三角形的教案
發(fā)布時間:2023-03-11 三角形教案三角形的教案精選7篇。
經(jīng)驗時常告訴我們,做事要提前做好準備。幼兒園的老師都希望自己講的課學(xué)生們愛聽,能學(xué)習(xí)的更好,大部分老師為了讓學(xué)生學(xué)的更好都會事先準備好教案,教案可以讓上課自己輕松的同時,學(xué)生也更好的消化課堂內(nèi)容。你知道如何去寫好一份優(yōu)秀的幼兒園教案呢?在這里,你不妨讀讀三角形的教案精選7篇,供大家借鑒和使用,希望大家分享!
三角形的教案【篇1】
教學(xué)目標:
1.通過探究、討論發(fā)展三角形是由三條線段圍成的圖形;
2.知道三角形各部分名稱及三角形的字母線表示法,知道什么是三角形的底和高,并會做出三角形的一條高;
3.在解決問題的過程中發(fā)現(xiàn)三角形具有穩(wěn)定性,知道三角形的穩(wěn)定性在實踐中有廣泛的應(yīng)用。
教學(xué)重點:理解三角形的特性、三角形高的畫法
教學(xué)難點:三角形高的畫法
教學(xué)過程:
一、 聯(lián)系生活
找一找生活中有哪些物體的形狀或表面是三角形?請收集和拍攝這類的圖片。
二、 創(chuàng)設(shè)情境,導(dǎo)入新課:
1、讓學(xué)生說說生活中有哪些物體的形狀是三角形的。展示學(xué)生收集的有關(guān)三角形的圖片
2、播放錄像
師:接下來來看老師收集的到的一組有關(guān)三角形的錄像資料。
3、導(dǎo)入新課。
師:我們大家認識了三角形,三角形看起來簡單,但在工農(nóng)業(yè)生產(chǎn)和日常生活中有許多用處,看來生活中的三角形無處不在,三角形還有些什么奧秘呢?今天這節(jié)課我們就一起來研究這個問題。(板書:三角形的認識)
三、 師生互動引導(dǎo)探索
(一)三角形的意義:
1、活動。
要求:(1)每個小組利用教師事先為其準備的三根小棒,把小棒看成一條線段,利用這三條線段擺一個三角形。比一比,看哪一個小組做得最快!
(提供的小棒有一組擺不成的。)
2、學(xué)生拼圖時可能會出現(xiàn)以下幾種情況:
請同學(xué)一起來觀看做得有代表性和做得有特色的圖案 (展示學(xué)生所擺的圖)
請同學(xué)們一起做裁判,看看哪些是三角形?[學(xué)生會認為(1)、(2)、(3)(4)為三角形,但對(2)、(3)(4)有爭議]
師:那你認為怎么樣的圖形才是三角形?到底這幾個圖是不是三角形呢?同學(xué)們可以從書上找到答案!請學(xué)生閱讀課本的內(nèi)容。
板書:三條線段圍城的圖形叫做三角形。
因此判斷圖案(2)(3)(4)不是三角形。
判斷:下面圖形,哪些是三角形?哪些不是三角形?
3.教師問:除了三角形概念,書中還向我們介紹了什么?
(1)三角形的邊、角、頂點
(2)三角形表示法;
(3)三角形的高和底
(二)三角形的特性:
1、課件出示自行車、屋檐、吊架等三角形的圖片,為什么這些部位要用三角形?
2、解決這個問題,下面我們先做個試驗:
出示三角形和平行四邊形的教具,讓學(xué)生試拉它們,并思考,你發(fā)現(xiàn)了什么?
3、要使平行四邊形不變形,應(yīng)怎么辦?試試看。
4、那些物體中用到三角形,你知道為什么了嗎?三角形的這種特性在生活中的應(yīng)用非常廣泛,在今后學(xué)習(xí)數(shù)學(xué)的時候,我們應(yīng)該多想想,怎樣把數(shù)學(xué)中的有關(guān)知識應(yīng)用到實際生活中去。
(三)三角形兩邊之和大于第三邊
1、師:在我們圍三角形的時候,有一組同學(xué)的三條線段圍不成三角形, 看來不是任意三個小棒就可以圍成三角形,這里面也有奧秘。
這與它三條線段的長短有關(guān)。現(xiàn)在我們就來討論這個問題——到底組成三角形的這三條線段有什么特點?
2、學(xué)生小組活動:(時間約6分鐘)。
下列每組數(shù)是三根小木棒的長度,用它們能擺成三角形嗎?(學(xué)生每回答一題后就利用電腦動畫進行演示:三條線段是否能組成三角形)
(1)6,7,8; (2)5,4,9; (3)3,6,10;
你發(fā)現(xiàn)了什么?
3、學(xué)生探討結(jié)束后讓學(xué)生代表發(fā)言,總結(jié)歸納三角形三邊的不等關(guān)系。學(xué)生代表可結(jié)合教具演示。
教師問:我們是否要把三條線段中的每兩條線段都相加后才能作出判斷?有沒有快捷的方法?(用較小的兩條線段的和與第三條線段的大小關(guān)系來檢驗)。
4、得到結(jié)論:三角形任意兩邊之和大于第三邊(電腦顯示)。
教師問:三角形的兩邊之和大于第三邊,那么,三角形的兩邊之差與第三邊有何關(guān)系呢?
感興趣的同學(xué)還可以下課繼續(xù)研究。
5、鞏固練習(xí):為了營造更美的城市,許多城市加強了綠化建設(shè)。這些綠化地帶是不允許踩的。(電腦動畫演示有人斜穿草地的實踐問題)。他運用了我們學(xué)習(xí)過的什么知識?
6、(1)有人說自己步子大,一步能走兩米多,你相信嗎?為什么?
(由學(xué)生小組討論后回答。然后電腦演示籃球明星姚明的身高及腿長,以此來判斷步幅應(yīng)有多大?)
7、有兩根長度分別為2cm和5cm的木棒
(1)用長度為3cm的木棒與它們能擺成三角形嗎?為什么?
(2)用長度為1cm的木棒與它們能擺成三角形嗎?為什么?
(3)在能擺成三角形,第三邊能用的木棒的長度范圍是
四、反思回顧
通過這節(jié)課的學(xué)習(xí),你有什么收獲?
三角形的教案【篇2】
一、說教材
1、教材的地位與作用
等腰三角形是在學(xué)習(xí)了軸對稱之后編排的,是軸對稱知識的延伸和應(yīng)用。等腰三角形的性質(zhì)及判定是探究線段相等、角相等及兩條直線互相垂直的重要工具,在教材中起著承上啟下的作用。
2、教學(xué)重點和難點
本著新課程標準,在吃透教材基礎(chǔ)上,我把探索等腰三角形的性質(zhì)定為本節(jié)課的重點,通過創(chuàng)設(shè)問題和解決問題來突出重點。把等腰三角形性質(zhì)的建立定為本課的難點,通過折紙實驗和小組合作探究來突破難點。
二、說教學(xué)目標
1、學(xué)情分析
我所教的學(xué)生,從認知的特點來看,好奇愛問,求知欲強,想象力豐富;并已初步具有對數(shù)學(xué)問題進行合作探究的能力。
2、三維目標
根據(jù)教材結(jié)構(gòu)和內(nèi)容分析,考慮到學(xué)生已有的認知結(jié)構(gòu)、心理特征 ,我制定如下目標:
知識與技能目標:
了解等腰三角形的概念,探索并掌握等腰三角形的性質(zhì),并會進行有關(guān)的論證和計算,以及運用所學(xué)的知識去解決實際問題。
過程與方法目標:
通過對性質(zhì)的探究活動和例題的分析,培養(yǎng)學(xué)生多角度思考問題的習(xí)慣,提高學(xué)生分析問題和解決問題的能力;使學(xué)生進一步了解發(fā)現(xiàn)真理的方法(探究-猜想-歸納-論證)。
情感態(tài)度與價值觀目標:
通過對等腰三角形的觀察、試驗、歸納,體驗數(shù)學(xué)活動充滿著探索性和創(chuàng)造性,數(shù)學(xué)就在我們身邊。在操作活動中,培養(yǎng)學(xué)生的合作精神,在獨立思考的同時能夠認同他人. 感受合作交流帶來的成功感,樹立自信心.
三、說教法與學(xué)法
1、教法
根據(jù)教材分析和目標分析,我確定本課主要的教法為探究發(fā)現(xiàn)法。采用“問題情境—探索交流—猜想驗證——建立模型”的模式安排教學(xué),并在各個環(huán)節(jié)進行分層施教。
2、學(xué)法
我們常說:“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學(xué)習(xí)方法的人”,因而在教學(xué)中我特別重視學(xué)法的指導(dǎo)。本課采用小組合作的學(xué)習(xí)方式,讓學(xué)生遵循“觀察——猜想——歸納——驗證——反饋——實踐”的主線進行學(xué)習(xí)。
四、說教學(xué)流程
《數(shù)學(xué)課程標準》強調(diào),教師應(yīng)發(fā)揚教學(xué)民主,成為學(xué)生數(shù)學(xué)學(xué)習(xí)活動的組織者、引導(dǎo)者、合作者。因此本節(jié)課我分以下六個環(huán)節(jié)組織教學(xué)。
(一)創(chuàng)設(shè)情境,激發(fā)興趣。
1、多媒體展示房屋人字架、艾佛爾鐵塔、龍塔、香港中國銀行大廈的圖片,問:你認識圖片中的建筑物嗎?圖片中存在哪些幾何圖形? (等腰三角形、四邊形、梯形)
2、四幅圖中都有哪種幾何圖形?(等腰三角形)
(通過實例的電腦展示,喚起學(xué)生的好奇心,提出問題,引導(dǎo)學(xué)生進入新知識的學(xué)習(xí),創(chuàng)造一種探索的情景。在學(xué)習(xí)中,只有調(diào)動學(xué)生的非智力因素,特別是內(nèi)在動機,才能使他們產(chǎn)生強烈的求知欲和以飽滿的熱情來學(xué)習(xí)新知識。)
ァ(二) 觀察實物,形成概念。
活動1:學(xué)生通過觀察自帶的等腰三角形紙片認識等腰三角形的有關(guān)概念。
接著,我利用電腦演示等腰三角形定義的數(shù)學(xué)語言表達方式。
(讓學(xué)生歸納定義增強學(xué)生的成就感,給出數(shù)學(xué)語言的表達,是為了培養(yǎng)學(xué)生文字語言、圖形語言和符號語言的轉(zhuǎn)化能力.同時也能培養(yǎng)學(xué)生正向思維和逆向思維的能力。)
三角形的教案【篇3】
尊敬的各位評委,各位老師:
大家好!今天我說課的內(nèi)容是人教版義務(wù)教育課程標準實驗教材數(shù)學(xué)四年級下冊85頁內(nèi)容《三角形的內(nèi)角和》。
一、教材分析
新課標把三角形的內(nèi)角和作為第二學(xué)段中三角形的一個重要組成部分。本課是安排在三角形的特性及分類之后進行的,它是學(xué)生以后學(xué)習(xí)多邊形的內(nèi)角和及解決其它實際問題的基礎(chǔ)。教材所呈現(xiàn)的內(nèi)容,不但重視體現(xiàn)知識的形成過程,而且注意留給學(xué)生充分進行自主探索和交流的空間,安排了量一量、算一算和剪一剪、拼一拼兩個實驗操作活動,意圖使學(xué)生在動手操作、合作交流中發(fā)現(xiàn)并形成結(jié)論。
二、學(xué)情分析
1、通過前面的學(xué)習(xí),學(xué)生已經(jīng)掌握了三角形的一些基礎(chǔ)知識,會用工具量角、畫角,具備了探索三角形內(nèi)角和的知識與技能基礎(chǔ)。
2、學(xué)生的生活經(jīng)驗是可利用的教學(xué)資源。我在課前了解到,已經(jīng)有不少學(xué)生知道了三角形內(nèi)角和是180度,,但卻不知道怎樣才能得出這個結(jié)論,因此學(xué)生在這節(jié)課上的主要目標是驗證三角形的內(nèi)角和是180度。
三、教學(xué)目標
基于以上對教材的分析以及對學(xué)生情況的思考,我從知識與技能,過程與方法,情感態(tài)度價值觀三方面擬定了本節(jié)課的教學(xué)目標:
1、通過"量一量","算一算","拼一拼","折一折"的方法,讓學(xué)生推理歸納出三角形內(nèi)角和是180°,并能應(yīng)用這一知識解決一些簡單問題。
2、通過把三角形的內(nèi)角和轉(zhuǎn)化為平角進行探究實驗,滲透"轉(zhuǎn)化"的數(shù)學(xué)思想。
3、通過數(shù)學(xué)活動使學(xué)生獲得成功的體驗,增強自信心,培養(yǎng)學(xué)生的創(chuàng)新意識,探索精神和實踐能力。
教學(xué)重難點:理解并掌握三角形的內(nèi)角和是180度這一結(jié)論。
