(xué)生對知識網(wǎng)絡(luò)進(jìn)行主動建構(gòu)。
作業(yè):在學(xué)生回顧本堂學(xué)習(xí)內(nèi)容明確兩種解題思路后,教師讓學(xué)生對比兩種解法,那種更簡捷,明確本節(jié)課主要用比較d與r的關(guān)系來解決這類問題,對用方程組解的個數(shù)的判斷方法,要求學(xué)生課外做進(jìn)一步的探究,下一節(jié)課匯報。
七、板書設(shè)計
我的板書本著簡介、直觀、清晰的原則,這就是我的板書設(shè)計。
##結(jié)束高一數(shù)學(xué)教案【篇3】
教學(xué)內(nèi)容:圓的周長
教學(xué)重點(diǎn):理解圓周率的意義。
教學(xué)難點(diǎn):探究圓的周長的計算方法。
教學(xué)過程:
一、導(dǎo)入新課
故事導(dǎo)入,觀看后提問:
1、誰獲勝呢?
2、它們對自己跑的距離產(chǎn)生了懷疑,都說自己跑的遠(yuǎn)……
3、拿起一個圓用手模一摸感知什么是圓的周長。
二、新課
(一)介紹測量方法:
1、繩測法。
2、滾動法。
3、教師引導(dǎo)學(xué)生運(yùn)用“化曲為直”的思想,知道繩測法和滾動法測量圓的周長,并讓學(xué)生感知這兩種方法的局限性
(二)猜想。(三)實(shí)驗(yàn)。
1、小組協(xié)作。
周長c(厘米)
直徑d(厘米)
周長與直徑的比值(保留兩位小數(shù))
2、匯報測量和計算結(jié)果。
提問:通過這些實(shí)驗(yàn)和統(tǒng)計,你發(fā)現(xiàn)圓的周長和直徑有沒有關(guān)系?有怎樣的關(guān)系?
學(xué)生:發(fā)現(xiàn)每個圓的周長總是直徑的3倍多一些。
(四)驗(yàn)證結(jié)論。
(五)閱讀理解有關(guān)圓周率的知識。
三、練習(xí)
計算方法:
1、能說出圓周長的計算方法嗎?
c=∏dc=2∏r(板書)
2、根據(jù)條件,求下面各圓的周長。
d=10cmr=10cm
3、(略)
4、現(xiàn)在你明白小龜和小兔誰跑的路程長嗎?誰跑得快?
5、拓展練習(xí)。
四、總結(jié)。
你學(xué)會了什么?請主動用你學(xué)會的知識去解決生活中有關(guān)圓的周長的問題。
附:教學(xué)設(shè)想
一、選擇與新知識最佳關(guān)系的生長點(diǎn),巧制課件,導(dǎo)入新課。
“周長”是已學(xué)過的概念,但以前講的長、正方形的周長是指封閉折線的長度,而圓的周長是指封閉曲線的長度。一“直”一“曲”既有聯(lián)系亦有區(qū)別。我抓住這一新知識的連接點(diǎn)導(dǎo)入新課。激發(fā)學(xué)生的求知欲。
二、調(diào)動學(xué)生積極主動參與,給學(xué)生充分的探索空間。
整個教學(xué)過程中,我設(shè)計靈活多樣的教學(xué)方法。例:課件演示與實(shí)驗(yàn)相結(jié)合,個別實(shí)驗(yàn)和小組實(shí)驗(yàn)相結(jié)合,講與練相結(jié)合,計算與測量相結(jié)合,談話與板書相結(jié)合,講與練相結(jié)合,計算與測量相結(jié)合。充分調(diào)動學(xué)生學(xué)習(xí)的主動性,給學(xué)生充分的探索時空,并且探究的題材對學(xué)生也具有一定的挑戰(zhàn)性。學(xué)生的角色由知識的接受者轉(zhuǎn)變?yōu)橹R的構(gòu)建者。
三、在研究性學(xué)習(xí)中培養(yǎng)學(xué)生合作意識和數(shù)學(xué)交流能力。
小組探索通過測、剪、量、算一系列操作認(rèn)識圓的周長與直徑有一定的倍數(shù)關(guān)系,巧用課件,概括出圓周長的計算公式。
附:教后感:
這次“三新一整合”的活動促使我重溫《新教材標(biāo)準(zhǔn)》,改進(jìn)自己教學(xué)觀念,學(xué)習(xí)有關(guān)信息技術(shù)整合的新模式。本節(jié)課體現(xiàn)了我教學(xué)觀念的一些改變。主要體現(xiàn)在:
一、把課堂的主動權(quán)交給了學(xué)生,給學(xué)生充分的探索時空。
課堂教學(xué)是“教”與“學(xué)”的統(tǒng)一,隨著素質(zhì)教育的不斷深化,越來越偏重于“學(xué)”的研究(三新活動中的“新學(xué)法”)。教師不再是知識的提供者和傳授者,而是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者、參與者;學(xué)生不再是知識的接受者,而是數(shù)學(xué)知識的建構(gòu)者。師生角色的的變化,使學(xué)生在學(xué)習(xí)方式上有了質(zhì)的飛躍。動手實(shí)踐,自主探索、合作交流成為學(xué)生重要的學(xué)習(xí)方式。圓的周長計算方法的探索,這題材對學(xué)生有一定的挑戰(zhàn)性,也就是和學(xué)生的現(xiàn)有認(rèn)知狀態(tài)有一個適度距離(潛在距離),學(xué)生在這種狀態(tài)下的探究學(xué)習(xí)才是有意義的學(xué)習(xí)。本節(jié)課給予學(xué)生充分的時間探索出圓的周長總是直徑的3倍多一些。
二、利用課件,激發(fā)探究興趣、提高探究效率和培養(yǎng)探究能力。
課件動感的龜兔賽跑把全體學(xué)生引入課堂,理解了課題的含義、明確了學(xué)習(xí)的目的性,激發(fā)了探索的興趣。課件的幾次龜兔賽跑的介入,并逐級演示,再加上老師的啟發(fā)引導(dǎo)和學(xué)生的觀察思考有機(jī)結(jié)合,化抽象為具體,使學(xué)生進(jìn)一步理解了圓周長的含義,明確學(xué)習(xí)目的性,激發(fā)了學(xué)生的探究興趣。
運(yùn)用課件設(shè)計自學(xué)內(nèi)容,大大節(jié)省了板書所用的時間,使學(xué)生探究數(shù)學(xué)問題的效率得以提高。正方形周長和圓周長比較,大圓周長和幾個內(nèi)切小圓的周長和比較。通過課件的演示,對于引導(dǎo)學(xué)生說理,理解疑難問題,培養(yǎng)學(xué)生解決新問題的探究能力有著極為重要的作用。
三、巧妙設(shè)計練習(xí),照顧全體,培養(yǎng)學(xué)生的創(chuàng)造能力。
本節(jié)課的練習(xí)全部是要利用課堂所學(xué)的內(nèi)容解決生活中的問題。特別是通過小組學(xué)習(xí)形式讓學(xué)生利用圓周長的知識舉出能解決生活中哪些有關(guān)圓周長的知識這一開放性題型。激發(fā)了學(xué)生的興趣,也照顧了不同層面的學(xué)生。學(xué)生所舉的例子充分體現(xiàn)了學(xué)生的創(chuàng)造性和運(yùn)用知識的能力。
運(yùn)用了探究式課堂教學(xué)。上課后,也有許多地方值得我進(jìn)一步深思。例如怎樣設(shè)問、問題開放到什么程度、信息技術(shù)怎樣完美地和課堂整合、教學(xué)理念的進(jìn)一步改變……
探究式課堂是否取得實(shí)效,歸根到底是以學(xué)生是否參與、怎樣參與、參與多少來決定的同時只有讓學(xué)生主動參與教學(xué),才能讓課堂充滿生機(jī)。
它山之石可以攻玉,以上就是范文為大家?guī)淼?篇《高一數(shù)學(xué)教案》,能夠幫助到您,是范文最開心的事情。
高一數(shù)學(xué)教案【篇4】
教學(xué)目標(biāo):
1、理解對數(shù)的概念,能夠進(jìn)行對數(shù)式與指數(shù)式的互化;
2、滲透應(yīng)用意識,培養(yǎng)歸納思維能力和邏輯推理能力,提高數(shù)學(xué)發(fā)現(xiàn)能力。
教學(xué)重點(diǎn):
對數(shù)的概念
教學(xué)過程:
一、問題情境:
1、(1)莊子:一尺之棰,日取其半,萬世不竭、①取5次,還有多長?②取多少次,還有0、125尺?