四、教學(xué)準備:
教具:多媒體課件,
學(xué)具:各類三角形、長方形、量角器、活動記錄表等。
五、教法和學(xué)法
“三角形的內(nèi)角和”一課,知識與技能目標并不難,但我認為本節(jié)課更重要的是通過自主探索與合作交流使學(xué)生經(jīng)歷知識的形成過程,領(lǐng)悟轉(zhuǎn)化思想在解決問題中的應(yīng)用,以及在探索過程中,培養(yǎng)學(xué)生實事求是、敢于質(zhì)疑的科學(xué)態(tài)度,同時,在不同方法的交流中,開拓思維、提升能力?;谝陨侠砟?,本節(jié)課,我準備引導(dǎo)學(xué)生采用自主探究、動手操作、猜想驗證、合作交流的學(xué)習(xí)方法,并在教學(xué)過程中談話激疑,引導(dǎo)探究;組織討論,適時地啟發(fā)幫助。使教法和學(xué)法和諧統(tǒng)一在“以學(xué)生的發(fā)展為本”這一教育目標之中。
六、教學(xué)過程
本節(jié)課,我遵循“學(xué)生主動和教師指導(dǎo)相統(tǒng)一,問題主線和活動主軸相統(tǒng)一”的原則,制定了以下教學(xué)程序:
(一)創(chuàng)設(shè)情境,激發(fā)興趣
“興趣是最好的老師”。開課伊始我利用課件動態(tài)演示一只蝴蝶在把一條繩子圍成不同的三角形。讓學(xué)生觀察在圍的過程中,什么變了?什么沒變?讓學(xué)生在變與不變的觀察與對比中,激發(fā)學(xué)生的學(xué)習(xí)興趣,引出本節(jié)課的學(xué)習(xí)內(nèi)容(板書:三角形的內(nèi)角和),為后面的探索奠定基礎(chǔ)。
【設(shè)計意圖:以問題情境為出發(fā)點,既豐富了學(xué)生的感官認識,又激發(fā)了學(xué)生的學(xué)習(xí)熱情。】
(二)動手操作,探索新知
本環(huán)節(jié)是學(xué)生獲取知識、提高能力的一個重要過程。我有目的、有意識的引導(dǎo)學(xué)生主動參與實踐活動、經(jīng)歷知識的形成過程。
1、揭示“內(nèi)角”和“內(nèi)角和”的概念
明確“內(nèi)角”和“內(nèi)角和”的概念是學(xué)生進一步探究內(nèi)角和度數(shù)的前提,本環(huán)節(jié)首先請學(xué)生都拿出一個三角形,指一指三個內(nèi)角,然后讓學(xué)生談?wù)勛约簩?nèi)角和的理解,在大家交流的基礎(chǔ)上得出:三角形的內(nèi)角和就是三個內(nèi)角的度數(shù)之和。
2、猜測內(nèi)角和
牛頓曾說:“沒有大膽的猜想,就沒有偉大的發(fā)現(xiàn)!”所以我放手讓學(xué)生猜測三角形內(nèi)角和的度數(shù),由于絕大多數(shù)學(xué)生有課外知識的積累,不難說出三角形的內(nèi)角和是180度,但猜想并不等于結(jié)論,三角形的內(nèi)角和到底是不是180度?(板書:?)還要進一步的驗證。猜想——驗證是學(xué)生探究數(shù)學(xué)的有效途徑。
3、動手驗證,匯報交流
(1)介紹學(xué)具筐
由教師介紹學(xué)具筐中都有什么學(xué)習(xí)材料。
(2)生獨立思考、動手操作
因為合作交流應(yīng)建立在獨立思考的基礎(chǔ)上,所以先讓學(xué)生獨立思考:打算選用什么材料,怎樣來驗證三角形的內(nèi)角和是不是180°。然后再讓學(xué)生把想法付諸實踐。此環(huán)節(jié)會留給學(xué)生充分的思考、操作、發(fā)現(xiàn)的時間,讓學(xué)生在探索中找到證明的切入點,體驗成功。在這期間,教師走下講臺,參與學(xué)生的活動,與學(xué)生一起尋找驗證的方法,對有困難的學(xué)生提供幫助,不放棄任何一個學(xué)生。
(3)組內(nèi)交流
經(jīng)過獨立思考和動手操作,每人都有了自己的驗證方法,先在小組內(nèi)交流各自的驗證方法。
(4)全班匯報交流。
在足夠的交流之后,開始進入全班匯報展示過程,達到智慧共享的目的。學(xué)生可能會出現(xiàn)以下幾種方法:
A、測量方法
活動記錄表
三角形的形狀每個內(nèi)角的度數(shù)三個內(nèi)角和
∠1∠2∠3
這個驗證方法應(yīng)是大多數(shù)學(xué)生都能想到的,在交流匯報結(jié)果時會發(fā)現(xiàn)答案不統(tǒng)一,可能會出現(xiàn)大于180度、等于180度或小于180度不同的結(jié)果。此時學(xué)生會在心中產(chǎn)生更大的疑惑,“三角形的內(nèi)角和到底是多少度?誰的答案正確呢?”在這里教師要抓住契機,肯定學(xué)生實事求是的態(tài)度和質(zhì)疑的精神,把這一問題拋給學(xué)生,再次激起學(xué)生的探究熱情,強烈的求知欲和好勝心讓學(xué)生躍躍欲試,讓學(xué)生充分發(fā)表觀點,最終使學(xué)生認識到測量法會有誤差,看來僅用一種測量的方法來驗證只能得到三角形的內(nèi)角和在180°左右,到底是不是180°,疑問依然存在,說服力還不夠,此時我順水推舟,讓用不同驗證方法的學(xué)生上臺匯報展示。
B、撕拼法
我認為數(shù)學(xué)課不僅是解決數(shù)學(xué)問題,更重要的是思維方式的點撥,使數(shù)學(xué)思想的種子播種在學(xué)生的頭腦中。本環(huán)節(jié)主要想實現(xiàn)向?qū)W生滲透“轉(zhuǎn)化”的數(shù)學(xué)思想的教學(xué)目標。四年級學(xué)生在以往的數(shù)學(xué)學(xué)習(xí)過程中都積累了不少“轉(zhuǎn)化”的體驗,但這種體驗基本上處于無意識的狀態(tài),只有合理呈現(xiàn)學(xué)習(xí)素材,才能使學(xué)生對轉(zhuǎn)化策略形成清晰的認識。所以我請用撕拼法的同學(xué)上臺展示撕拼的過程,學(xué)生可能會撕拼不同類型的三角形,如:
此時教師適時追問:你是怎么想到把三個內(nèi)角撕下來拼成一個平角來驗證的呢?因為平角是180度,三角形的三個內(nèi)角拼在一起正好形成了一個平角,所以三角形的內(nèi)角和就是180度。教師可及時評價點撥:“你們把本不在一起的三個角,通過移動位置,把它轉(zhuǎn)化成一個平角來驗證,運用了轉(zhuǎn)化策略,真了不起?!睆亩箤W(xué)生清晰的感受到數(shù)學(xué)學(xué)習(xí)就是把新知轉(zhuǎn)化成舊知的過程。
C、其它方法
除了以上兩種驗證方法外,學(xué)生可能還會出現(xiàn)不同的驗證方法,比如折一折的方法,把三個完全相同的三角形用不同的三個內(nèi)角拼成一個平角來驗證的方法,例圖:
如果學(xué)生出現(xiàn)用長方形剪成兩個完全相同的直角三角形或把兩個完全相同的直角三角形拼成長方形來驗證的方法,例圖:
教師可追問:“這種方法只能證明哪一類的三角形呢?”使學(xué)生明白,這種驗證方法有局限性,只能證明直角三角形的內(nèi)角和是180°。然后教師引導(dǎo)學(xué)生歸納出這些不同方法都有異曲同工之妙,就是都運用了轉(zhuǎn)化的策略,讓學(xué)生在不知不覺中進一步感悟轉(zhuǎn)化在數(shù)學(xué)學(xué)習(xí)中的重要作用。通過各種方法的展示交流,學(xué)生對三角形內(nèi)角和是不是180度的疑問已經(jīng)消除,所以可以把“?”改成“?!?/p>
【設(shè)計意圖:《標準》指出:“教師應(yīng)激發(fā)學(xué)生的積極性,向?qū)W生提供充分從事數(shù)學(xué)活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學(xué)知識與技能、數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動經(jīng)驗?!痹诮虒W(xué)設(shè)計中我注意體現(xiàn)這一理念,允許學(xué)生根據(jù)已有的知識經(jīng)驗進行猜測,在猜測后先獨立思考驗證的方法,再進行小組交流。給學(xué)生充分的活動時間和空間,讓學(xué)生動手操作,使學(xué)生在量、剪、拼、折等一系列實驗活動中理解和掌握三角形內(nèi)角和是180°這個圖形性質(zhì)。在探索活動中,使學(xué)生學(xué)會與他人合作,同時也使學(xué)生學(xué)到了怎樣由已知探索未知的思維方式與方法,培養(yǎng)他們主動探索的精神,讓學(xué)生在活動中學(xué)習(xí),在活動中發(fā)展?!?/p>
4、科學(xué)驗證方法
數(shù)學(xué)是一門嚴謹?shù)膶W(xué)科,數(shù)學(xué)結(jié)論的得出必須經(jīng)過嚴格的證明。那如何科學(xué)地驗證三角形內(nèi)角和是不是180°呢?用課件動態(tài)演示科學(xué)家的驗證方法。
【設(shè)計意圖:一方面使學(xué)生為自己猜想的結(jié)論能被證明而產(chǎn)生滿足感;另一方面使學(xué)生體會到數(shù)學(xué)是嚴謹?shù)?,從小就?yīng)該讓學(xué)生養(yǎng)成嚴謹、認真、實事求是的學(xué)習(xí)態(tài)度?!?/p>
(三)課外拓展,積淀文化
為了使學(xué)生在獲得數(shù)學(xué)知識的同時積淀數(shù)學(xué)文化,用課件介紹最早發(fā)現(xiàn)三角形內(nèi)角和秘密的法國科學(xué)家帕斯卡(課件)讓學(xué)生交流:聽了這個故事,你想說什么?在學(xué)生交流的基礎(chǔ)上,教師抓住契機,及時鼓勵學(xué)生:這節(jié)課才10歲的我們利用自己的智慧發(fā)現(xiàn)了帕斯卡12歲時數(shù)學(xué)發(fā)現(xiàn),我們同樣了不起,劉老師為大家感到驕傲!(板書:?。┻@個感嘆號不僅表示教師對學(xué)生的贊嘆,更是學(xué)生對自我的一種肯定,獲得成功的自豪感。
【設(shè)計意圖:適當?shù)囊胝n外知識,它既可以激發(fā)學(xué)生的學(xué)習(xí)興趣,又有機的滲透了向帕斯卡學(xué)習(xí),做一個善于思考、善于發(fā)現(xiàn)的孩子,對學(xué)生的情感、態(tài)度、價值觀的形成與發(fā)展能起到了潛移默化的作用?!?/p>
(四)應(yīng)用新知,解決問題
數(shù)學(xué)規(guī)律的形成與深化,不僅靠感知,還要輔以靈活、有趣、有層次的課堂訓(xùn)練,以達到練習(xí)的有效性。對此,我設(shè)計了三個層次的練習(xí):
1、把兩個小三角形拼成一起,大三形的內(nèi)角和是多少度?為什么?
【設(shè)計意圖:通過兩個三角形分與合的過程,讓學(xué)生進一步理解三角形內(nèi)角和等于180度這個結(jié)論,認識到三角形的內(nèi)角和不因三角形的大小而改變?!?/p>
2、想一想,做一做
在一個三角形ABC中,已知∠A═45°,∠B═85,求∠с的度數(shù)。
在一個直角三角形中,已知∠с═52,求∠A的度數(shù)。
爸爸給小紅買了一個等腰三角形的風箏。它的一個底角是70°,它的頂角是多少度?
【設(shè)計意圖:將三角形內(nèi)角和知識與三角形特征結(jié)合起來,引導(dǎo)學(xué)生綜合運用內(nèi)角和知識和直角三角形、等腰三角形等圖形特征求三角形內(nèi)角的度數(shù)?!?/p>
3、思考:
你能畫出一個有兩個直角或兩個鈍角的三角形嗎?為什么?
【設(shè)計意圖:將三角形內(nèi)角和知識與三角形的分類知識結(jié)合起來,引導(dǎo)學(xué)生運用三角形內(nèi)角和的知識去解釋直角三角形、鈍角三角形中角的特征,較好地溝通了知識之間的聯(lián)系。】
(五)全課小結(jié),完善新知
你在這堂課中有什么收獲?
【設(shè)計意圖:這樣用談話的方式進行總結(jié),不僅總結(jié)了所學(xué)知識技能,還體現(xiàn)了學(xué)法的指導(dǎo),增強了情感體驗?!?/p>
板書設(shè)計:
三角形的內(nèi)角和180°
三角形的形狀每個內(nèi)角的度數(shù)三個內(nèi)角和
∠1∠2∠3
總之,本節(jié)課我力圖引導(dǎo)學(xué)生通過自主探究、合作交流,讓學(xué)生充分經(jīng)歷一個知識的學(xué)習(xí)過程,讓學(xué)生學(xué)會數(shù)學(xué)、會學(xué)數(shù)學(xué)、愛學(xué)數(shù)學(xué)。在教學(xué)中,隨時會生成一些新教學(xué)資源,課堂的生成一定大于課前預(yù)設(shè),我將及時調(diào)整我的預(yù)案,以達到最佳的教學(xué)效果。
教學(xué)特色:
本節(jié)課我努力體現(xiàn)以下2個教學(xué)特色:
1、引導(dǎo)學(xué)生自主探索,激發(fā)學(xué)生的學(xué)習(xí)興趣,體現(xiàn)以學(xué)生的發(fā)展為本的教學(xué)理念。
強化學(xué)生探究學(xué)習(xí)的心理體驗,把數(shù)學(xué)學(xué)習(xí)和情感態(tài)度的發(fā)展有機的結(jié)合起來。
三角形的教案【篇4】
今天我說課的內(nèi)容是人教實驗版七年級數(shù)學(xué)(下)第七章第二節(jié)中的:三角形的外角。下面我從教材分析、學(xué)生情況分析、教學(xué)目標分析、教法及學(xué)法分析、教學(xué)過程分析、教學(xué)反思這六個方面加以說明:
一、教材分析
新課程的教材力求體現(xiàn)“課程標準”實質(zhì),體現(xiàn)義務(wù)教育普及性、基礎(chǔ)性、發(fā)展性;體現(xiàn)學(xué)生主動學(xué)習(xí)的過程,以學(xué)生的發(fā)展為本,從學(xué)生熟悉的情景出發(fā),讓學(xué)生親身參與活動,進行探索和發(fā)現(xiàn),以自己的親身體驗獲取知識和技能,力求提高學(xué)生的創(chuàng)新精神與實踐能力。本節(jié)課的教學(xué)設(shè)計較好地體現(xiàn)了上述特點。同時,這節(jié)課內(nèi)容也是今后三角形、四邊形等有關(guān)圖形知識的基礎(chǔ),起著承上啟下的作用。
二、學(xué)生情況分析
七年級學(xué)生的特點足模仿力強,喜歡動手,思維活躍,同時學(xué)生已學(xué)過三角形的內(nèi)角和定理,以及三角形的邊、頂點、內(nèi)角和等概念,這為本節(jié)課的學(xué)習(xí)打下了基礎(chǔ)。在以往的學(xué)習(xí)中,學(xué)生的動手實踐、自主探索及合作探究能力都得到一定的訓(xùn)練,這就為學(xué)生自主探究,動手實驗,討論交流、嘗試說理做好了準備。
三、教學(xué)目標分析
經(jīng)過認真研讀課標及教材,針對學(xué)生實際,我為這節(jié)課制定了如下的教學(xué)目標:
總體目標是理解三角形外角的概念,掌握三角形外角的性質(zhì),并能在實際問題中運用性質(zhì)解決問題。
分解為四方面的目標:
1.知識技能目標是理解三角形外角的概念,掌握三角形外角的性質(zhì)及簡單說理。
2.數(shù)學(xué)思考目標是學(xué)生是學(xué)習(xí)的主體,激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生感知數(shù)學(xué)來源于生活又高于生活。
3.解決問題目標是讓學(xué)生經(jīng)歷觀察、思考、猜想、歸納、推理的活動過程;通過分析問題、解決問題、證實結(jié)論,達到通曉數(shù)學(xué)知識的發(fā)生與形成過程,提高學(xué)生的合作意識和溝通、表達能力。
4.情感態(tài)度目標是通過射門集錦短片欣賞,增強學(xué)生對學(xué)習(xí)本課知識的興趣;同時讓學(xué)生體驗數(shù)學(xué)課堂中的激情氣氛,讓學(xué)生體驗生活中團隊協(xié)作、力爭上游、奮勇拼搏的精神。
教學(xué)重難點
1、由于三角形的外角知識在今后的學(xué)習(xí)中經(jīng)常用到,新課程中又特別關(guān)注學(xué)生的主動學(xué)習(xí),因此,本節(jié)課的重點是:學(xué)生實際動手操作、參與活動,探索、發(fā)現(xiàn)、歸納出三角形外角的性質(zhì)。
2、由于新課程標準對圖形內(nèi)容的要求,一方面培養(yǎng)和發(fā)展學(xué)生的合情推理能力,另一方面也要培養(yǎng)學(xué)生的數(shù)學(xué)說理習(xí)慣和能力,而后者是初中學(xué)生(尤其初一學(xué)生)所不足或缺乏的,因此,學(xué)生探索出的外角特征的說理推導(dǎo)過程是本節(jié)課的難點。
四、教法及學(xué)法分析
新課程理念強調(diào)“經(jīng)歷過程與獲取結(jié)論同樣重要”,有時過程比結(jié)論更有意義。我們不能把學(xué)生看成是一個“容器”把知識往里塞;也不能把學(xué)生訓(xùn)練成一個只會解題的“機器”,而應(yīng)該讓他們投入到獲取知識的過程中去,在過程中激發(fā)學(xué)習(xí)興趣和動機,展現(xiàn)思路和方法,學(xué)會學(xué)習(xí);從過程中建構(gòu)進取型人格,通過過程中的“成功感”來完善自我,我覺得這是目前學(xué)生最需要的。因此本節(jié)課我采用探究式的教學(xué)方式。
在學(xué)法指導(dǎo)中,本節(jié)課主要通過學(xué)生的動手實驗,自主探索,概括出三角形外角的兩條性質(zhì):并通過交流探討,說理論證,加深認識三角形的外角兩條性質(zhì),進一步綜合運用三角形的外角性質(zhì)、三角形的內(nèi)角和性質(zhì)進行有關(guān)的計算。在課堂上充分地體現(xiàn)了學(xué)生的主體地位及其學(xué)習(xí)的規(guī)律,即:發(fā)現(xiàn)知識,認識知識,掌握知識,運用知識。
五、教學(xué)過程分析
環(huán)節(jié)一、展現(xiàn)問題:
觀賞足球比賽射門集錦,激發(fā)學(xué)習(xí)欲望,帶著問題學(xué)習(xí)。
(設(shè)計目的:創(chuàng)設(shè)問題情境,新課程比較注重讓學(xué)生從實際問題入手,引起興趣,體會數(shù)學(xué)與生活的聯(lián)系,賦予數(shù)學(xué)一種生活氣息,讓學(xué)生嘗試用數(shù)學(xué)知識解決生活實際問題,是對學(xué)生數(shù)學(xué)建模思想的一種培養(yǎng),也為后面探索外角問題埋下伏筆。)
環(huán)節(jié)二、學(xué)習(xí)幾個概念
我結(jié)合圖形,講解外角的概念,并特別注意“不相鄰”的意義,后輔以練習(xí),加強鞏固。
(目的是對概念難點的突破,能在復(fù)雜圖形中辨析外角。)
環(huán)節(jié)三、自主探索外角與不相鄰內(nèi)角的關(guān)系
體現(xiàn)課改精神,體現(xiàn)學(xué)生為主體,教師是學(xué)習(xí)的參與者,合作者,設(shè)計了△ABC中,∠A=70°,∠B=60°,∠ACD是△ABC的一個外角,探究∠ACD與∠A,∠B有什么關(guān)系。并注重說理引導(dǎo)。并開拓學(xué)生思維,體現(xiàn)教師對學(xué)生的尊重,讓學(xué)生發(fā)表自己不同的解法。
(設(shè)計目的:課堂上要大膽讓學(xué)生動起來,老師“沉”下去,要努力轉(zhuǎn)換教師角色,要相信:給了孩子權(quán)利,他會選擇得更好;給了孩子條件,他會鍛煉得更棒。)
在學(xué)生得出三角形的外角結(jié)論后,我故意說:這些結(jié)論不一定對,我畫的那個三角形可能是老師故意設(shè)計好的,其它三角形是否也有這樣的結(jié)論呢?大家試一試,盡量畫各種不同的三角形并驗證(如鈍角三角形、直角三角形、銳角三角形),我相信大家能成功!
(設(shè)計目的:我想點燃學(xué)生思維的火花,讓學(xué)生不能滿足于一個現(xiàn)成圖形的結(jié)論,而要有一種自己去探索、去發(fā)現(xiàn)的精神,要注意問題的一般性,學(xué)生在這一過程中投入到了獲取知識的過程,較好地體現(xiàn)了學(xué)生學(xué)習(xí)方式的變革。)
設(shè)置及時練習(xí)的目的是依據(jù)學(xué)習(xí)策略中的分散學(xué)習(xí)與集中學(xué)習(xí)的效果設(shè)計的,就是提升學(xué)生的學(xué)習(xí)的有效性。
環(huán)節(jié)四、提升能力,挑戰(zhàn)自我
設(shè)置一道思維性強,拓展性高的題(目的是開拓學(xué)生的思維,感受成功的喜悅。)
環(huán)節(jié)五、勇攀高峰
繼續(xù)提升外角運用得幾何價值,讓學(xué)生感受數(shù)學(xué)學(xué)習(xí)的樂趣(目的是遵從課改讓每一個學(xué)生都得到發(fā)展的理念)
環(huán)節(jié)六、課堂小結(jié)
學(xué)生自主談收獲,我給出知識點
(目的是歸納所學(xué)知識)
環(huán)節(jié)七、布置作業(yè)
教學(xué)反思:
在教學(xué)中我們必須意識到學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的合作者,參與者,討論者,只有變換教師位置才能的促進學(xué)生學(xué)習(xí)的高效。在教學(xué)中要關(guān)注預(yù)設(shè)于生成的關(guān)系,發(fā)揮學(xué)生主動性的同時也要尊重書本知識,促進每一個學(xué)生都向前發(fā)展,使每一個學(xué)生都學(xué)到有用的數(shù)學(xué)。因此,我們的教學(xué)應(yīng)站在學(xué)生的角度思考,學(xué)生是發(fā)展中的人!
我的說課到此結(jié)束,謝謝大家。
三角形的教案【篇5】
邱學(xué)華
[簡介]1992年4月,在江蘇省常州市舉行的全國協(xié)作區(qū)第六屆嘗試教學(xué)法研討會上,作者上了一堂“三角形面積的計算”公開課。這堂課充分利用學(xué)生的舊知識,采用嘗試操作的辦法,讓學(xué)生通過嘗試練習(xí),自己得出三角形面積的計算公式,并使學(xué)生初步認識圖形變換的數(shù)學(xué)思考方法,特別是引導(dǎo)學(xué)生初步運用數(shù)學(xué)“猜想”的思考方法,發(fā)展了學(xué)生的創(chuàng)造性思維。這堂課進一步探索在幾何初步知識教學(xué)中,如何體現(xiàn)嘗試成功教學(xué)理論。日本數(shù)學(xué)教育會會長茂木勇先生和文教大學(xué)片桐重男教授也聽了這堂課,并表示了極大的興趣。
[教學(xué)要求]
1.使學(xué)生理解并掌握三角形面積的計算公式發(fā),并學(xué)會運用公式計算三角形的面積。
2.通過圖形的割補、剪拼,參透圖形變換的數(shù)學(xué)思考方法,并培養(yǎng)學(xué)生的操作能力。
[教學(xué)準備]
投影儀、投影片、大隊旗、中隊旗、小隊旗;每個學(xué)生準備剪拼的圖表、剪刀等。
一.導(dǎo)入新課
1.出示少先隊大隊隊旗,要求計算大隊旗的面積。(長120厘米,寬90厘米)
2.接著出示紅領(lǐng)巾,要求計算紅領(lǐng)巾的面積,提出求三角形的問題。
二.出示課題
師:我們已經(jīng)學(xué)過長方形和平行四邊形的面積的計算,這堂課學(xué)習(xí)“三角形面積的計算”(板書)。你們先想一下,這堂課要學(xué)習(xí)哪些內(nèi)容?(通過討論,使學(xué)生明確這堂課的教學(xué)要求)討論后投影片映出:
1.三角形面積的計算公式。
2.三角形面積的計算公式是怎樣推導(dǎo)的。
3.怎樣運用公式計算三角形面積。
三.教學(xué)三角形面積公式的推導(dǎo)
1.用數(shù)方格的方法求三角形面積。
要求學(xué)生按課本第67頁上的插圖用數(shù)方格的方法求出三角形的面積接著引導(dǎo)學(xué)生觀察,這三角形的高和底的長度同它的面積之間有什么聯(lián)系,啟發(fā)學(xué)生猜想。
底高面積
6厘米4厘米--12厘米(學(xué)生可能會說出,三角新面機形底和高乘積的一半)
2.嘗試操作
師:前面我們只是猜想三角形面積是底和高乘積的的一半,還需得到證明。大家回憶一下計算平行四邊形的面積公式是怎樣推導(dǎo)出來的。
教師根據(jù)學(xué)生的回答,在投影機上演示:
(圖形)P213
生:用割補的辦法,把平行四邊形轉(zhuǎn)化成長方形,然后推導(dǎo)出計算平形四邊形面積的公式
師:那么三角形能不能通過剪拼的辦法轉(zhuǎn)化成長方形呢,我們大家來做個實驗。
(1)請同學(xué)們拿出預(yù)先準備的長方形紙片,先量一量長方形的長和寬(長10厘米、寬6厘米),并計算出它的面積。然后沿長方形的對角線剪開,分成兩個大小、形狀相同的三角形,并計算出它的面積。(圖形)p214
(這個實驗,讓學(xué)生清楚地看出這個三角形是原來長方形的一半)
(2)讓學(xué)生再拿出預(yù)先準備的平行四邊形的紙片,量出它的底和高(底10厘米、高6厘米),算出它的面積。然后沿對角線剪開,分成兩個大小、形狀相同的三角形,再計算出它的面積。
(圖形)p214
(要求學(xué)生仔細觀察平行四邊形的底和高剪開的三角形底和高是一致的,充分相信剪開的一個三角形是原來平行四邊形的一半)(3)引導(dǎo)學(xué)生得出結(jié)論
通過上面兩個實驗,組織學(xué)生討論,讓學(xué)生嘗試說出計算三角形面積的公式:
三角形的面積=底*高/2
師:通過剛才的實驗,證明我們的猜想是正確的。
3。自學(xué)課本
師:剛才我們是用“分”的辦法證明,計算三角形面積的公式,課本是用“合”的辦法證明,把兩個大小,形狀相同的三角形拼成一個長方形或一個平行四邊形。(指導(dǎo)學(xué)生認真閱讀課本,同桌二人互讀,相互討論)
4。教師小結(jié)
求平行四邊形面積的公式,是通過把平行四邊形割補成長方形得出的。求三角形面積的公式也是通過把三角形拼成長方形得出的。這說明圖形是可以變換的。
四、教學(xué)三角形面積公式的應(yīng)用1。出示嘗試題
教師:上課開始時,我們提出計算紅領(lǐng)巾的面積,這個問題能解決嗎?計算紅領(lǐng)巾的面積先要量什么?然后編出嘗試題.
學(xué)生到黑板上量出紅領(lǐng)巾的底是100厘米,高約33厘米,編的嘗試題是:紅領(lǐng)巾的底是100厘米,高約是33厘米,它的面積是多少?
2.學(xué)生邊看課本邊嘗試練習(xí)。
3.教師講評。
針對學(xué)生嘗試練習(xí)情況評講。特別指出:應(yīng)用三角形的面積計算公式要注意什么?(不要忘記除以2)如果只有底*高,忘了除以2,算出來是什么圖形?(平行四邊形或長方形)五、鞏固練習(xí)
1.課本練習(xí)十九第1、2題。
2.競賽題。
計算少先隊中隊旗的面積(只要列式)??凑l想得最快,解法最簡便。(同桌二人可以相互討論)
(圖形)p216
解法有:
1.60*60+20*30/2*2
一個正方形加兩個三角形
2.60*80-60*20/2
一個長方形減去一個三角形
3.60*60+20*30
一個正方形加一個長方形
以第三種解法構(gòu)思巧妙,把下面一個三角形移到上面,兩個三角形拼成一個長方形。
六、課堂小結(jié)
這堂課我們學(xué)會了什么?
(要求學(xué)生聯(lián)系上課開始時提出的三條目標回答)學(xué)生回答后,師生共同總結(jié):
1.三角形的面積的計算公式是:底*高/2
2.三角形的底和高決定以后,三角形的面積也就確定了。
3.計算時不要忘記除以2,否則算得結(jié)果不是三角形的面積,而是與它等底等高的平行四邊形的面積了。
三角形的教案【篇6】
各位評委,各位老師,上午好!