(2)假設(shè)20xx年我國國民生產(chǎn)總值為a億元,如果每年平均增長8%,那么經(jīng)過多少年國民生產(chǎn)總值是20xx年的2倍?
抽象出:1、=?,=0、125x=?2、=2x=?
2、問題:已知底數(shù)和冪的值,如何求指數(shù)?你能看得出來嗎?
二、學(xué)生活動:
1、討論問題,探究求法、
2、概括內(nèi)容,總結(jié)對數(shù)概念、
3、研究指數(shù)與對數(shù)的關(guān)系、
三、建構(gòu)數(shù)學(xué):
1)引導(dǎo)學(xué)生自己總結(jié)并給出對數(shù)的概念、
2)介紹對數(shù)的表示方法,底數(shù)、真數(shù)的含義、
3)指數(shù)式與對數(shù)式的關(guān)系、
4)常用對數(shù)與自然對數(shù)、
探究:
⑴負(fù)數(shù)與零沒有對數(shù)、
⑵,、
⑶對數(shù)恒等式(教材P58練習(xí)6)
①;②、
⑷兩種對數(shù):
①常用對數(shù):;
②自然對數(shù):、
(5)底數(shù)的取值范圍為;真數(shù)的取值范圍為、
四、數(shù)學(xué)運(yùn)用:
1、例題:
例1、(教材P57例1)將下列指數(shù)式改寫成對數(shù)式:
(1)=16;(2)=;(3)=20;(4)=0、45、
例2、(教材P57例2)將下列對數(shù)式改寫成指數(shù)式:
(1);(2)3=—2;(3);(4)(補(bǔ)充)ln10=2、303
例3、(教材P57例3)求下列各式的值:
⑴;⑵;⑶(補(bǔ)充)、
2、練習(xí):
P58(練習(xí))1,2,3,4,5、
五、回顧小結(jié):
本節(jié)課學(xué)習(xí)了以下內(nèi)容:
⑴對數(shù)的定義;
⑵指數(shù)式與對數(shù)式互換;
⑶求對數(shù)式的值(利用計算器求對數(shù)值)、
六、課外作業(yè):P63習(xí)題1,2,3,4、
高一數(shù)學(xué)教案【篇5】
教學(xué)目的:
(1)理解兩個集合的并集與交集的的含義,會求兩個簡單集合的并集與交集;
(2)能用Venn圖表達(dá)集合的關(guān)系及運(yùn)算,體會直觀圖示對理解抽象概念的作用。
課型:
新授課
教學(xué)重點(diǎn):
集合的交集與并集的概念;
教學(xué)難點(diǎn):
集合的交集與并集“是什么”,“為什么”,“怎樣做”;
教學(xué)過程:
一、引入課題
我們兩個實(shí)數(shù)除了可以比較大小外,還可以進(jìn)行加法運(yùn)算,類比實(shí)數(shù)的加法運(yùn)算,兩個集合是否也可以“相加”呢?
思考(P9思考題),引入并集概念。
二、新課教學(xué)
1、并集
一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,稱為集合A與B的并集(Union)
記作:A∪B讀作:“A并B”
即:A∪B={x|x∈A,或x∈B}
Venn圖表示:
說明:兩個集合求并集,結(jié)果還是一個集合,是由集合A與B的所有元素組成的集合(重復(fù)元素只看成一個元素)。
例題1求集合A與B的并集
① A={6,8,10,12} B={3,6,9,12}
② A={x|-1≤x≤2} B={x|0≤x≤3}
(過度)問題:在上圖中我們除了研究集合A與B的并集外,它們的公共部分(即問號部分)還應(yīng)是我們所關(guān)心的,我們稱其為集合A與B的交集。
2、交集
一般地,由屬于集合A且屬于集合B的元素所組成的集合,叫做集合A與B的交集(intersection)。
記作:A∩B讀作:“A交B”
即:A∩B={x|∈A,且x∈B}
交集的Venn圖表示
說明:兩個集合求交集,結(jié)果還是一個集合,是由集合A與B的公共元素組成的集合。
例題2求集合A與B的交集
③ A={6,8,10,12} B={3,6,9,12}
④ A={x|-1≤x≤2} B={x|0≤x≤3}
拓展:求下列各圖中集合A與B的并集與交集(用彩筆圖出)
說明:當(dāng)兩個集合沒有公共元素時,兩個集合的交集是空集,而不能說兩個集合沒有交集
3、例題講解
例3(P12例1):理解所給集合的含義,可借助venn圖分析
例4 P12例2):先“化簡”所給集合,搞清楚各自所含元素后,再進(jìn)行運(yùn)算。
4、集合基本運(yùn)算的一些結(jié)論:
A∩B A,A∩B B,A∩A=A,A∩ = ,A∩B=B∩A
A A∪B,B A∪B,A∪A=A,A∪ =A,A∪B=B∪A
若A∩B=A,則A B,反之也成立
若A∪B=B,則A B,反之也成立
若x∈(A∩B),則x∈A且x∈B
若x∈(A∪B),則x∈A,或x∈B
高一數(shù)學(xué)教案【篇6】
教材分析:集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學(xué)的一個重要的基礎(chǔ),一方面,許多重要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學(xué)思想,在越來越廣泛的領(lǐng)域種得到應(yīng)用。
課 型:新授課
教學(xué)目標(biāo):(1)通過實(shí)例,了解集合的含義,體會元素與集合的理解集合“屬于”關(guān)系;
(2)能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用;
教學(xué)重點(diǎn):集合的基本概念與表示方法;
教學(xué)難點(diǎn):運(yùn)用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合;
教學(xué)過程:
一、 引入課題
軍訓(xùn)前學(xué)校通知:8月15日8點(diǎn),高一年段在體育館集合進(jìn)行軍訓(xùn)動員;試問這個通知的對象是全體的高一學(xué)生還是個別學(xué)生?
在這里,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對象的總體,而不是個別的對象,為此,我們將學(xué)習(xí)一個新的概念——集合(宣布課題),即是一些研究對象的總體。
閱讀課本P2-P3內(nèi)容
二、 新課教學(xué)
(一)集合的有關(guān)概念
1. 集合理論創(chuàng)始人康托爾稱集合為一些確定的、不同的東西的全體,人們能意識到這些東西,并且能判斷一個給定的東西是否屬于這個總體。
2. 一般地,研究對象統(tǒng)稱為元素(element),一些元素組成的總體叫集合(set),也簡稱集。
3. 思考1:課本P3的思考題,并再列舉一些集合例子和不能構(gòu)成集合的例子,對學(xué)生的例子予以討論、點(diǎn)評,進(jìn)而講解下面的問題。
4. 關(guān)于集合的元素的特征
(1)確定性:設(shè)A是一個給定的集合,x是某一個具體對象,則或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。
(2)互異性:一個給定集合中的元素,指屬于這個集合的互不相同的個體(對象),因此,同一集合中不應(yīng)重復(fù)出現(xiàn)同一元素。
(3)集合相等:構(gòu)成兩個集合的元素完全一樣
5. 元素與集合的關(guān)系;
(1)如果a是集合A的元素,就說a屬于(belong to)A,記作a∈A
(2)如果a不是集合A的元素,就說a不屬于(not belong to)A,記作a A(或a A)(舉例)
6. 常用數(shù)集及其記法
非負(fù)整數(shù)集(或自然數(shù)集),記作N
正整數(shù)集,記作N*或N+;
整數(shù)集,記作Z
有理數(shù)集,記作Q
實(shí)數(shù)集,記作R
(二)集合的表示方法
我們可以用自然語言來描述一個集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。
(1) 列舉法:把集合中的元素一一列舉出來,寫在大括號內(nèi)。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;
例1.(課本例1)
思考2,引入描述法
說明:集合中的元素具有無序性,所以用列舉法表示集合時不必考慮元素的順序。
(2) 描述法:把集合中的元素的公共屬性描述出來,寫在大括號{}內(nèi)。
具體方法:在大括號內(nèi)先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。
如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},…;
例2.(課本例2)
說明:(課本P5最后一段)
思考3:(課本P6思考)
強(qiáng)調(diào):描述法表示集合應(yīng)注意集合的代表元素
{(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數(shù)},即代表整數(shù)集Z。
辨析:這里的{ }已包含“所有”的意思,所以不必寫{全體整數(shù)}。下列寫法{實(shí)數(shù)集},{R}也是錯誤的。
說明:列舉法與描述法各有優(yōu)點(diǎn),應(yīng)該根據(jù)具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個元素時,不宜采用列舉法。
(三)課堂練習(xí)(課本P6練習(xí))
三、 歸納小結(jié)
本節(jié)課從實(shí)例入手,非常自然貼切地引出集合與集合的概念,并且結(jié)合實(shí)例對集合的概念作了說明,然后介紹了集合的常用表示方法,包括列舉法、描述法。
四、 作業(yè)布置
書面作業(yè):習(xí)題1.1,第1- 4題
五、 板書設(shè)計(略
高一數(shù)學(xué)教案【篇7】
課題:2.3.2.3直線的一般式方程
課型:新授課
教學(xué)目標(biāo):
1、知識與技能
(1)明確直線方程一般式的形式特征;
(2)會把直線方程的一般式化為斜截式,進(jìn)而求斜率和截距;
(3)會把直線方程的點(diǎn)斜式、兩點(diǎn)式化為一般式。
2、過程與方法:學(xué)會用分類討論的思想方法解決問題。
3、情態(tài)與價值觀
(1)認(rèn)識事物之間的普遍聯(lián)系與相互轉(zhuǎn)化;(2)用聯(lián)系的觀點(diǎn)看問題。
教學(xué)重點(diǎn):直線方程的一般式。
教學(xué)難點(diǎn):對直線方程一般式的理解與應(yīng)用
教學(xué)過程:
問題
設(shè)計意圖
師生活動
1、(1)平面直角坐標(biāo)系中的每一條直線都可以用一個關(guān)于的二元一次方程表示嗎?
(2)每一個關(guān)于的二元一次方程(a,b不同時為0)都表示一條直線嗎?
使學(xué)生理解直線和二元一次方程的關(guān)系。
教師引導(dǎo)學(xué)生用分類討論的方法思考探究問題(1),即直線存在斜率和直線不存在斜率時求出的直線方程是否都為二元一次方程。對于問題(2),教師引導(dǎo)學(xué)生理解要判斷某一個方程是否表示一條直線,只需看這個方程是否可以轉(zhuǎn)化為直線方程的某種形式。為此要對b分類討論,即當(dāng)時和當(dāng)b=0時兩種情形進(jìn)行變形。然后由學(xué)生去變形判斷,得出結(jié)論:
關(guān)于的二元一次方程,它都表示一條直線。
教師概括指出:由于任何一條直線都可以用一個關(guān)于的二元一次方程表示;同時,任何一個關(guān)于的二元一次方程都表示一條直線。
我們把關(guān)于關(guān)于的二元一次方程(a,b不同時為0)叫做直線的一般式方程,簡稱一般式(generalform)。
2、直線方程的一般式與其他幾種形式的直線方程相比,它有什么優(yōu)點(diǎn)?
使學(xué)生理解直線方程的一般式的與其他形
學(xué)生通過對比、討論,發(fā)現(xiàn)直線方程的一般式與其他形式的直線方程的一個不同點(diǎn)是:
問題
設(shè)計意圖
師生活動
式的不同點(diǎn)。
直線的一般式方程能夠表示平面上的所有直線,而點(diǎn)斜式、斜截式、兩點(diǎn)式方程,都不能表示與軸垂直的直線。
3、在方程中,a,b,c為何值時,方程表示的直線
(1)平行于軸;(2)平行于軸;(3)與軸重合;(4)與重合。
使學(xué)生理解二元一次方程的系數(shù)和常數(shù)項(xiàng)對直線的位置的影響。
教師引導(dǎo)學(xué)生回顧前面所學(xué)過的與軸平行和重合、與軸平行和重合的直線方程的形式。然后由學(xué)生自主探索得到問題的答案。
4、例5的教學(xué)
已知直線經(jīng)過點(diǎn)a(6,-4),斜率為,求直線的點(diǎn)斜式和一般式方程。
使學(xué)生體會把直線方程的點(diǎn)斜式轉(zhuǎn)化為一般式,把握直線方程一般式的特點(diǎn)。
學(xué)生獨(dú)立完成。然后教師檢查、評價、反饋。指出:對于直線方程的一般式,一般作如下約定:一般按含項(xiàng)、含項(xiàng)、常數(shù)項(xiàng)順序排列;項(xiàng)的系數(shù)為正;,的系數(shù)和常數(shù)項(xiàng)一般不出現(xiàn)分?jǐn)?shù);無特加要時,求直線方程的結(jié)果寫成一般式。
5、例6的教學(xué)
把直線的一般式方程化成斜截式,求出直線的斜率以及它在軸與軸上的截距,并畫出圖形。
使學(xué)生體會直線方程的一般式化為斜截式,和已知直線方程的一般式求直線的斜率和截距的方法。
先由學(xué)生思考解答,并讓一個學(xué)生上黑板板書。然后教師引導(dǎo)學(xué)生歸納出由直線方程的一般式,求直線的斜率和截距的方法:把一般式轉(zhuǎn)化為斜截式可求出直線的斜率的和直線在軸上的截距。求直線與軸的截距,即求直線與軸交點(diǎn)的橫坐標(biāo),為此可在方程中令=0,解出值,即為與直線與軸的截距。
在直角坐標(biāo)系中畫直線時,通常找出直線下兩個坐標(biāo)軸的交點(diǎn)。
6、二元一次方程的每一個解與坐標(biāo)平面中點(diǎn)的有什么關(guān)系?直線與二元一次方程的解之間有什么關(guān)系?
使學(xué)生進(jìn)一步理解二元一次方程與直線的關(guān)系,體會直解坐標(biāo)系把直線與方程聯(lián)系起來。
學(xué)生閱讀教材第105頁,從中獲得對問題的理解。
7、課堂練習(xí)
鞏固所學(xué)知識和方法。
學(xué)生獨(dú)立完成,教師檢查、評價。
問題
設(shè)計意圖
師生活動
8、小結(jié)
使學(xué)生對直線方程的理解有一個整體的認(rèn)識。
(1)請學(xué)生寫出直線方程常見的幾種形式,并說明它們之間的關(guān)系。
(2)比較各種直線方程的形式特點(diǎn)和適用范圍。
(3)求直線方程應(yīng)具有多少個條件?