一、 說教材
三角形是平面圖形中最簡單的也是最基本的多邊形,一切的多邊形都可以分割成若干個三角形,因此它是學(xué)生學(xué)習(xí)幾何的重要基礎(chǔ)。它的穩(wěn)定性在實踐中有廣泛的應(yīng)用。這部分知識是在學(xué)習(xí)了線段、角和直觀認識了三角形的基礎(chǔ)上學(xué)習(xí)的,在日常生活中,學(xué)生也積累了較我的感性認識,也能初步判斷哪些圖形是三角形。
根據(jù)上述“三角形的認識”在教材中的地位與作用,學(xué)生的認知基礎(chǔ)和思維規(guī)律,以及我校協(xié)同教育實驗的有關(guān)理論,我確定本節(jié)課的教學(xué)目標如下:
1、 學(xué)生理解三角形的意義,掌握三角形的特征,能按角對三角形進行分類。
2、 養(yǎng)學(xué)生觀察、比較、抽象、概括、判斷、推理及分類能力。
3、 養(yǎng)學(xué)生自定向、自運作、自調(diào)節(jié)、自激勵的“四自”能力及小組協(xié)作能力。
重點是掌握三角形的意義、特征,并能按角對三角形進行分類,難點是按角對三角形進行分類。
為了更好地達到教學(xué)目標,突出重點,突破難點,本節(jié)課準備的教具與學(xué)具有:電腦軟件、小棒、各式各樣的三角形圖片。
二、 說教法、學(xué)法
瑞士心理學(xué)家、哲學(xué)家皮亞杰認為:“邏輯——數(shù)學(xué)的真理……并非是由客觀對象抽取出來,而是由主體施加于對象之上的動作,從而也就是主體活動中抽象出來的?!币虼?,要讓學(xué)生在數(shù)學(xué)活動中學(xué)習(xí)數(shù)學(xué),在于調(diào)動學(xué)生原有的知識的生活經(jīng)驗,發(fā)
現(xiàn)問題,“創(chuàng)造”新知識,并在這個過程中培養(yǎng)學(xué)習(xí)興趣,發(fā)展智慧,增長才干。在教學(xué)中,我注意實行啟發(fā)式、討論式、活動式的教學(xué),實施小組協(xié)同教學(xué)模式,體現(xiàn)如下的教學(xué)理論:
(1)主客體發(fā)展統(tǒng)一論。學(xué)生是教育的客體,又是學(xué)習(xí)的主體。學(xué)生在學(xué)習(xí)過程中具有主觀能動性,能自覺地改進自己的學(xué)習(xí),是學(xué)習(xí)的主人。因此,教學(xué)活動應(yīng)充分發(fā)揮教師的主導(dǎo)作用,使學(xué)生的主體地位得到落實。
(2)“四有”有機結(jié)合論?!皡f(xié)同學(xué)習(xí)”強調(diào)系統(tǒng)內(nèi)在的自主組織性,協(xié)同教育以學(xué)生的自我發(fā)展為核心,在課堂教學(xué)中通過教師的“四導(dǎo)”(導(dǎo)向、導(dǎo)行、導(dǎo)評、導(dǎo)勵)培養(yǎng)學(xué)生的“四自”(自定向、自運作、自評價、自激勵)能力,使學(xué)生得到自我發(fā)展。
(3)“協(xié)同效應(yīng)”強化論。學(xué)生在學(xué)習(xí)的過程是受到各種因素的影響,針對傳統(tǒng)教育的不足之處。本節(jié)課通過組織小組學(xué)習(xí),強化師生、生生的協(xié)同效應(yīng),促進良好學(xué)習(xí)狀態(tài)的產(chǎn)生,提高教學(xué)的效益。
三、 說教學(xué)過程
根據(jù)以上對教材的分析,以及教法學(xué)法的選擇,結(jié)合本校的協(xié)同教學(xué)實驗,我把本節(jié)課分為四個聯(lián)合會進行教學(xué)。
第一階段:學(xué)習(xí)準備,目標定向
這一階段,教師通過創(chuàng)設(shè)情景激情引趣,復(fù)習(xí)舊知,提問設(shè)疑等手段,引起學(xué)生對學(xué)習(xí)的注意,為學(xué)生學(xué)習(xí)新課作知識上、方法上、心理上的準備,然后在教師引導(dǎo)下,確定學(xué)習(xí)目標。這一階段要求教師抓準知識的生長點去引導(dǎo)。在《三角形的認識》中,學(xué)生已有了什么是角、角的各部分名稱及特點和角的分類的知識
(電腦演示),這些無論是在知識上還是學(xué)習(xí)方法上都與“三角形的認識”一課有著密切的聯(lián)系,因此,當老師出示紅領(lǐng)巾問:紅領(lǐng)巾的外形是什么圖形?當學(xué)生回答了是三角形后,我馬上提示課題,這節(jié)課我們就來學(xué)習(xí)“三角形的認識”(板書),對于三角形你認為應(yīng)該學(xué)些什么?由于學(xué)生在學(xué)習(xí)角的認識中懂得了什么是角,角的各部分名稱及特點,角的分類等知識,所以,他們很快便自行確定了本節(jié)課的學(xué)習(xí)目標:①什么叫三角形?它各部分的名稱是什么?②它有什么特點③怎樣分類?這樣,在目標定向這一環(huán)節(jié)就充分體現(xiàn)了學(xué)生的主體性。
第二階段:操作實踐,探求新知
荷蘭數(shù)學(xué)教育家弗賴登塔爾把數(shù)學(xué)學(xué)習(xí)看作一種活動,他反復(fù)強調(diào):“學(xué)習(xí)數(shù)學(xué)的惟一正確方法是實行‘再創(chuàng)造’,也就是由學(xué)生本人把要學(xué)的東西自己去發(fā)現(xiàn)或創(chuàng)造出來;教師的任務(wù)是引導(dǎo)和幫助學(xué)生去進行這種再創(chuàng)造的工作,而不是把現(xiàn)成的知識灌輸給學(xué)生”。小學(xué)幾何形體的教學(xué)又是實驗直觀幾何的教學(xué),重點是培養(yǎng)學(xué)生動腦、動手和動口能力,通過對圖形的特征的觀察和實踐活動的驗證,增強學(xué)生學(xué)習(xí)幾何知識的興趣,形成表象、發(fā)展空間觀念。
1、 引導(dǎo)操作,學(xué)習(xí)新知
在學(xué)習(xí)三角形的意義和各部分名稱時,我要求同桌的同學(xué)配合分顏色圍圖形,他們圍出了以下這樣的一些圖形:
紅 色 綠 色 橙 色 紫色
紅色、綠色、橙色圍出的都是三角形,紫色的不能圍成三角形,如果把這些小棒都看作是線段的話,你能說說什么是三角形嗎?由于學(xué)生有了活動、實驗的基礎(chǔ),學(xué)生很快就能說出:“由三條線段圍成的圖形叫做三角形”(板書),并能說出三角形各部分的名稱:邊、頂點和角等(電腦演示),通過觀察,得出了三角形有三條邊和三個角(板書)。通過讓學(xué)生判斷下面哪些是三角形使知識得到及時鞏固。
( ) ( ) ( )
2、 操作演示,應(yīng)用新知
生活處處有數(shù)學(xué),“任何的一個數(shù)學(xué)知識都能找到它的生活原理。”學(xué)生有了三角形的初步認識后,我請他們舉例說說日常生活中有哪些三角形,學(xué)生都很踴躍地舉手發(fā)言,但如何把這些生活原型再現(xiàn)于課堂,加深學(xué)生對三角形的認識呢?我通過多媒體教學(xué)手段,把這些生活原理再現(xiàn)在學(xué)生的面前,并提出了這樣的一
個問題:“為什么日常生活中我們經(jīng)常會用到三角形?它究竟有什么特征呢?”然后讓每組的同學(xué)都拉一拉三角形與平行四邊形的教具,在“手感”的比較中初步獲得了“三角形不易變形”的特征(板書),再通過修椅子的活動錄像得以證實,這樣,就把教師“教數(shù)學(xué)”變成了學(xué)生創(chuàng)造性地學(xué)“數(shù)學(xué)”,把“現(xiàn)成”的數(shù)學(xué)變成了“活動的”、學(xué)生自己重新構(gòu)建的數(shù)學(xué)。
3、 小組探究,拓展新知
概念是進行邏輯思維最基本的單位,更使邏輯思維正確地進
行,概念必須明確,而要做到概念明確,最重要的就是要弄清概念的內(nèi)涵和外延。通過以上學(xué)習(xí),學(xué)生已基本弄清了“三角形的內(nèi)涵”。接著,再引導(dǎo)學(xué)生弄清它的外延。知道概念的外延是指概念所反映的,它所包含的一個個事物,當“一個個事物”多得不用枚舉,或者不必要枚舉時,可以用一類類事物表示。如三角形的形狀各種各樣,大大小小各不相同,不勝一一枚舉,但可以按它的內(nèi)角或它的邊分類。這節(jié)課我們先按角對三角形分類,上課前,同學(xué)們都剪了一個自己認為最特別的三角形,我讓他們觀察三角形的角,并分別在角內(nèi)寫上角的名稱,然后在小組中,把同組中的三角形按角分類,看可以分成幾類,然后讓小組匯報,有的說:“三角形的角有一個鈍角、兩個銳角的”,“有一個直角、兩個銳角的”及“三個都是銳角的”。除了這三個情況外,還有沒有其他的情況呢?通過小棒的演示,懂得不可能再有其他的民情況的三角形,然后我再請個別小組把他們組中的三角形,按這三類分好,貼在黑板上,接著讓同學(xué)對第一類三角形進行起名,然后再通過比較分析,得出“鈍角三角形”這個既簡單又能突出這類三角形特征的名字。最后讓學(xué)生利用這一起名的方法,給另兩類三角形起名。
至此,學(xué)生根據(jù)一定的標準,依從一定的規(guī)律,以三角形的載體,通過自己運作,進行了一次邏輯思維訓(xùn)練,然后通過閱讀課本和觀看電腦演示,系統(tǒng)一整理已學(xué)的知識,再讓他們在組內(nèi)說說學(xué)具袋中的三角形是什么三角形,通過看三角形的其中一個角,猜猜是什么三角形,使學(xué)生更明確地認識到有一個角是直角的三角形一定是直角三角形,有一個角是鈍角的三角形一定是鈍角三角形,但只知道一個角是銳角的就不能確定它是什么三角形,
必須是三個角是銳角的三角形才是銳角三角形的道理.
第三階段:互測互評鞏固深化
這一階段,主要通過對教學(xué)內(nèi)容進行歸納整理,形成較完整的知識結(jié)構(gòu),并進行相應(yīng)的基本性、提高性、綜合性、拓展性的練習(xí)與檢測,使學(xué)習(xí)得以鞏固,并在應(yīng)用知識的同時,對照目標檢測自己對新知識的掌握情況,及時評價與調(diào)節(jié)(邊電腦演示)。最后,我出示了一組拼組圖形(電腦演示),讓學(xué)生觀察,這些拼組圖形中用到了哪些三角形,并讓他們利用組內(nèi)的三角形拼組一些有趣的圖形,說說這些圖形分別用到了哪些三角形。這樣的練習(xí)使學(xué)生學(xué)習(xí)的主動性,聰明才智能和學(xué)習(xí)興趣,得到了充分的發(fā)揮和鍛煉。
第四階段:總結(jié)評價,系統(tǒng)建構(gòu)
這一階段的總結(jié)評價是必要的,是對整一節(jié)課在知識上、方法上、態(tài)度上的總結(jié)與評價,應(yīng)充分引導(dǎo)學(xué)生自評,提高自我評價能力。此外還應(yīng)對本節(jié)學(xué)習(xí)的知識質(zhì)穎解惑,把舊知識納入原有的知識系統(tǒng)中。形成知識網(wǎng)絡(luò),為下一階段的學(xué)習(xí)作知識上、方法上的準備。
至此,結(jié)束整節(jié)課的教學(xué),在設(shè)計過程中,由于本人水平有限,存在不少問題,希望得到老師們的指導(dǎo)。歡迎批評指正!
三角形的教案【篇7】
各位老師,大家好!