(4)學(xué)習(xí)本節(jié)用到了哪些數(shù)學(xué)思想方法?
鞏固課堂上所學(xué)的知識和方法。
學(xué)生課后獨(dú)立思考完成。
歸納小結(jié):
(1)請學(xué)生寫出直線方程常見的幾種形式,并說明它們之間的關(guān)系。
(2)比較各種直線方程的形式特點(diǎn)和適用范圍。
(3)求直線方程應(yīng)具有多少個條件?
(4)學(xué)習(xí)本節(jié)用到了哪些數(shù)學(xué)思想方法?
作業(yè)布置:第101頁習(xí)題3.2第10,11題
課后記:
高一數(shù)學(xué)教案【篇8】
一、教學(xué)目標(biāo)
(1)了解含有“或”、“且”、“非”復(fù)合命題的概念及其構(gòu)成形式;
(2)理解邏輯聯(lián)結(jié)詞“或”“且”“非”的含義;
(3)能用邏輯聯(lián)結(jié)詞和簡單命題構(gòu)成不同形式的復(fù)合命題;
(4)能識別復(fù)合命題中所用的邏輯聯(lián)結(jié)詞及其聯(lián)結(jié)的簡單命題;
(5)會用真值表判斷相應(yīng)的復(fù)合命題的真假;
(6)在知識學(xué)習(xí)的基礎(chǔ)上,培養(yǎng)學(xué)生簡單推理的技能.
二、教學(xué)重點(diǎn)難點(diǎn):
重點(diǎn)是判斷復(fù)合命題真假的方法;難點(diǎn)是對“或”的含義的理解.
三、教學(xué)過程
1.新課導(dǎo)入
在當(dāng)今社會中,人們從事任何工作、學(xué)習(xí),都離不開邏輯.具有一定邏輯知識是構(gòu)成一個公民的文化素質(zhì)的重要方面.?dāng)?shù)學(xué)的特點(diǎn)是邏輯性強(qiáng),特別是進(jìn)入高中以后,所學(xué)的'教學(xué)比初中更強(qiáng)調(diào)邏輯性.如果不學(xué)習(xí)一定的邏輯知識,將會在我們學(xué)習(xí)的過程中不知不覺地經(jīng)常犯邏輯性的錯誤.其實(shí),同學(xué)們在初中已經(jīng)開始接觸一些簡易邏輯的知識.
初一平面幾何中曾學(xué)過命題,請同學(xué)們舉一個命題的例子.(板書:命題.)
(從初中接觸過的“命題”入手,提出問題,進(jìn)而學(xué)習(xí)邏輯的有關(guān)知識.)
學(xué)生舉例:平行四邊形的對角線互相平. ……(1)
兩直線平行,同位角相等.…………(2)
教師提問:“……相等的角是對頂角”是不是命題?……(3)
(同學(xué)議論結(jié)果,答案是肯定的.)
教師提問:什么是命題?
(學(xué)生進(jìn)行回憶、思考.)
概念總結(jié):對一件事情作出了判斷的語句叫做命題.
(教師肯定了同學(xué)的回答,并作板書.)
由于判斷有正確與錯誤之分,所以命題有真假之分,命題(1)、(2)是真命題,而(3)是假命題.
(教師利用投影片,和學(xué)生討論以下問題.)
例1 判斷以下各語句是不是命題,若是,判斷其真假:
命題一定要對一件事情作出判斷,(3)、(4)沒有對一件事情作出判斷,所以它們不是命題.
初中所學(xué)的命題概念涉及邏輯知識,我們今天開始要在初中學(xué)習(xí)的基礎(chǔ)上,介紹簡易邏輯的知識.
2.講授新課
大家看課本(人教版,試驗(yàn)修訂本,第一冊(上))從第25頁至26頁例1前,并歸納一下這段內(nèi)容主要講了哪些問題?
(片刻后請同學(xué)舉手回答,一共講了四個問題.師生一道歸納如下.)
(1)什么叫做命題?
可以判斷真假的語句叫做命題.
判斷一個語句是不是命題,關(guān)鍵看這語句有沒有對一件事情作出了判斷,疑問句、祈使句都不是命題.有些語句中含有變量,如 x2-5x+6=0
中含有變量 ,在不給定變量的值之前,我們無法確定這語句的真假(這種含有變量的語句叫做“開語句”).
(2)介紹邏輯聯(lián)結(jié)詞“或”、“且”、“非”.
“或”、“且”、“非”這些詞叫做邏輯聯(lián)結(jié)詞.邏輯聯(lián)結(jié)詞除這三種形式外,還有“若…則…”和“當(dāng)且僅當(dāng)”兩種形式.
命題可分為簡單命題和復(fù)合命題.
不含邏輯聯(lián)結(jié)詞的命題叫做簡單命題.簡單命題是不含其他命題作為其組成部分(在結(jié)構(gòu)上不能再分解成其他命題)的命題.
由簡單命題和邏輯聯(lián)結(jié)詞構(gòu)成的命題叫做復(fù)合命題,如“6是自然數(shù)且是偶數(shù)”就是由簡單命題“6是自然數(shù)”和“6是偶數(shù)”由邏輯聯(lián)結(jié)詞“且”構(gòu)成的復(fù)合命題.
(4)命題的表示:用p ,q ,r ,s ,……來表示.
(教師根據(jù)學(xué)生回答的情況作補(bǔ)充和強(qiáng)調(diào),特別是對復(fù)合命題的概念作出分析和展開.)
我們接觸的復(fù)合命題一般有“p 或q ”“p且q ”、“非p ”、“若p 則q ”等形式.
給出一個含有“或”、“且”、“非”的復(fù)合命題,應(yīng)能說出構(gòu)成它的簡單命題和弄清它所用的邏輯聯(lián)結(jié)詞;應(yīng)能根據(jù)所給出的兩個簡單命題,寫出含有邏輯聯(lián)結(jié)詞“或”、“且”、“非”的復(fù)合命題.
對于給出“若p 則q ”形式的復(fù)合命題,應(yīng)能找到條件p 和結(jié)論q .
在判斷一個命題是簡單命題還是復(fù)合命題時,不能只從字面上來看有沒有“或”、“且”、“非”.例如命題“等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合”,此命題字面上無“且”;命題“5的倍數(shù)的末位數(shù)字不是0就是5”的字面上無“或”,但它們都是復(fù)合命題.
3.鞏固新課
例2 判斷下列命題,哪些是簡單命題,哪些是復(fù)合命題.如果是復(fù)合命題,指出它的構(gòu)成形式以及構(gòu)成它的簡單命題.
(1)5 ;
(2)0.5非整數(shù);
(3)內(nèi)錯角相等,兩直線平行;
(4)菱形的對角線互相垂直且平分;
(5)平行線不相交;
(6)若ab=0 ,則a=0 .
(讓學(xué)生有充分的時間進(jìn)行辨析.教材中對“若…則…”不作要求,教師可以根據(jù)學(xué)生的情況作些補(bǔ)充.)
高中數(shù)學(xué)集合的概念教案(匯集5篇)
高中數(shù)學(xué)集合的概念教案 篇1
教學(xué)目標(biāo):
1.使學(xué)生理解集合的含義,知道常用集合及其記法;
2.使學(xué)生初步了解屬于關(guān)系和集合相等的意義,初步了解有限集、無限集、空集的意義;
3.使學(xué)生初步掌握集合的表示方法,并能正確地表示一些簡單的集合.
教學(xué)重點(diǎn):
集合的含義及表示方法.
教學(xué)過程:
一、問題情境
1.情境.
新生自我介紹:介紹家庭、原畢業(yè)學(xué)校、班級.
2.問題.
在介紹的過程中,常常涉及像家庭、學(xué)校、班級、男生、女生等概念,這些概念與學(xué)生相比,它們有什么共同的特征?
二、學(xué)生活動
1.介紹自己;
2.列舉生活中的集合實(shí)例;
3.分析、概括各集合實(shí)例的共同特征.
三、數(shù)學(xué)建構(gòu)
1.集合的含義:一般地,一定范圍內(nèi)不同的、確定的對象的全體組成一個集合.構(gòu)成集合的每一個個體都叫做集合的一個元素.
2.元素與集合的關(guān)系及符號表示:屬于,不屬于.
3.集合的表示方法:
另集合一般可用大寫的拉丁字母簡記為集合A、集合B.
4.常用數(shù)集的記法:自然數(shù)集N,正整數(shù)集N*,整數(shù)集Z,有理數(shù)集Q,實(shí)數(shù)集R.
5.有限集,無限集與空集.
6.有關(guān)集合知識的歷史簡介.
四、數(shù)學(xué)運(yùn)用
1.例題.
例1 表示出下列集合:
(1)中國的直轄市;(2)中國國旗上的.顏色.
小結(jié):集合的確定性和無序性
例2 準(zhǔn)確表示出下列集合:
(1)方程x2―2x-3=0的解集;
(2)不等式2-x0的解集;
(3)不等式組 的解集;
(4)不等式組 2x-1-33x+10的解集.
解:略.
小結(jié):(1)集合的表示方法列舉法與描述法;
(2)集合的分類有限集⑴,無限集⑵與⑶,空集⑷
例3 將下列用描述法表示的集合改為列舉法表示:
(1){(x,y)| x+y = 3,x N,y N }
(2){(x,y)| y = x2-1,|x |2,x Z }
(3){y| x+y = 3,x N,y N }
(4){ x R | x3-2x2+x=0}
小結(jié):常用數(shù)集的記法與作用.
例4 完成下列各題:
(1)若集合A={ x|ax+1=0}=,求實(shí)數(shù)a的值;
(2)若-3{ a-3,2a-1,a2-4},求實(shí)數(shù)a.
小結(jié):集合與元素之間的關(guān)系.
2.練習(xí):
(1)用列舉法表示下列集合:
①{ x|x+1=0};
②{ x|x為15的正約數(shù)};
③{ x|x 為不大于10的正偶數(shù)};
④{(x,y)|x+y=2且x-2y=4};
⑤{(x,y)|x{1,2},y{1,3}};
⑥{(x,y)|3x+2y=16,xN,yN}.
(2)用描述法表示下列集合:
①奇數(shù)的集合;②正偶數(shù)的集合;③{1,4,7,10,13}
五、回顧小結(jié)
(1)集合的概念集合、元素、屬于、不屬于、有限集、無限集、空集;
(2)集合的表示列舉法、描述法以及Venn圖;
(3)集合的元素與元素的個數(shù);
(4)常用數(shù)集的記法.
高中數(shù)學(xué)集合的概念教案 篇2
教學(xué)目標(biāo):
1、理解集合的概念和性質(zhì)。
2、了解元素與集合的表示方法。
3、熟記有關(guān)數(shù)集。
4、培養(yǎng)學(xué)生認(rèn)識事物的能力。
教學(xué)重點(diǎn):
集合概念、性質(zhì)
教學(xué)難點(diǎn):
集合概念的理解
教學(xué)過程:
1、定義:
集合:一般地,某些指定的對象集在一起就成為一個集合(集)。元素:集合中每個對象叫做這個集合的元素。
由此上述例中集合的元素是什么?
例(1)的元素為1、3、5、7,例(2)的元素為到兩定點(diǎn)距離等于兩定點(diǎn)間距離的`點(diǎn),例(3)的元素為滿足不等式3x—2> x+3的實(shí)數(shù)x,例(4)的元素為所有直角三角形,例(5)為高一·六班全體男同學(xué)。
一般用大括號表示集合,{?}如{我校的籃球隊員},{太平洋、大西洋、印度洋、北冰洋}。則上幾例可表示為...
為方便,常用大寫的拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(1)確定性;(2)互異性;(3)無序性。
3、元素與集合的關(guān)系:隸屬關(guān)系
元素與集合的關(guān)系有“屬于∈”及“不屬于?(?也可表示為)兩種。如A={2,4,8,16},則4∈A,8∈A,32?A。
集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集A記作a?A,相反,a不屬于集A記作a?A(或)
注:1、集合通常用大寫的拉丁字母表示,如A、B、C、P、Q...
元素通常用小寫的拉丁字母表示,如a、b、c、p、q...
2、“∈”的開口方向,不能把a(bǔ)∈A顛倒過來寫。
4
注:(1)自然數(shù)集與非負(fù)整數(shù)集是相同的,也就是說,自然數(shù)集包括數(shù)0。
(2)非負(fù)整數(shù)集內(nèi)排除0的集。記作NXX或N+ 。Q、Z、R等其它數(shù)集內(nèi)排除0
的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成ZXX
請回答:已知a+b+c=m,A={x|ax2+bx+c=m},判斷1與A的關(guān)系。
高中數(shù)學(xué)集合的概念教案 篇3
教學(xué)目的:
(1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及記法
(2)使學(xué)生初步了解“屬于”關(guān)系的意義
(3)使學(xué)生初步了解有限集、無限集、空集的意義
教學(xué)重點(diǎn):
集合的基本概念及表示方法
教學(xué)難點(diǎn):
運(yùn)用集合的兩種常用表示方法——列舉法與描述法,正確表示
一些簡單的集合
授課類型:
新授課
課時安排:
1課時
教具:
多媒體、實(shí)物投影儀
內(nèi)容分析:
1.集合是中學(xué)數(shù)學(xué)的一個重要的基本概念在小學(xué)數(shù)學(xué)中,就滲透了集合的初步概念,到了初中,更進(jìn)一步應(yīng)用集合的語言表述一些問題例如,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點(diǎn)集至于邏輯,可以說,從開始學(xué)習(xí)數(shù)學(xué)就離不開對邏輯知識的掌握和運(yùn)用,基本的邏輯知識在日常生活、學(xué)習(xí)、工作中,也是認(rèn)識問題、研究問題不可缺少的工具這些可以幫助學(xué)生認(rèn)識學(xué)習(xí)本章的意義,也是本章學(xué)習(xí)的基礎(chǔ)
把集合的初步知識與簡易邏輯知識安排在高中數(shù)學(xué)的最開始,是因?yàn)樵诟咧袛?shù)學(xué)中,這些知識與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握和使用數(shù)學(xué)語言的基礎(chǔ)例如,下一章講函數(shù)的概念與性質(zhì),就離不開集合與邏輯
本節(jié)首先從初中代數(shù)與幾何涉及的集合實(shí)例入手,引出集合與集合的元素的概念,并且結(jié)合實(shí)例對集合的概念作了說明然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子
這節(jié)課主要學(xué)習(xí)全章的引言和集合的基本概念學(xué)習(xí)引言是引發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生認(rèn)識學(xué)習(xí)本章的意義本節(jié)課的教學(xué)重點(diǎn)是集合的基本概念
集合是集合論中的'原始的、不定義的概念在開始接觸集合的概念時,主要還是通過實(shí)例,對概念有一個初步認(rèn)識教科書給出的“一般地,某些指定的對象集在一起就成為一個集合,也簡稱集”這句話,只是對集合概念的描述性說明
教學(xué)過程:
一、復(fù)習(xí)引入:
1.簡介數(shù)集的發(fā)展,復(fù)習(xí)公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù);
2.教材中的章頭引言;
3.集合論的創(chuàng)始人——康托爾(德國數(shù)學(xué)家)(見附錄);
4.“物以類聚”,“人以群分”;
5.教材中例子(P4)
二、講解新課:
閱讀教材第一部分,問題如下:
(1)有那些概念?是如何定義的?