今天,我說課的內(nèi)容是《三角形的認識》第一課時。下面我就從教材分析、教法、學(xué)法的應(yīng)用、教學(xué)過程、板書設(shè)計五個方面來進行說課。
先說一下對教材的認識
本節(jié)課是九年義務(wù)教育六年制小學(xué)數(shù)學(xué)(青島版)第八冊教材第40-41頁《三角形的認識》第一課時。
教材所處的地位與作用是:
三角形在平面圖形中是最簡單的也是最基本的多邊形,一切多邊形都可分割成若干個三角形,并借助三角形來學(xué)習(xí)其他相關(guān)知識內(nèi)容。這部分內(nèi)容是在學(xué)生學(xué)習(xí)了線段、角和直觀認識了三角形的基礎(chǔ)上進行教學(xué)的,它是進一步學(xué)習(xí)三角形分類、三角形內(nèi)角和等知識的重要基礎(chǔ),也是今后進一步學(xué)習(xí)幾何知識的基礎(chǔ)。所以掌握三角形的特征是非常重要的。
本節(jié)課的教學(xué)目標是:
(一)知識目標:①理解三角形的含義,掌握三角形的特征和按角分類的方法;②能過操作,使學(xué)生知道三角形的特性及其在生活中的廣泛應(yīng)用。
(二)能力目標:培養(yǎng)學(xué)生的觀察能力和動手操作能力。
(三)情感目標:培養(yǎng)學(xué)生主動探索與合作學(xué)習(xí)的精神。
本節(jié)課教學(xué)重點是:正確理解和掌握三角形的意義及三角形按角分類的方法
教學(xué)難點:正確地給三角形進行分類,并說明依據(jù)
難點突破則是:通過學(xué)生的觀察、討論、歸納將三角形按角的不同進行正確分類。
接下來說一下,本節(jié)課所采用的教學(xué)方法
新課標強調(diào):人人學(xué)有價值的數(shù)學(xué),人人都要獲得必需的數(shù)學(xué),讓不同的人在數(shù)學(xué)上得到不同的發(fā)展。關(guān)于三角形學(xué)生已經(jīng)有一定的感性認識,因此教學(xué)活動應(yīng)緊密聯(lián)系生活實際,在學(xué)生認知水平和已有知識經(jīng)驗基礎(chǔ)上進行。因此,本節(jié)課采用多媒體課件,創(chuàng)設(shè)情境,激發(fā)學(xué)生的學(xué)習(xí)興趣和求知欲,充分引導(dǎo)學(xué)生進行觀察、操作、猜測、驗證,讓學(xué)生真正成為學(xué)習(xí)的主人。通過這樣的教學(xué),使學(xué)生在既獲得知識的同時,也培養(yǎng)和提高了學(xué)習(xí)的能力。
為了體現(xiàn)以上教學(xué)方法,本節(jié)課采用的學(xué)法是:
全課以小組合作的形式組織教學(xué),充分引導(dǎo)學(xué)生自己提出問題并自己解決問題,通過“擺一擺”、“找一找”、“猜一猜”等環(huán)節(jié)親自體驗探索知識的形成過程,培養(yǎng)學(xué)生解決問題的能力。
本節(jié)課的教學(xué)過程主要由:情境導(dǎo)入、探究新知、鞏固與發(fā)展、回顧整理四部分進行。
(一)情境導(dǎo)入:
通過創(chuàng)設(shè)情境,觀看有關(guān)三角形的實物圖像(電腦出示一組畫面:三角板、金字塔、彩色旗、自行車等),讓學(xué)生感受到數(shù)學(xué)圖形在生活中無處不在,數(shù)學(xué)就在我們身邊,激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。然后,讓學(xué)生圍繞三角形提出問題,歸納為①什么叫三角形?②三角形由哪些部分組成?③三角形有什么特性?④三角形怎樣分類?激發(fā)了學(xué)生探索的興趣,為探索新知指明了方向,
(二)探究新知:
第一部分:理解三角形的概念
興趣是最好的老師,怎樣讓已經(jīng)點燃的興趣的火種閃爍出智慧的火花呢?
1、通過用小棒擺三角形,讓學(xué)生在動手操作中形成概念,抽向概括出三角形是由三條線段圍成的圖形,強調(diào)“三條線段”、“圍成”二者缺一不可.
2、觀察:圖形中哪些是三角形?不是三角形的讓學(xué)生說明理由(圖略),學(xué)生在掌握了三角形的概念后,能很快地判斷出哪些是三角形,哪些不是?并能說出理由。這樣進一步加深了學(xué)生對三角形含義的理解,讓學(xué)生在自主探索中掌握概念,真正成為概念的探索者與發(fā)現(xiàn)者。
第二部分:探究三角形的組成
通過讓學(xué)生摸一摸,找一找,動手感知,然后自學(xué)課本,把學(xué)習(xí)的主動權(quán)交給學(xué)生,使學(xué)生能快速地掌握三角形的特征-----三條邊、三個角、三個頂點。
第三部分:探究三角形的特性
三角形穩(wěn)定性的應(yīng)用十分廣泛,但學(xué)生理解起來有一定的困難,為突破這一難點,首先設(shè)計提問,生活中有些物體為什么要設(shè)計成三角形?然后通過實驗,讓學(xué)生親自動手拉用硬紙板釘成的四邊形和三角形框,學(xué)生發(fā)現(xiàn)四邊形容易變形,三角形不變形,使學(xué)生形象地認識了三角形具有穩(wěn)定性。接著讓學(xué)生具體說說生活中有哪些物體用到了三角形的特性?讓學(xué)生感受到了數(shù)學(xué)來源于現(xiàn)實生活,也應(yīng)用于現(xiàn)實生活。
第四部分:探究三角形的分類?
三角形怎樣分類是本課的重點,也是難點,難點在于怎樣找出分類的標準。首先,將學(xué)生事先
剪好的三角形貼在黑板上,然后讓學(xué)生小組討論:怎樣給三角形分類?學(xué)生會踴躍地提出按顏色分類、按大小分類等多種分類方法,只要說的有道理,都要一一給予肯定,重點讓學(xué)生觀察三角形的角有什么特點?通過觀察、討論、對比,使學(xué)生知道三角形按角的不同可以分為銳角三角形、直角三角形、鈍角三角形,從而掌握三角形按角分類的方法。再通過電腦演示,讓學(xué)生更形象地理解、認識三類三角形。
(三)為了讓學(xué)生更深入的理解所學(xué)知識,在鞏固與發(fā)展這一環(huán)節(jié),設(shè)計了一個游戲:猜猜老師書中夾的是什么三角形?
游戲是學(xué)生最喜歡的活動方式之一,通過猜一猜使學(xué)生知道了露出一個直角的一定是直角三角形,露出一個鈍角一定是鈍角三角形,露出一個銳角的不一定是銳角三角形,也可能是直角三角形或鈍角三角形。這時老師要以合作者的身份參與到游戲中,通過師生互動,平等交流,形成了一種民主、和諧的師生關(guān)系和融洽的學(xué)習(xí)氛圍。
(四)回顧整理
“這節(jié)課你學(xué)習(xí)了哪些知識?探討了哪些問題?有什么收獲?”
通過回顧,使學(xué)生對知識有一個系統(tǒng)的認識,培養(yǎng)學(xué)生的歸納概括能力,同時讓學(xué)生體驗到了成功的歡樂。
最后是板書設(shè)計這節(jié)課的板書設(shè)計如大屏幕所示
總之,本節(jié)課的教學(xué)堅持了“學(xué)生是探索的主體”這一教學(xué)原則,面向全體學(xué)生,充分引導(dǎo)學(xué)生動手操作、自主探索、合作交流,讓每一個學(xué)生在自主探索的過程中感受數(shù)學(xué)與日常生活的緊密聯(lián)系,體驗學(xué)習(xí)數(shù)學(xué)的快樂,有效的促進師生之間、學(xué)生之間的共同發(fā)展。培養(yǎng)學(xué)生的創(chuàng)新精神和實踐能力。
以上就是這節(jié)課的說課內(nèi)容,不足之處,請各位老師批評指正。
Yjs21.coM更多幼兒園教案延伸讀
三角形的特性的教案7篇
作為一位不辭辛勞的人民教師,常常要寫一份優(yōu)秀的教學(xué)設(shè)計,借助教學(xué)設(shè)計可以讓教學(xué)工作更加有效地進行。我們該怎么去寫教學(xué)設(shè)計呢?以下是小編幫大家整理的有關(guān)《三角形的特性》教學(xué)設(shè)計,希望對大家有所幫助。
三角形的特性的教案 篇1
教學(xué)目標:
1、通過學(xué)習(xí)使學(xué)生認識三角形,知道三角形各部分的名稱,能用字母表示三角形;理解三角形底和高的對應(yīng)關(guān)系,會在三角形內(nèi)畫高,初步了解三角形的外高。
2、在找一找、畫一畫、說一說的過程中感知三角形的定義,理解“圍成”的含意;在畫高的過程中感受三角形底與高的相互依存的關(guān)系。
3、通過教學(xué)培養(yǎng)學(xué)生的觀察能力、作圖能力,數(shù)學(xué)語言表達能力。積累在三角形內(nèi)畫高等數(shù)學(xué)活動經(jīng)驗。
4、培養(yǎng)學(xué)生樂于思考,勇于質(zhì)疑的良好品質(zhì)。養(yǎng)成用數(shù)學(xué)的眼光觀察生活的習(xí)慣。體驗數(shù)學(xué)與生活的密切聯(lián)系,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣。培養(yǎng)學(xué)生的空間觀念。
教學(xué)重點:
理解三角形的概念、會畫指定底邊的高。
教學(xué)難點:
能準確畫出指定底邊的高。
教具、學(xué)具:
教師準備:課件一套,三角尺一個。學(xué)生準備:三角板,鉛筆,白紙。
教學(xué)過程:
一、看圖導(dǎo)入、揭示概念
1、初步感知。
猜今天學(xué)什么?提示:一種平面圖形!你猜可能是什么?是呀,這么多的平面圖形我們到底要研究哪一個呢?仔細觀察下面兩副圖,也許能找到答案。
課件出示古金字塔和安康漢江三橋畫面。
現(xiàn)在能確定今天要學(xué)什么了嗎?從古到今三角形在我們的生活中都有著廣泛的應(yīng)用,它是人類智慧的象征。今天我們將一起來認識三角形。板書課題
2、畫圖理解概念。
三角形是什么樣的?能把你記憶中的三角形畫出來嗎?
在白紙上畫一個三角形。畫好以后跟同桌或小組里的同學(xué)說一說你是怎么畫的?開始吧!
說說看,你是怎么畫的?還有不同的畫法嗎?(根據(jù)學(xué)生匯報的畫圖方法,老師在黑板上畫兩個三角形。)(相機板書“三條線段”等)
3、嘗試概括定義。
什么樣的圖形叫三角形?通過課件畫圖對比分析學(xué)生的概括結(jié)果,引導(dǎo)學(xué)生逐步完善。(理解每相鄰兩條線段的端點相連)
出示定義:完善板書。
二、認識各部分名稱
1、引導(dǎo)觀察并講述:(課件出示)圍成三角形的這三條線段就是這個三角形的邊,每相鄰兩邊相連的端點叫做頂點,由一個頂點出發(fā)的兩條邊所組成的圖形就是角。三角形有幾條邊,幾個頂點,幾個角?
練習(xí):找個同學(xué)上來指一指黑板上這個三角形各部分的名稱。
2、用字母表示。
老師說“那個頂點”讓學(xué)生上黑板指,學(xué)生指哪個都搖頭。
師:為什么現(xiàn)在他指不對了呢?(因為有三個頂點,不知道說的是哪個。)
師:為了更好的區(qū)分它們,我們可以用字母A,B,C分別表示這三個頂點。這個頂點就讀作“頂點A”讀,(指B,C)這個是?這樣一來這條邊就叫AB邊。(指另外兩條)。這個角就是——角A。
師:整個三角形就可以叫做——三角形ABC。真會類推!快動手把你的三角形也用字母表示出來。
練習(xí)并過渡:(課件出示同底不等高的三角形)現(xiàn)在會用字母表示三角形了嗎?
師:這是個三角形家族,如果用ABC表示這個藍色的三角形的話,這個綠色的三角形可以表示為AB——D。這個紅色的就是——三角形ABE。
3、認識高。
觀察這些三角形,你有什么發(fā)現(xiàn)?(一個比一個高,一個比一個大)
生1:我發(fā)現(xiàn)這些三角形下面的兩個頂點不變,上面的頂點分別就變的名稱。
師:你的意思是說它們下面這條邊長度相等,是這個意思嗎?可這些三角形確一個比一個高,一個比一個大。為什么會這樣呢?
師:看樣子三角形也是有高的,而且這個高還影響著三角形的大小。
師:如果三角形有高的話,那這個高應(yīng)該在哪兒呢?(停頓一下出示課件)
看看哪幅圖畫出了你心目中的高?你憑什么說第二幅圖是,其它不是?
在今天之前,我們還學(xué)習(xí)過哪些圖形的高?
什么叫平行四邊形的高?有人記得嗎?我們一起來回憶一下。(課件出示平行四邊形的高)
獨立思考后小組交流:
1、三角形的這一點在哪兒?它的對邊在哪兒?
2、三角形的高應(yīng)該是一條怎樣的線段?
3、底在哪兒?底和高有什么關(guān)系?
匯報學(xué)生的理解與概括。
請打開課本60頁,讀高的定義。
4、理解三角形的高和底的對應(yīng)關(guān)系。
課件演示畫高,強調(diào)這點的對邊在哪
思考三角形有幾條高?課件演示(顏色區(qū)分)
5、指導(dǎo)畫高。
誰想上來試試畫畫三角形ABC的高。說一說你想畫哪條邊上的高?(指名一生上黑板,指導(dǎo)畫高)三角板這樣擺放對嗎?
指名一人上黑板畫指定底邊的高(斜邊)。
同學(xué)們,現(xiàn)在會畫高了嗎?
三、課后練習(xí)
1、基礎(chǔ)練習(xí):60頁“做一做”。畫出指定底邊的高。(準備打開展臺)
展示匯報:在學(xué)生的作業(yè)展示中理解直角三角形兩條直角邊互為底和高
2、拓展練習(xí):初步了解鈍角三角形的形外高。
數(shù)一數(shù)圖中共有幾個三角形?
課件演示過A點做BC邊的垂線AE。觀察你覺得AE是哪些三角形哪條邊上的高?了解鈍角三角形的形外高。
3、用直尺畫高。
四、進行一次想像
課前老師也在生活中發(fā)現(xiàn)了一個三角形,想知道是什么嗎?大家說是直接出示圖片還是給一些線索大家來猜一猜?課件出示:高30厘米,底40厘米。這個三角形可能是什么?先把你的想法與同桌比劃比劃。
一組數(shù)據(jù)給大家留下了如此豐富的想像空間,也進一步說明生活中的三角形無處不在。其實答案是什么不重要,重要的是大家對高30厘米,底40厘米的這個三角形有多大,已經(jīng)有了自己基本的想像和判斷。今天下課后,王老師希望大家能夠像今天課堂上一樣,帶著一雙數(shù)學(xué)的眼睛重新認識我們周邊的世界,認識我們的生活,去發(fā)現(xiàn)更多的與數(shù)學(xué)有關(guān)的問題和奧秘!