(2)有那些符號?是如何表示的?
(3)集合中元素的特性是什么?
(一)集合的有關(guān)概念:
由一些數(shù)、一些點(diǎn)、一些圖形、一些整式、一些物體、一些人組成的我們說,每一組對象的全體形成一個集合,或者說,某些指定的對象集在一起就成為一個集合,也簡稱集.集合中的每個對象叫做這個集合的元素.
定義:一般地,某些指定的對象集在一起就成為一個集合.
1、集合的概念
(1)集合:某些指定的對象集在一起就形成一個集合(簡稱集)
(2)元素:集合中每個對象叫做這個集合的元素
2、常用數(shù)集及記法
(1)非負(fù)整數(shù)集(自然數(shù)集):全體非負(fù)整數(shù)的集合記作N,
(2)正整數(shù)集:非負(fù)整數(shù)集內(nèi)排除0的集記作Nx或N+
(3)整數(shù)集:全體整數(shù)的集合記作Z,
(4)有理數(shù)集:全體有理數(shù)的集合記作Q,
(5)實(shí)數(shù)集:全體實(shí)數(shù)的集合記作R
注:(1)自然數(shù)集與非負(fù)整數(shù)集是相同的,也就是說,自然數(shù)集包括數(shù)0
(2)非負(fù)整數(shù)集內(nèi)排除0的集記作Nx或N+Q、Z、R等其它
數(shù)集內(nèi)排除0的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0
的集,表示成Zx
3、元素對于集合的隸屬關(guān)系
(1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A
(2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作
4、集合中元素的特性
(1)確定性:按照明確的判斷標(biāo)準(zhǔn)給定一個元素或者在這個集合里,或者不在,不能模棱兩可
(2)互異性:集合中的元素沒有重復(fù)
(3)無序性:集合中的元素沒有一定的順序(通常用正常的順序?qū)懗?
5、⑴集合通常用大寫的拉丁字母表示,如A、B、C、P、Q……元素通常用小寫的拉丁字母表示,如a、b、c、p、q……
⑵“∈”的開口方向,不能把a(bǔ)∈A顛倒過來寫
三、練習(xí)題:
1、教材P5練習(xí)1、2
2、下列各組對象能確定一個集合嗎?
(1)所有很大的實(shí)數(shù)(不確定)
(2)好心的人(不確定)
(3)1,2,2,3,4,5.(有重復(fù))
3、設(shè)a,b是非零實(shí)數(shù),那么可能取的值組成集合的元素是_-2,0,2__
4、由實(shí)數(shù)x,-x,|x|,所組成的集合,最多含(A)
(A)2個元素(B)3個元素(C)4個元素(D)5個元素
5、設(shè)集合G中的元素是所有形如a+b(a∈Z,b∈Z)的數(shù),求證:
(1)當(dāng)x∈N時,x∈G;
(2)若x∈G,y∈G,則x+y∈G,而不一定屬于集合G
證明(1):在a+b(a∈Z,b∈Z)中,令a=x∈N,b=0,
則x=x+0x=a+b∈G,即x∈G
證明(2):∵x∈G,y∈G,
∴x=a+b(a∈Z,b∈Z),y=c+d(c∈Z,d∈Z)
∴x+y=(a+b)+(c+d)=(a+c)+(b+d)
∵a∈Z,b∈Z,c∈Z,d∈Z
∴(a+c)∈Z,(b+d)∈Z
∴x+y=(a+c)+(b+d)∈G,
又∵=
且不一定都是整數(shù),
∴=不一定屬于集合G
四、小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:
1.集合的有關(guān)概念:(集合、元素、屬于、不屬于)
2.集合元素的性質(zhì):確定性,互異性,無序性
3.常用數(shù)集的定義及記法
五、課后作業(yè):
六、板書設(shè)計(略)
高中數(shù)學(xué)考試的技巧
一、整體把握、抓大放小
拿到試卷后可以先快速瀏覽一下所有題目,根據(jù)積累的考試經(jīng)驗(yàn),大致估計一下每部分應(yīng)該分配的時間。對于能夠很快做出來的題目,一定要拿到應(yīng)得的分?jǐn)?shù)。
二、確定每部分的答題時間
1、考試時占用了很多時間卻一點(diǎn)也沒有做出來的題目。對于這類題目,你以后考試時就應(yīng)該盡量減少時間,或者放棄,等以后學(xué)習(xí)進(jìn)階了再嘗試著做。
2、考試時花了過多的時間才做出來的題目。對于這類題目,你以后平時做題時要盡量加快速度,或者通過“反復(fù)訓(xùn)練”等提高反應(yīng)速度,這樣,你下次考試時能用較少的時間做出來。
三、碰到難題時
1、你可以先用“直覺”最快的找到解題思路;
2、如果“直覺”不管用,你可以聯(lián)想以前做過的類似的題目,從而找到解題思路;
3、如果這樣也不行,你可以猜測一下這道題目可能涉及到的知識點(diǎn)和解題技巧。
4、對于花了一定時間仍然不能做出來的題目,要勇于放棄。
四、卷面整潔、字跡清楚、注意小節(jié)
做到卷面整潔、字跡清楚,把標(biāo)點(diǎn)、符號、解題步驟等小的地方盡量做好,不要丟掉應(yīng)得的每一分。
高中數(shù)學(xué)有效的學(xué)習(xí)方法
一、課后及時回憶
如果等到把課堂內(nèi)容遺忘得差不多時才復(fù)習(xí),就幾乎等于重新學(xué)習(xí),所以課堂學(xué)習(xí)的新知識必須及時復(fù)習(xí)。
可以一個人單獨(dú)回憶,也可以幾個人在一起互相啟發(fā),補(bǔ)充回憶。一般按照教師板書的提綱和要領(lǐng)進(jìn)行,也可以按教材綱目結(jié)構(gòu)進(jìn)行,從課題到重點(diǎn)內(nèi)容,再到例題的每部分的細(xì)節(jié),循序漸進(jìn)地進(jìn)行復(fù)習(xí)。在復(fù)習(xí)過程中要不失時機(jī)整理筆記,因?yàn)檎砉P記也是一種有效的復(fù)習(xí)方法。
二、定期重復(fù)鞏固
即使是復(fù)習(xí)過的內(nèi)容仍須定期鞏固,但是復(fù)習(xí)的次數(shù)應(yīng)隨時間的增長而逐步減小,間隔也可以逐漸拉長??梢援?dāng)天鞏固新知識,每周進(jìn)行周小結(jié),每月進(jìn)行階段性總結(jié),期中、期末進(jìn)行全面系統(tǒng)的學(xué)期復(fù)習(xí)。從內(nèi)容上看,每課知識即時回顧,每單元進(jìn)行知識梳理,每章節(jié)進(jìn)行知識歸納總結(jié),必須把相關(guān)知識串聯(lián)在一起,形成知識網(wǎng)絡(luò),達(dá)到對知識和方法的整體把握。
三、科學(xué)合理安排
復(fù)習(xí)一般可以分為集中復(fù)習(xí)和分散復(fù)習(xí)。實(shí)驗(yàn)證明,分散復(fù)習(xí)的效果優(yōu)于集中復(fù)習(xí),特殊情況除外。分散復(fù)習(xí),可以把需要識記的材料適當(dāng)分類,并且與其他的學(xué)習(xí)或娛樂或休息交替進(jìn)行,不至于單調(diào)使用某種思維方式,形成疲勞。分散復(fù)習(xí)也應(yīng)結(jié)合各自認(rèn)知水平,以及識記素材的特點(diǎn),把握重復(fù)次數(shù)與間隔時間,并非間隔時間越長越好,而要適合自己的復(fù)習(xí)規(guī)律。
高中數(shù)學(xué)集合的概念教案 篇4
教學(xué)目標(biāo):
1.讓學(xué)生經(jīng)歷韋恩圖的產(chǎn)生過程,能借助直觀圖,利用集合的思想方法解決簡單的實(shí)際問題。
2.培養(yǎng)學(xué)生善于觀察、善于思考的學(xué)習(xí)習(xí)慣。使學(xué)生感受到數(shù)學(xué)在現(xiàn)實(shí)生活中的廣泛應(yīng)用,嘗試用數(shù)學(xué)的方法解決實(shí)際生活中的問題,體驗(yàn)解決問題策略的多樣性。
教學(xué)重點(diǎn):
讓學(xué)生感知集合的思想,并利用集合的思想方法解決簡單的實(shí)際問題。
教學(xué)難點(diǎn):
學(xué)生對重疊部分的理解。
教學(xué)準(zhǔn)備:
多媒體課件、姓名卡片等。
教學(xué)過程:
(一)創(chuàng)設(shè)情境,引出新知
1.出示信息。
出示教科書例1,只出示統(tǒng)計表,不出示問題。讓學(xué)生說一說從中獲得了哪些信息。
2.提出問題,激發(fā)“沖突”
讓學(xué)生自由提出想要解決的問題,重點(diǎn)關(guān)注“參加這兩項(xiàng)比賽的共有多少人”這個問題,讓學(xué)生解答。關(guān)注不同的答案,抓住“沖突”,激發(fā)學(xué)生探究的欲望。
(二)自主探究,學(xué)習(xí)新知
1.獨(dú)立思考表達(dá)方式,經(jīng)歷知識形成過程。
師:大家對這個問題產(chǎn)生了不同的意見。你能不能借助圖、表或其他方式,讓其他人清楚地看出結(jié)果呢?
學(xué)生獨(dú)立思考,并嘗試解決。
2.匯報交流,初步感知集合概念。
(1)小組交流,互相介紹自己的作品。
(2)選擇有代表性的方案全班交流。
請每幅作品的創(chuàng)作者上臺介紹自己的思考過程,注意追問“如何表示出兩項(xiàng)比賽都參加的學(xué)生”,體會兩個集合中的公共元素構(gòu)成的交集。
預(yù)設(shè)1:把參加兩項(xiàng)比賽的學(xué)生姓名分別列出,把相同的名字連起,就找到兩項(xiàng)比賽都參加的學(xué)生了,有3人。這樣參加跳繩比賽的9人,加上參加踢毽比賽的8人,再去掉3個重復(fù)的,應(yīng)該是14人。
預(yù)設(shè)2:先寫出所有參加跳繩比賽同學(xué)的姓名,再寫參加踢毽比賽的。如果與前面的相同就不重復(fù)寫了,連線就能表示了。一共寫出了14個不同的姓名,說明參加比賽的有14人。從姓名上如果引出兩條線,就說明他兩項(xiàng)比賽都參加了。
預(yù)設(shè)3:把參加兩項(xiàng)比賽學(xué)生的`姓名分別放到兩個長方形里,再把兩項(xiàng)比賽都參加的學(xué)生的名字移到一邊,兩個長方形里都有這三個名字,把這兩個長方形的這部分重疊起來,名字只出一次就可以了??梢钥闯鲋粎⒓犹K比賽的有6人,兩項(xiàng)比賽都參加的有3人,只參加踢毽比賽的有5人,一共有14人。
3.對比分析,介紹韋恩圖。
(1)對比、分析,提示課題。
師:同學(xué)們解決問題的能力真強(qiáng),而且畫出了這么多不同的圖示表示。上面的三幅圖中,你更喜歡哪一幅?為什么?
預(yù)設(shè)1:喜歡第三幅,去掉了重復(fù)的學(xué)生的姓名,更清楚,很容易看出參加這兩項(xiàng)比賽的學(xué)生情況。
預(yù)設(shè)2:喜歡第三幅,用兩個長方形的重疊部分表示兩項(xiàng)比賽都參加的學(xué)生,很直觀。
師:在數(shù)學(xué)上,我們把參加跳繩比賽的學(xué)生看作一個整體,叫做一個集合;把參加踢毽比賽的學(xué)生看作一個整體,也是一個集合。今天我們就研究集合。(板書課題:集合。)
(2)介紹用韋恩圖表示集合。
師:第三幅圖先把參加跳繩的和踢毽的學(xué)生的姓名分別放在了長方形里,很直觀。回憶一下,在認(rèn)識百以內(nèi)數(shù)的時候,按要求寫數(shù)時,就把提供的數(shù)和按要求寫出的數(shù)都用類似長方形的圈圈了起,每個圈都分別表示一個集合。
師:在數(shù)學(xué)上我們常用這樣的方法,直觀地把集合中的具體事物表示出來。(多媒體課件出示左下圖,或在黑板上將姓名卡片圈起。)
師:這個圖表示什么?
預(yù)設(shè):參加跳繩比賽的學(xué)生的集合。
出示右上圖,隨學(xué)生回答將參加踢毽比賽的學(xué)生姓名填入圈中。
在填入姓名時,引導(dǎo)學(xué)生發(fā)現(xiàn),每個圈中的姓名不能重復(fù)、不能遺漏,體會集合元素的互異性;每個圈中姓名的擺放次序可以多樣,體會集合元素的無序性。
(3)介紹用韋恩圖表示集合的運(yùn)算。
提問:利用這兩個圖怎樣才能讓他人直觀地看出“參加這兩項(xiàng)比賽的人員情況”呢?
通過多媒體課件,動態(tài)展示將左右兩個圖部分重疊的過程,或操作姓名卡片,去掉重復(fù)的姓名卡片,幫助學(xué)生理解姓名出現(xiàn)兩次的學(xué)生是這兩個集合的公共元素,可以用兩個圖的重疊部分表示它們的交集。
提問:中間重疊的部分表示的是什么?
預(yù)設(shè):兩項(xiàng)比賽都參加的學(xué)生;既參加跳繩比賽又參加踢毽比賽的學(xué)生。
提問:整個圖表示的是什么?
預(yù)設(shè):參加這兩項(xiàng)比賽的學(xué)生;參加跳繩比賽或參加踢毽比賽的學(xué)生。
4.列式解答,加深對集合運(yùn)算的認(rèn)識。
(1)嘗試獨(dú)立解決。
(2)匯報交流,體會解決問題的多種方法。
預(yù)設(shè):9+8-3=14,9+(8-3)=14,8+(9-3)=14,6+3+5=14等。
讓學(xué)生通過圖示與算式結(jié)合進(jìn)行表達(dá),感悟多種集合知識??梢宰寣W(xué)生在韋恩圖上指一指它們求出的是哪一部分,體會并集;指一指算式中每一步表達(dá)的是哪一部分,如“8-3”和“9-3”,體會差集。
(3)比較辨析,體會基本方法。
通過對各種計算方法的比較,發(fā)現(xiàn)雖然具體列式方法不同,但都解決了問題,即求出了兩個集合的并集的元素個數(shù)。重點(diǎn)讓學(xué)生說一說9+8-3=14這一算式表達(dá)的含義,“參加跳繩比賽的人數(shù)加上參加踢毽比賽的人數(shù)再減去兩項(xiàng)比賽都參加的人數(shù)”,體會“求兩個集合的并集的元素個數(shù),就是用兩個集合的元素個數(shù)的和減去它們的交集的元素個數(shù)”這一基本方法。
(三)聯(lián)系生活,鞏固練習(xí)
1.完成“做一做”第1題。
先獨(dú)立完成,再匯報交流。
可先分別出示兩個集合圈,讓學(xué)生填入相應(yīng)的序號,再利用多媒體課件動態(tài)展示將兩個集合并的過程。
2.完成“做一做”第2題。
學(xué)生先獨(dú)立完成,再匯報交流。
提問1:你是用什么方法解答第(1)題的?要注意什么?