三角形的特性的教案 篇2
教學(xué)內(nèi)容:
人教版四年級數(shù)學(xué)下冊第五單元三角形P80、81頁例1、例2,練習(xí)十四1、2、3題。
教材分析:
《三角形的特性》是人教版義務(wù)教育課程標準實驗教科書四年級數(shù)學(xué)下冊第80--81頁的內(nèi)容。學(xué)生通過第一學(xué)段以及四年級上冊對空間與圖形的學(xué)習(xí),對三角形已經(jīng)有了直觀的認識,能夠從平面圖形中分辨出三角形。本節(jié)內(nèi)容的設(shè)計是在上述的基礎(chǔ)上進行的,教材的編寫注意從學(xué)生已有的經(jīng)驗出發(fā),創(chuàng)設(shè)豐富多彩的與現(xiàn)實生活聯(lián)系緊密的情境和動手實驗活動,以幫助學(xué)生理解三角形概念,構(gòu)建數(shù)學(xué)知識。
學(xué)生分析:
學(xué)生在日常生活中經(jīng)常接觸到三角形,對三角形有一定的感性認識,但幾何初步知識無論是線、面、體的特征還是圖形的特征、特性,對于小學(xué)生來說,都比較抽象。要解決數(shù)學(xué)的抽象性與小學(xué)生思維特點之間的矛盾,就要充分運用其直觀性進行教學(xué)。
設(shè)計理念:
學(xué)生對幾何圖形的認識是通過操作、實踐而獲得的。因此本節(jié)課從學(xué)生已有的生活經(jīng)驗出發(fā),創(chuàng)設(shè)教學(xué)情境,讓學(xué)生動手操作,自主探究、合作交流掌握三角形概念以及特性。
教學(xué)目標:
1、通過動手操作和觀察比較,使學(xué)生認識三角形,知道三角形的特征及三角形高和底的含義,會在三角形內(nèi)畫高。
2、通過實驗,使學(xué)生知道三角形的穩(wěn)定性及其在生活中的應(yīng)用。
3、培養(yǎng)學(xué)生觀察、操作的能力和應(yīng)用數(shù)學(xué)知識解決實際問題的能力。
4、體會數(shù)學(xué)與生活的聯(lián)系,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)重點、難點:
重點:理解三角形的含義,掌握三角形的特征、特性。
難點:三角形高的確定及畫法。
教具、學(xué)具準備:
教師準備:多媒體課件,硬紙條制作的長方形和三角形,三角板,作業(yè)紙等。
學(xué)生準備:學(xué)具小棒、彩色筆、三角板,直尺等。
教學(xué)過程:
一、聯(lián)系生活,情境導(dǎo)入
1、播放視頻短片。
師:為了上好今天這節(jié)課,老師特意拍了一小段視頻,考考你們,看你們能否發(fā)現(xiàn)短片中你比較熟悉的圖形?(課件播放視頻:三角形的木梯、空調(diào)外機的支架和電視塔)
學(xué)生自由匯報。
師:老師很高興你們都有一雙智慧的眼睛。
2、學(xué)生舉例說生活中的三角形。
師:你還能說出生活中哪些物體上有三角形嗎?
生:紅領(lǐng)巾、房梁、自行車、 交通標志牌、電視接收塔、高壓線塔……
3、從你們的回答中老師感受到你們都是善于觀察、善于發(fā)現(xiàn)的好孩子!看來生活當中的三角形還真不少啊!這節(jié)課你想研究三角形的什么知識?
根據(jù)學(xué)生的匯報,相機揭示課題并板書:三角形的特性、定義、特點等。
二、操作感知,理解概念
1、發(fā)現(xiàn)三角形的特點。
師:用你喜歡的顏色在作業(yè)紙上畫一個三角形。邊畫邊想:三角形是由哪些部分組成的?
展示學(xué)生畫的三角形,組織小組交流:和小組內(nèi)的同學(xué)交流一下,你們畫的三角形有什么共同的特點?
反饋,根據(jù)學(xué)生的匯報出示課件標出三角形各部分的名稱。(板書:三條邊、三個角、三個頂點)
2、概括三角形的定義。
師:看來大家對三角形的特點達成了一致的看法。能不能用自己的話概括一下,什么樣的圖形叫三角形?
學(xué)生的回答可能有下面幾種情況:
(1)有三條邊的圖形叫三角形或有三個角的圖形叫三角形;
(2)有三條邊、三個角的圖形叫三角形;
(3)有三條邊、三個角、三個頂點的圖形叫三角形;
(4)由三條邊組成的圖形叫三角形;
(5)由三條線段圍成的圖形叫三角形。
師:請你們對照上面的說法,判斷下面的哪個圖形是三角形?
課件出示一組圖形:
討論:哪種說法更準確?
閱讀課本:課本是怎樣概括三角形的定義的?(根據(jù)學(xué)生匯報板書:由三條線段圍成的圖形叫做三角形。)你認為三角形的定義中哪些詞最重要?
組織學(xué)生在討論中理解“三條線段”“圍成”(邊畫三角形邊強調(diào)“每相鄰兩條線段的端點相連接”。)
學(xué)生看著書齊讀三角形的定義。
師小結(jié):數(shù)學(xué)是一門嚴謹?shù)膶W(xué)科,我們在用數(shù)學(xué)語言表達的時候也要講求其嚴謹性。
3、探究三角形的特性。
(1)聯(lián)系生活,了解三角形的特性。
師:細心觀察,我們就會發(fā)現(xiàn)生活中有許多地方都會用到三角形的知識。
課件出示練習(xí)十四第2題“圍籬笆”圖。
師:瞧!小兔和小猴分別在各自的菜地邊圍上籬笆,小兔圍成的是長方形,小猴圍成了三角形。
請同學(xué)們想想哪種圍法更牢固?為什么?下面我們來做個實驗。
(2)動手操作,發(fā)現(xiàn)三角形的特性。
師拿出長方形框架。
師:誰想來拉一拉這個長方形的框架,你有什么發(fā)現(xiàn)?(容易變形,不穩(wěn)定。)
課件演示:如果我們在小兔的籬笆上輕輕一推,會出現(xiàn)什么情況?(籬笆會倒下去。)
指導(dǎo)學(xué)生操作:去掉一條邊,再扣上拼組成三角形框架。
師:再拉一拉有什么感覺?
請一名學(xué)生上前演示。
師:其他同學(xué)也想體驗一下嗎?(學(xué)生興趣高漲,想要動手試試。)拿出你們的學(xué)具小棒和小組內(nèi)的同學(xué)一起動手感受一下。
師小結(jié):通過實驗發(fā)現(xiàn)三角形不易變形,可見三角形具有穩(wěn)定性。(板書:穩(wěn)定性。)
點擊課件,小猴的籬笆上有個紅色的三角形在閃爍。
師:現(xiàn)在你能說說為什么小猴的籬笆更牢固了嗎?
生:因為小猴的籬笆是三角形的,所以更牢固。
師:你知道生活中還有哪些地方用到了三角形穩(wěn)定性的特征嗎?
生:自行車、籃球架、電線桿……
小結(jié):(點擊課件,物體中紅色的三角形在閃爍)生活中常見的自行車、籃球架、電線桿等物體之所以制成三角形,其中一個重要原因是利用了三角形的穩(wěn)定性,使其結(jié)實耐用。
(3)運用三角形的特性解決生活中的實際問題。
課件出示練習(xí)十四第3題圖片。
師:了解了三角形具有穩(wěn)定性這一特性,我們可以用這個知識來解決生活中的難題??矗@是一把舊椅子,搖晃得很厲害。扔掉可惜,該怎樣加固它呢?
指名學(xué)生上臺演示具體怎樣做。
追問:為什么要在椅子的兩條腿上斜斜地釘上一根木條?這樣做運用了什么知識?
生匯報后師小結(jié):這樣做是應(yīng)用了三角形的“穩(wěn)定性”。同學(xué)們能夠?qū)W以致用,真了不起!
4、認識三角形的底和高。
(1)初步感知三角形的高。
課件出示松鼠和斑馬的“別墅”。
師:聰明的松鼠和斑馬也利用了三角形的這一特性各給自己做了套漂亮的別墅。你知道哪個是松鼠的家?哪個是斑馬的家嗎?你是怎么想的?
生:高的別墅是斑馬的,矮的'別墅是松鼠的。
師:你說的房子的“高”指的是哪部分?請上來指一指。(學(xué)生上臺比劃三角形的高。)
師:(出示課件)老師這里有三幅圖,那幅圖把你心目中的高畫下來了?
生:第(1)幅。
師:第二幅為什么不是?(第二幅是斜的,高應(yīng)該是垂直線段。)
師:那第三幅是垂直的呀?為什么也不是呢?(沒有經(jīng)過頂點)
(2)理解三角形高的概念。
師:那你能說說什么是三角形的高嗎?
結(jié)合學(xué)生的描述板書揭示三角形高的定義。
師邊揭示三角形高的定義邊出示課件演示三角形高的畫法。
板書:頂點、(畫高,標直角符號)高、底。
(3)動手畫三角形的高。
在你畫的三角形上確定一個頂點,再畫出它的對邊上的高。(學(xué)生動手畫高。)
師:誰來說說你是怎么畫的?(指名學(xué)生上臺演示,結(jié)合學(xué)生的匯報出示課件演示)
強調(diào):其實畫三角形的高就是我們上學(xué)期學(xué)過的過直線外一點畫已知直線的垂線。要注意的是代表高的這條線段要畫成虛線段,別忘了標上直角符號。
師:為了方便表達,我們習(xí)慣用連續(xù)的三個字母A、B、C分別表示三角形的三個頂點,(板書:給三角形標三個頂點標上A、B、C)上面的三角形就可以表示成三角形ABC。那么和A點相對應(yīng)的底是哪條邊?(BC)(課件同步演示)你們也可以用自己喜歡的字母來表示你畫的三角形,在你的三角形中,你將哪個點定為頂點的?和它相對應(yīng)的底是哪條邊?(學(xué)生匯報)
師:想一想,從三角形的一個頂點到它的對邊可以畫一條高,三角形有幾個頂點?(3個)那也就是說一個三角形有幾條高?(板書:三條高)
剛才我們是從頂點A到和它相對應(yīng)的底BC畫出了三角形的一條高,現(xiàn)在我們將AC作為三角形的底來畫一條高,你能找到AC這條底所對應(yīng)的頂點嗎?(B點)對,找到底邊所對應(yīng)的頂點,我們就可以用同樣的方法畫出已知底邊上的高了。
請你們在作業(yè)紙上畫出每個三角形指定底邊上的高。(練習(xí)十四第1題)
學(xué)生畫完后匯報的同時,師點擊課件演示。強調(diào)直角三角形的兩條直角邊中當其中一條作為底邊時,另一條就是高。
(4)拓展畫鈍角三角形外的兩條高。
學(xué)生試著畫高,匯報的同時課件輔助演示畫高的過程。
三、課堂小結(jié)
通過這節(jié)課的學(xué)習(xí),你對三角形又有了哪些新的認識?
三角形的特性的教案 篇3
教學(xué)目標:
1、在觀察、操作活動中感受并發(fā)現(xiàn)三角形是由三條線段圍成的圖形。
2、認識三角形的各部分名稱及三角形的字母表示法,知道什么是三角形的底和高。
3、在觀察、實驗中發(fā)現(xiàn)三角形具有穩(wěn)定性,知道三角形的穩(wěn)定性在實踐中有廣泛的應(yīng)用。
4、體驗數(shù)學(xué)與生活的聯(lián)系,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)重點:
1、建立三角形的概念,認識三角形的各部分名稱,知道三角形的底和高。
2、在觀察、實驗中發(fā)現(xiàn)三角形具有穩(wěn)定性。
教學(xué)難點:
會畫三角形指定底邊上的高。
教學(xué)關(guān)鍵:
要聯(lián)系生活實際,讓學(xué)生在充分感知的基礎(chǔ)上抽象出三角形的定義,從而認識三角形的特性。
教具準備:
多媒體課件、實物投影。
學(xué)具準備:
每個學(xué)生都準備好用塑料小棒圍成的一個三角形和一個四邊形。
教學(xué)過程:
一、聯(lián)系生活,情境導(dǎo)入
小朋友們,老師今天有點與眾不同你發(fā)現(xiàn)了嗎?(帶著紅領(lǐng)巾),這讓我感覺自己又回到了幸福的童年時代,你們愿意和我這個大姐姐做朋友嗎?(拿下紅領(lǐng)巾),紅領(lǐng)巾是什么形狀的?(板題:三角形)
二、操作感知,理解概念
1、概括三角形的定義。
以前我們就認識過三角形,你能畫出一個三角形嗎?展示學(xué)生畫的三角形,集體評價。
你覺得什么樣的圖形叫三角形?學(xué)生自由發(fā)表看法。你能用一句最簡潔的話來概括三角形嗎?(課件出示定義)
你覺得在這句話中,哪些詞語最重要?(指名說)
現(xiàn)在我們已經(jīng)知道了什么樣的圖形叫三角形,請判斷:下面哪些圖形是三角形?
2、學(xué)習(xí)三角形的.特征。
在這個三角形中,你知道它各部分的名稱嗎?(課件出示邊,頂點,角)數(shù)一數(shù),三角形有幾條邊?有幾個頂點?有幾個角?(板書:三條邊、三個頂點、三個角)
小結(jié):每個三角形都有三條邊、三個角和三個頂點,這是三角形的特征。
你能從生活中,我們熟悉的事物中找到三角形嗎?學(xué)生自由說(課件出示圖片)
3、學(xué)習(xí)三角形的特性。
看,三角形在我們的生活中應(yīng)用非常的廣泛,想一想:為什么設(shè)計師在設(shè)計這些事物的時候都要用上三角形呢?三角形在這里起到了什么作用?(穩(wěn)定)
拿出學(xué)具袋,下面我們來做一個實驗:拉動四邊形和三角形,你有什么發(fā)現(xiàn)?這說明了什么?(板書:具有穩(wěn)定性)
現(xiàn)在你知道為什么許多建筑框架上要用到三角形的原因了吧?,F(xiàn)在我想請大家?guī)屠蠋熞粋€忙,昨天我發(fā)現(xiàn)我的辦公椅有點毛病了,老是晃動,誰能幫我修修?指名說。瞧,學(xué)好數(shù)學(xué)知識,對我們的生活也很有幫助呢!
4、學(xué)習(xí)三角形的高。
老師從網(wǎng)上找到了一幅圖片,這是一座吊索橋。里面有三角形嗎?(課件出示)繩子和橋面組成了三角形,塔與橋面也構(gòu)成了三角形。如果想知道塔頂與橋面之間有多高?該怎么辦呢?學(xué)生說。(課件演示從塔頂?shù)綐蛎嬷g的垂線。)
那你能畫出像這樣一個三角形的高嗎?同學(xué)們邊畫邊思考:什么是三角形的高?什么是三角形的底?三角形有幾條高?小組內(nèi)學(xué)生畫高,討論,展示匯報,集體評價。(課件出示:從三角形的一個頂點到它的對邊做一條垂線,頂點和垂足之間的線段叫三角形的高,這條對邊叫做三角形的底。三角形有三條高。)
為了表達方便,我給這個三角形的三個頂點分別標上字母ABC,這個三角形可以表示為三角形ABC?,F(xiàn)在老師給這三條垂線的垂足標上字母DEF,請同學(xué)們找一找,在三角形ABC中,以AB為底邊的高是(),我還能找到以()邊為底邊的高是()。
三、總結(jié)
看來,我們班同學(xué)學(xué)習(xí)都很認真,回想一下,通過這節(jié)課的學(xué)習(xí),你對三角形又有了哪些認識?學(xué)生自由說。
四、作業(yè)
練習(xí)十四1、3題。
三角形的特性的教案 篇4
本節(jié)內(nèi)容的重點是定理。本定理是證明兩條線段相等的重要定理,它是把三角形中角的相等關(guān)系轉(zhuǎn)化為邊的相等關(guān)系的重要依據(jù),此定理為證明線段相等提供了又一種方法,這是本節(jié)的重點。推論1、2提供證明等邊三角形的方法,推論3是直角三角形的一條重要性質(zhì),在直角三角形中找邊和角的等量關(guān)系經(jīng)常用到此推論。
本節(jié)內(nèi)容的難點是性質(zhì)與判定的區(qū)別。等腰三角形的性質(zhì)定理和判定定理是互逆定理,題設(shè)與結(jié)論正好相反。學(xué)生在應(yīng)用它們的時候,經(jīng)常混淆,幫助學(xué)生認識判定與性質(zhì)的區(qū)別,這是本節(jié)的難點。另外本節(jié)的文字敘述題也是難點之一,和上節(jié)結(jié)合讓學(xué)生逐步掌握解題的思路方法。由于知識點的增加,題目的復(fù)雜程度也提高,一定要學(xué)生真正理解定理和推論,才能在解題時從條件得到用哪個定理及如何用。
教法建議:
本節(jié)課教學(xué)方法主要是“以學(xué)生為主體的討論探索法”。在數(shù)學(xué)教學(xué)中要避免過多告訴學(xué)生現(xiàn)成結(jié)論。提倡教師鼓勵學(xué)生討論解決問題的方法,引導(dǎo)他們探索數(shù)學(xué)的內(nèi)在規(guī)律。具體說明如下:
(1)參與探索發(fā)現(xiàn),領(lǐng)略知識形成過程
學(xué)生學(xué)習(xí)過互逆命題和互逆定理的概念,首先提出問題:等腰三角形性質(zhì)定理的逆命題的什么?找一名學(xué)生口述完了,接下來問:此命題是否為真命?等同學(xué)們證明完了,找一名學(xué)生代表發(fā)言。最后找一名學(xué)生用文字口述定理的內(nèi)容。這樣很自然就得到了定理。這樣讓學(xué)生親自動手實踐,積極參與發(fā)現(xiàn),滿打滿算了學(xué)生的認識沖突,使學(xué)生克服思維和探求的惰性,獲得鍛煉機會,對定理的產(chǎn)生過程,真正做到心領(lǐng)神會。
(2)采用“類比”的學(xué)習(xí)方法,獲取知識。
由性質(zhì)定理的學(xué)習(xí),我們得到了幾個推論,自然想到:根據(jù)定理,我們能得到哪些特殊的結(jié)論或者說哪些推論呢?這里先讓學(xué)生發(fā)表意見,然后大家共同分析討論,把一些有價值的、甚至就是教材中的推論板書出來。如果學(xué)生提到的不完整,教師可以做適當?shù)狞c撥引導(dǎo)。
(3)總結(jié),形成知識結(jié)構(gòu)
為了使學(xué)生對本節(jié)課有一個完整的認識,便于今后的應(yīng)用,教師提出如下問題,讓學(xué)生思考回答:
(1)怎樣判定一個三角形是等腰三角形?有哪些定理依據(jù)?
(2)怎樣判定一個三角形是等邊三角形?
一。教學(xué)目標 :
1、使學(xué)生掌握定理及其推論;
2、掌握等腰三角形判定定理的運用;
3、通過例題的學(xué)習(xí),提高學(xué)生的邏輯思維能力及分析問題解決問題的'能力;
4、通過自主學(xué)習(xí)的發(fā)展體驗獲取數(shù)學(xué)知識的感受;
5、通過知識的縱橫遷移感受數(shù)學(xué)的辯證特征。
二。教學(xué)重點:
定理
三。教學(xué)難點 :
性質(zhì)與判定的區(qū)別
四。教學(xué)用具:
直尺,微機
五。教學(xué)方法:
以學(xué)生為主體的討論探索法
六。教學(xué)過程 :
1、新課背景知識復(fù)習(xí)
(1)請同學(xué)們說出互逆命題和互逆定理的概念
估計學(xué)生能用自己的語言說出,這里重點復(fù)習(xí)怎樣分清題設(shè)和結(jié)論。
(2)等腰三角形的性質(zhì)定理的內(nèi)容是什么?并檢驗它的逆命題是否為真命題?
啟發(fā)學(xué)生用自己的語言敘述上述結(jié)論,教師稍加整理后給出規(guī)范敘述:
1、定理:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等。
(簡稱“等角對等邊”)。
由學(xué)生說出已知、求證,使學(xué)生進一步熟悉文字轉(zhuǎn)化為數(shù)學(xué)語言的方法。
已知:如圖,△ABC中,∠B=∠C.
求證:AB=AC.
教師可引導(dǎo)學(xué)生分析:
聯(lián)想證有關(guān)線段相等的知識知道,先需構(gòu)成以AB、AC為對應(yīng)邊的全等三角形。因為已知∠B=∠C,沒有對應(yīng)相等邊,所以需添輔助線為兩個三角形的公共邊,因此輔助線應(yīng)從A點引起。再讓學(xué)生回想等腰三角形中常添的輔助線,學(xué)生可找出作∠BAC的平分線AD或作BC邊上的高AD等證三角形全等的不同方法,從而推出AB=AC.
注意:(1)要弄清判定定理的條件和結(jié)論,不要與性質(zhì)定理混淆。
(2)不能說“一個三角形兩底角相等,那么兩腰邊相等”,因為還未判定它是一個等腰三角形。
(3)判定定理得到的結(jié)論是三角形是等腰三角形,性質(zhì)定理是已知三角形是等腰三角形,得到邊邊和角角關(guān)系。
2、推論1:三個角都相等的三角形是等邊三角形。
推論2:有一個角等于60°的等腰三角形是等邊三角形。
要讓學(xué)生自己推證這兩條推論。
小結(jié):證明三角形是等腰三角形的方法:①等腰三角形定義;②等腰三角形判定定理。
證明三角形是等邊三角形的方法:①等邊三角形定義;②推論1;③推論2.
3、應(yīng)用舉例
例1.求證:如果三角形一個外角的平分線平行于三角形的一邊,那么這個三角形是等腰三角形。
分析:讓學(xué)生畫圖,寫出已知求證,啟發(fā)學(xué)生遇到已知中有外角時,常常考慮應(yīng)用外角的兩個特性①它與相鄰的內(nèi)角互補;②它等于與它不相鄰的兩個內(nèi)角的和。要證AB=AC,可先證明∠B=∠C,因為已知∠1=∠2,所以可以設(shè)法找出∠B、∠C與∠1、∠2的關(guān)系。
已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.
求證:AB=AC.
證明:(略)由學(xué)生板演即可。
補充例題:(投影展示)
1、已知:如圖,AB=AD,∠B=∠D.
求證:CB=CD.
分析:解具體問題時要突出邊角轉(zhuǎn)換環(huán)節(jié),要證CB=CD,需構(gòu)造一個以 CB、CD為腰的等腰三角形,連結(jié)BD,需證∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可證∠ABD=∠ADB,從而證得∠CDB=∠CBD,推出CB=CD.
證明:連結(jié)BD,在 中, (已知)
(等邊對等角)
(已知)
即
(等教對等邊)
小結(jié):求線段相等一般在三角形中求解,添加適當?shù)妮o助線構(gòu)造三角形,找出邊角關(guān)系。
2、已知,在 中, 的平分線與 的外角平分線交于D,過D作DE//BC交AC與F,交AB于E,求證:EF=BE-CF.
分析:對于三個線段間關(guān)系,盡量轉(zhuǎn)化為等量關(guān)系,由于本題有兩個角平分線和平行線,可以通過角找邊的關(guān)系,BE=DE,DF=CF即可證明結(jié)論。
三角形的特性的教案 篇5
教學(xué)內(nèi)容:
教材第62頁的內(nèi)容及第66頁練習(xí)十五的第68題。
教學(xué)目標:
1、知道兩點間距離的意義,明白兩點之間線段最短的道理。
2、通過操作、觀察,發(fā)現(xiàn)三角形三邊之間的關(guān)系:三角形任意兩邊之和大于第三邊。
3、掌握判斷三條線段是否構(gòu)成一個三角形的方法,并能解決有關(guān)的問題。
4、提高學(xué)生邏輯思維能力,以及培養(yǎng)學(xué)生猜想驗證總結(jié)的學(xué)習(xí)習(xí)慣。
教學(xué)重點:
知道兩點間距離的意義,明白兩點之間線段最短的道理。
教學(xué)難點:
通過操作、觀察,發(fā)現(xiàn)三角形三邊之間的關(guān)系:三角形任意兩邊之和大于第三邊。
教具學(xué)具:
多媒體課件、剪刀、白紙。
教學(xué)過程:
一、情境導(dǎo)入
課件出示教材第62頁例3.
師:老師給大家介紹一位新朋友小明。他正從家里出發(fā)去學(xué)校。觀察情景圖說一說,從小明家到學(xué)校有幾條路線?分別是怎么走的?
生:從小明家到學(xué)校有3條路可走。
第一條:家郵局學(xué)校第二條:家學(xué)校
第三條:家商店學(xué)校
師:哪條路最近?
生:家學(xué)校的路最近。
師:為什么家學(xué)校的路最近?
二、自主探究
1、體驗兩點間的距離的意義。
師:為什么大家認為中間這條路最近?
生1:因為第一條和第三條路線拐彎了,繞遠路,所以中間這條最近。
生2:我生活中這樣走過,中間的這條路線最短。
生3:我在課本的圖中通過測量得出中間的這條路線最近。
師:家、郵局、學(xué)校,我們可以看作三個點,你能發(fā)現(xiàn)它們構(gòu)成了一個什么圖形嗎?
生:觀察情境圖我們可以發(fā)現(xiàn)家郵局學(xué)校可以看成一個三角形,其中家到郵局的距離+郵局到學(xué)校的距離>家到學(xué)校的距離。
師:家商店學(xué)校呢?
生:家商店學(xué)校也可以看成一個三角形,家到商店的距離+商店到學(xué)校的距離>家到學(xué)校的距離。
師:通過上面的觀察,你能得出什么結(jié)論?
三角形的特性的教案 篇6
教學(xué)內(nèi)容:
教科書第80、81頁,練習(xí)十四第l、2、3題。
教學(xué)目標:
1.通過動手操作和觀察比較,使學(xué)生認識三角形,知道三角
形的特性及三角形高和底的含義,會在三角形內(nèi)畫高。
2.通過實驗,使學(xué)生知道三角形的穩(wěn)定性及其在生活中的應(yīng)用。
3.培養(yǎng)學(xué)生觀察、操作的能力和應(yīng)用數(shù)學(xué)知識解決實際問題的能力。
教學(xué)重點:
認識三角形,知道三角形的特性及三角形高和底的含義,會在三角形內(nèi)畫高。
教學(xué)難點:
會在三角形內(nèi)三條邊上畫高。
教具、學(xué)具準備:
教師準備木條(或硬紙條)釘成的三角形和四邊形。學(xué)生準備三角尺。
教學(xué)過程:
一、聯(lián)系生活,情境導(dǎo)人
1.展示課本第80頁情境圖:同學(xué)們,我們以前學(xué)過三角形,仔細觀察一下圖上什么圖形最多?
2.課件出示生活中哪些物體上也有三角形?
3.導(dǎo)入課題:其實三角形在我們的生活中有著廣泛的運用,究竟它有什么特點?這節(jié)課我們將對它進行深入的研究。
板書課題:三角形的特性
二、操作感知,理解概念
1.發(fā)現(xiàn)三角形的特征。
請你畫出一個自己喜愛的三角形。并小組說一說三角形有幾個頂點、幾條邊、幾個角?
教師根據(jù)學(xué)生的匯報,出示三角形各部分的名稱。(課件展示)
2.概括三角形的定義。
引導(dǎo):大家對三角形有了一定的了解,能不能用自己
的話概括一下,什么樣的圖形叫三角形?
三條線段圍成的封閉圖形(每相鄰兩條線段的端點相連)叫三角形。
3.練習(xí)請學(xué)生對照上面的說法,議一議:下面的圖形是不是三角形?(課件出示)并且你認為三角形的定義中哪些詞最重要?
組織學(xué)生在討論中理解“三條線段”“圍成”。
4.用字母表示三角形
為了表達方便,用字母A、B、C分別表示三角形的三個頂點,上面的三角形可以表示成三角形ABC。
5.認識三角形的底和高。
(1)應(yīng)用課件聯(lián)系生活實際進行展示得出以下結(jié)論
從三角形的一個頂點到它的對邊做一條垂線,頂點和垂足之間的線段叫做三角形的高,這條對邊叫做三角形的底。
(2)明確:三角形有幾個底,每個底邊對應(yīng)的頂點在哪里(學(xué)生依次指出來),從哪里向哪里作高,這條高是誰的高?并提問:三角形共有幾條高?
(3)課件展示如何畫高。
(4)學(xué)生練習(xí)畫高。
三、實驗解疑,探索特性
1.提出問題。
同學(xué)們,在生活中三角形有著廣泛的運用,仔細觀察你能發(fā)現(xiàn)什么?生產(chǎn)、生活中為什么要把這些部分做成三角形的,它具有什么特性?為了解決這個問題我們來做個實驗吧。
2.實驗解疑。
拿出預(yù)先做好的三角形和四邊形,讓學(xué)生拉一拉,有什么發(fā)現(xiàn)?