預(yù)設(shè):圈出重復(fù)的姓名,再數(shù)出。要認(rèn)真仔細(xì)找,不要漏掉。
提問2:第(2)題是求什么?你是用什么方法解答的?
預(yù)設(shè):第(2)題求的是獲得“語文之星”或“數(shù)學(xué)之星”的一共有多少人,只要獲得了任何一個獎都要計算進(jìn)去。先數(shù)出獲得“語文之星”的集合的人數(shù),再數(shù)出獲得“數(shù)學(xué)之星”的集合的人數(shù),相加后,再去掉既獲得“語文之星”又獲得“數(shù)學(xué)之星”的人數(shù)。如果學(xué)生理解題意有困難,可以借助韋恩圖幫助學(xué)生理解。
(四)全課小結(jié)
師:今天我們學(xué)習(xí)了集合的知識,還會運(yùn)用集合知識解決生活中的問題。說一說今天你有什么收獲。
高中數(shù)學(xué)集合的概念教案 篇5
高一數(shù)學(xué)教案設(shè)計一:集合的概念
教學(xué)目的:
(1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及記法
(2)使學(xué)生初步了解“屬于”關(guān)系的意義
(3)使學(xué)生初步了解有限集、無限集、空集的意義
教學(xué)重點(diǎn):
集合的基本概念及表示方法
教學(xué)難點(diǎn):
運(yùn)用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合
授課類型:
新授課
課時安排:
1課時
教具:
多媒體、實(shí)物投影儀
內(nèi)容分析:
1、集合是中學(xué)數(shù)學(xué)的一個重要的基本概念。在小學(xué)數(shù)學(xué)中,就滲透了集合的初步概念,到了初中,更進(jìn)一步應(yīng)用集合的語言表述一些問題。例如,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點(diǎn)集。至于邏輯,可以說,從開始學(xué)習(xí)數(shù)學(xué)就離不開對邏輯知識的掌握和運(yùn)用,基本的邏輯知識在日常生活、學(xué)習(xí)、工作中,也是認(rèn)識問題、研究問題不可缺少的工具。這些可以幫助學(xué)生認(rèn)識學(xué)習(xí)本章的意義,也是本章學(xué)習(xí)的基礎(chǔ)
把集合的初步知識與簡易邏輯知識安排在高中數(shù)學(xué)的最開始,是因?yàn)樵诟咧袛?shù)學(xué)中,這些知識與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握和使用數(shù)學(xué)語言的基礎(chǔ)。例如,下一章講函數(shù)的概念與性質(zhì),就離不開集合與邏輯
本節(jié)首先從初中代數(shù)與幾何涉及的集合實(shí)例入手,引出集合與集合的元素的'概念,并且結(jié)合實(shí)例對集合的概念作了說明。然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子
這節(jié)課主要學(xué)習(xí)全章的引言和集合的基本概念。學(xué)習(xí)引言是引發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生認(rèn)識學(xué)習(xí)本章的意義。本節(jié)課的教學(xué)重點(diǎn)是集合的基本概念
集合是集合論中的原始的、不定義的概念。在開始接觸集合的概念時,主要還是通過實(shí)例,對概念有一個初步認(rèn)識。教科書給出的“一般地,某些指定的對象集在一起就成為一個集合,也簡稱集?!边@句話,只是對集合概念的描述性說明
教學(xué)過程:
一、復(fù)習(xí)引入:
1、簡介數(shù)集的發(fā)展,復(fù)習(xí)最大公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù);
2、教材中的章頭引言;
3、集合論的創(chuàng)始人——康托爾(德國數(shù)學(xué)家)(見附錄);
4、“物以類聚”,“人以群分”;
5、教材中例子(P4)
二、講解新課:
閱讀教材第一部分,問題如下:
(1)有那些概念?是如何定義的?
(2)有那些符號?是如何表示的?
(3)集合中元素的特性是什么?
(一)集合的有關(guān)概念:
由一些數(shù)、一些點(diǎn)、一些圖形、一些整式、一些物體、一些人組成的我們說,每一組對象的全體形成一個集合,或者說,某些指定的對象集在一起就成為一個集合,也簡稱集.集合中的每個對象叫做這個集合的元素.定義:一般地,某些指定的對象集在一起就成為一個集合、
1、集合的概念
(1)集合:某些指定的對象集在一起就形成一個集合(簡稱集)
(2)元素:集合中每個對象叫做這個集合的元素
2、常用數(shù)集及記法
(1)非負(fù)整數(shù)集(自然數(shù)集):全體非負(fù)整數(shù)的集合記作N,
(2)正整數(shù)集:非負(fù)整數(shù)集內(nèi)排除0的集記作N*或N+
(3)整數(shù)集:全體整數(shù)的集合記作Z ,
(4)有理數(shù)集:全體有理數(shù)的集合記作Q ,
(5)實(shí)數(shù)集:全體實(shí)數(shù)的集合記作R
注:(1)自然數(shù)集與非負(fù)整數(shù)集是相同的,也就是說,自然數(shù)集包括數(shù)0
(2)非負(fù)整數(shù)集內(nèi)排除0的集記作N*或N+ Q、Z、R等其它數(shù)集內(nèi)排除0的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z*
3、元素對于集合的隸屬關(guān)系
(1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A
(2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作
4、集合中元素的特性
(1)確定性:按照明確的判斷標(biāo)準(zhǔn)給定一個元素或者在這個集合里,或者不在,不能模棱兩可
(2)互異性:集合中的元素沒有重復(fù)
(3)無序性:集合中的元素沒有一定的順序(通常用正常的順序?qū)懗觯?/p>
5、⑴集合通常用大寫的拉丁字母表示,如A、B、C、P、Q……元素通常用小寫的拉丁字母表示,如a、b、c、p、q……
⑵“∈”的開口方向,不能把a(bǔ)∈A顛倒過來寫
三、練習(xí)題:
1、教材P5練習(xí)
2、下列各組對象能確定一個集合嗎?
(1)所有很大的實(shí)數(shù)(不確定)
(2)好心的人(不確定)
(3)1,2,2,3,4,5、(有重復(fù))
3、設(shè)a,b是非零實(shí)數(shù),那么可能取的值組成集合的元素是_-2,0,2__
4、由實(shí)數(shù)x,-x,|x|,所組成的集合,最多含(A)
(A)2個元素
(B)3個元素
(C)4個元素
(D)5個元素
5、設(shè)集合G中的元素是所有形如a+b(a∈Z, b∈Z)的數(shù),求證:
(1)當(dāng)x∈N時, x∈G;
(2)若x∈G,y∈G,則x+y∈G,而不一定屬于集合G
證明(1):在a+b(a∈Z, b∈Z)中,令a=x∈N,b=0,則x= x+0* = a+b ∈G,即x∈G
證明(2):∵x∈G,y∈G,
∴x= a+b(a∈Z, b∈Z),y= c+d(c∈Z, d∈Z)
∴x+y=( a+b )+( c+d )=(a+c)+(b+d)
∵a∈Z, b∈Z,c∈Z, d∈Z
∴(a+c) ∈Z, (b+d) ∈Z
∴x+y =(a+c)+(b+d) ∈G,又∵不一定都是整數(shù),∴=不一定屬于集合G
四、小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:
1、集合的有關(guān)概念:(集合、元素、屬于、不屬于)
2、集合元素的性質(zhì):確定性,互異性,無序性
3、常用數(shù)集的定義及記法