實驗結(jié)果:三角形具有穩(wěn)定性。
3.請學(xué)生舉出生活中應(yīng)用三角形穩(wěn)定性的例子。
四、鞏固運用,提高認識
指導(dǎo)學(xué)生完成練習(xí)
五、總結(jié)評價,質(zhì)疑問難
這節(jié)課我們學(xué)習(xí)了什么?
三角形的特性的教案 篇7
教學(xué)目標:
1.在動手操作和觀察比較的活動中,經(jīng)歷認識三角形的過程,概括三角形概念,知道三角形的特點,會在三角形內(nèi)畫高。
2.在游戲活動中,感受三角形的唯一性,從而體會三角形的穩(wěn)定性,理解三角形的基本特性。
3.知道三角形的穩(wěn)定性及其在生活中的應(yīng)用,感受數(shù)學(xué)與生活的聯(lián)系。
教學(xué)重點:
理解三角形的定義、掌握三角形的特征和三角形的穩(wěn)定性。
教學(xué)難點:
準確畫出三角形的高。
教學(xué)流程:
一、聯(lián)系生活,圖片引入。
1.多媒體出示主題圖,初步感知三角形。
2.出示三角形這一單元的結(jié)構(gòu)圖,使學(xué)生了解本單元將要學(xué)習(xí)哪些內(nèi)容,后指出本節(jié)課重點研究三角形的特性。(板書課題)。
二、理解三角形的概念和特征。
1.研學(xué)活動:(1)圖片中描出三角形。(2)用直尺畫出三角形。(3)交流概括三角形概念。
2.展學(xué)----展學(xué)預(yù)設(shè)
(1)一描:線段、首尾相連。
(2)一畫:每相鄰兩條線段的端點相連
(3)概括:結(jié)合描和畫三角形的過程,總結(jié):由3條線段圍成的圖形是三角形。
3.追問:說一說三角形有幾條邊,幾個角和幾個頂點。4.舉例:用字母A、B、C分別表示三角形的3個頂點,這個三角形就叫做△ABC。給三角形起名字。
三、掌握三角形高和底得概念,會畫三角形高。
出示研學(xué)提示,借助研學(xué)提示進行自學(xué)。
1.研學(xué)提示
(1)讀一讀、圈一圈:打開書60頁,抓關(guān)鍵詞理解三角形高和底的概念。
(2)畫一畫、說一說:嘗試給自己畫出的三角形作一條高,和同桌說你的畫法。
(3)想一想一個三角形可以畫幾條高?
2.展學(xué)----展學(xué)預(yù)設(shè)
(1)關(guān)鍵詞:頂點對邊垂線垂線段
(2)注意畫高是要用虛線,標清垂直符號相應(yīng)的高和底。
(3)不同底邊對應(yīng)的高也不一樣,三角形的底和高是相對的。
(4)當三角形中有一個直角時,以一條直角邊為底,這條底邊上的高恰好是另一條直角邊。
四、三角形的穩(wěn)定性
1.游戲研學(xué)
(1)每組同學(xué)準備了一個學(xué)具袋,里面有若干長度相同的小棒,在單雙兩號組之間展開比賽。
比賽規(guī)則:單號組的同學(xué)用3根小棒擺三角形,雙號組的同學(xué)用4根小棒擺四邊形,哪一組擺出不同形狀的圖形多,哪個小組就獲勝。
(2)請單雙兩號各出一組展學(xué)匯報。
2.展學(xué)
(1)展學(xué)預(yù)設(shè):雙號組,能拼出好多不同形狀的四邊形。因為四邊形易變形。
(2)單號組,三邊長度確定,三角形的形狀大小就都確定了。通過三角形唯一性體會其穩(wěn)定性的特性。
展示生活中的三角形圖象:電線桿、自行車。你還知道那些地方也用到了三角形的穩(wěn)定性?
板書設(shè)計:
三角形的特性
三角形的課件教案(精選10篇)
老師每一堂課都需要一份完整教學(xué)課件,所以在寫的時候老師們就要花點時間咯。?教案課件的工作是新老師提高教學(xué)技能和水平的基礎(chǔ),如何才算是寫好一份教案課件呢?三角形的課件教案是幼兒教師教育網(wǎng)小編為您準備的一些與您需要相關(guān)的內(nèi)容,希望您分享本頁內(nèi)容與您朋友!
三角形的課件教案【篇1】
尊敬的各位評委,各位老師:
大家好!今天我說課的內(nèi)容是人教版義務(wù)教育課程標準實驗教材數(shù)學(xué)四年級下冊85頁內(nèi)容《三角形的內(nèi)角和》。
一、教材分析
新課標把三角形的內(nèi)角和作為第二學(xué)段中三角形的一個重要組成部分。本課是安排在三角形的特性及分類之后進行的,它是學(xué)生以后學(xué)習(xí)多邊形的內(nèi)角和及解決其它實際問題的基礎(chǔ)。教材所呈現(xiàn)的內(nèi)容,不但重視體現(xiàn)知識的形成過程,而且注意留給學(xué)生充分進行自主探索和交流的空間,安排了量一量、算一算和剪一剪、拼一拼兩個實驗操作活動,意圖使學(xué)生在動手操作、合作交流中發(fā)現(xiàn)并形成結(jié)論。
二、學(xué)情分析
1、通過前面的學(xué)習(xí),學(xué)生已經(jīng)掌握了三角形的一些基礎(chǔ)知識,會用工具量角、畫角,具備了探索三角形內(nèi)角和的知識與技能基礎(chǔ)。
2、學(xué)生的生活經(jīng)驗是可利用的教學(xué)資源。我在課前了解到,已經(jīng)有不少學(xué)生知道了三角形內(nèi)角和是180度,,但卻不知道怎樣才能得出這個結(jié)論,因此學(xué)生在這節(jié)課上的主要目標是驗證三角形的內(nèi)角和是180度。
三、教學(xué)目標
基于以上對教材的分析以及對學(xué)生情況的思考,我從知識與技能,過程與方法,情感態(tài)度價值觀三方面擬定了本節(jié)課的教學(xué)目標:
1、通過"量一量","算一算","拼一拼","折一折"的方法,讓學(xué)生推理歸納出三角形內(nèi)角和是180°,并能應(yīng)用這一知識解決一些簡單問題。
2、通過把三角形的內(nèi)角和轉(zhuǎn)化為平角進行探究實驗,滲透"轉(zhuǎn)化"的數(shù)學(xué)思想。
3、通過數(shù)學(xué)活動使學(xué)生獲得成功的體驗,增強自信心,培養(yǎng)學(xué)生的創(chuàng)新意識,探索精神和實踐能力。
教學(xué)重難點:理解并掌握三角形的內(nèi)角和是180度這一結(jié)論。
四、教學(xué)準備:
教具:多媒體課件,
學(xué)具:各類三角形、長方形、量角器、活動記錄表等。
五、教法和學(xué)法
“三角形的內(nèi)角和”一課,知識與技能目標并不難,但我認為本節(jié)課更重要的是通過自主探索與合作交流使學(xué)生經(jīng)歷知識的形成過程,領(lǐng)悟轉(zhuǎn)化思想在解決問題中的應(yīng)用,以及在探索過程中,培養(yǎng)學(xué)生實事求是、敢于質(zhì)疑的科學(xué)態(tài)度,同時,在不同方法的交流中,開拓思維、提升能力。基于以上理念,本節(jié)課,我準備引導(dǎo)學(xué)生采用自主探究、動手操作、猜想驗證、合作交流的學(xué)習(xí)方法,并在教學(xué)過程中談話激疑,引導(dǎo)探究;組織討論,適時地啟發(fā)幫助。使教法和學(xué)法和諧統(tǒng)一在“以學(xué)生的發(fā)展為本”這一教育目標之中。
六、教學(xué)過程
本節(jié)課,我遵循“學(xué)生主動和教師指導(dǎo)相統(tǒng)一,問題主線和活動主軸相統(tǒng)一”的原則,制定了以下教學(xué)程序:
(一)創(chuàng)設(shè)情境,激發(fā)興趣
“興趣是最好的老師”。開課伊始我利用課件動態(tài)演示一只蝴蝶在把一條繩子圍成不同的三角形。讓學(xué)生觀察在圍的過程中,什么變了?什么沒變?讓學(xué)生在變與不變的觀察與對比中,激發(fā)學(xué)生的學(xué)習(xí)興趣,引出本節(jié)課的學(xué)習(xí)內(nèi)容(板書:三角形的內(nèi)角和),為后面的探索奠定基礎(chǔ)。
【設(shè)計意圖:以問題情境為出發(fā)點,既豐富了學(xué)生的感官認識,又激發(fā)了學(xué)生的學(xué)習(xí)熱情。】
(二)動手操作,探索新知
本環(huán)節(jié)是學(xué)生獲取知識、提高能力的一個重要過程。我有目的、有意識的引導(dǎo)學(xué)生主動參與實踐活動、經(jīng)歷知識的形成過程。
1、揭示“內(nèi)角”和“內(nèi)角和”的概念
明確“內(nèi)角”和“內(nèi)角和”的概念是學(xué)生進一步探究內(nèi)角和度數(shù)的前提,本環(huán)節(jié)首先請學(xué)生都拿出一個三角形,指一指三個內(nèi)角,然后讓學(xué)生談?wù)勛约簩?nèi)角和的理解,在大家交流的基礎(chǔ)上得出:三角形的內(nèi)角和就是三個內(nèi)角的度數(shù)之和。
2、猜測內(nèi)角和
牛頓曾說:“沒有大膽的猜想,就沒有偉大的發(fā)現(xiàn)!”所以我放手讓學(xué)生猜測三角形內(nèi)角和的度數(shù),由于絕大多數(shù)學(xué)生有課外知識的積累,不難說出三角形的內(nèi)角和是180度,但猜想并不等于結(jié)論,三角形的內(nèi)角和到底是不是180度?(板書:?)還要進一步的驗證。猜想——驗證是學(xué)生探究數(shù)學(xué)的有效途徑。
3、動手驗證,匯報交流
(1)介紹學(xué)具筐
由教師介紹學(xué)具筐中都有什么學(xué)習(xí)材料。
(2)生獨立思考、動手操作
因為合作交流應(yīng)建立在獨立思考的基礎(chǔ)上,所以先讓學(xué)生獨立思考:打算選用什么材料,怎樣來驗證三角形的內(nèi)角和是不是180°。然后再讓學(xué)生把想法付諸實踐。此環(huán)節(jié)會留給學(xué)生充分的思考、操作、發(fā)現(xiàn)的時間,讓學(xué)生在探索中找到證明的切入點,體驗成功。在這期間,教師走下講臺,參與學(xué)生的活動,與學(xué)生一起尋找驗證的方法,對有困難的學(xué)生提供幫助,不放棄任何一個學(xué)生。
(3)組內(nèi)交流
經(jīng)過獨立思考和動手操作,每人都有了自己的驗證方法,先在小組內(nèi)交流各自的驗證方法。
(4)全班匯報交流。
在足夠的交流之后,開始進入全班匯報展示過程,達到智慧共享的目的。學(xué)生可能會出現(xiàn)以下幾種方法:
A、測量方法
活動記錄表
三角形的形狀每個內(nèi)角的度數(shù)三個內(nèi)角和
∠1∠2∠3
這個驗證方法應(yīng)是大多數(shù)學(xué)生都能想到的,在交流匯報結(jié)果時會發(fā)現(xiàn)答案不統(tǒng)一,可能會出現(xiàn)大于180度、等于180度或小于180度不同的結(jié)果。此時學(xué)生會在心中產(chǎn)生更大的疑惑,“三角形的內(nèi)角和到底是多少度?誰的答案正確呢?”在這里教師要抓住契機,肯定學(xué)生實事求是的態(tài)度和質(zhì)疑的精神,把這一問題拋給學(xué)生,再次激起學(xué)生的探究熱情,強烈的求知欲和好勝心讓學(xué)生躍躍欲試,讓學(xué)生充分發(fā)表觀點,最終使學(xué)生認識到測量法會有誤差,看來僅用一種測量的方法來驗證只能得到三角形的內(nèi)角和在180°左右,到底是不是180°,疑問依然存在,說服力還不夠,此時我順水推舟,讓用不同驗證方法的學(xué)生上臺匯報展示。
B、撕拼法
我認為數(shù)學(xué)課不僅是解決數(shù)學(xué)問題,更重要的是思維方式的點撥,使數(shù)學(xué)思想的種子播種在學(xué)生的頭腦中。本環(huán)節(jié)主要想實現(xiàn)向?qū)W生滲透“轉(zhuǎn)化”的數(shù)學(xué)思想的教學(xué)目標。四年級學(xué)生在以往的數(shù)學(xué)學(xué)習(xí)過程中都積累了不少“轉(zhuǎn)化”的體驗,但這種體驗基本上處于無意識的狀態(tài),只有合理呈現(xiàn)學(xué)習(xí)素材,才能使學(xué)生對轉(zhuǎn)化策略形成清晰的認識。所以我請用撕拼法的同學(xué)上臺展示撕拼的過程,學(xué)生可能會撕拼不同類型的三角形,如:
此時教師適時追問:你是怎么想到把三個內(nèi)角撕下來拼成一個平角來驗證的呢?因為平角是180度,三角形的三個內(nèi)角拼在一起正好形成了一個平角,所以三角形的內(nèi)角和就是180度。教師可及時評價點撥:“你們把本不在一起的三個角,通過移動位置,把它轉(zhuǎn)化成一個平角來驗證,運用了轉(zhuǎn)化策略,真了不起?!睆亩箤W(xué)生清晰的感受到數(shù)學(xué)學(xué)習(xí)就是把新知轉(zhuǎn)化成舊知的過程。
C、其它方法
除了以上兩種驗證方法外,學(xué)生可能還會出現(xiàn)不同的驗證方法,比如折一折的方法,把三個完全相同的三角形用不同的三個內(nèi)角拼成一個平角來驗證的方法,例圖:
如果學(xué)生出現(xiàn)用長方形剪成兩個完全相同的直角三角形或把兩個完全相同的直角三角形拼成長方形來驗證的方法,例圖:
教師可追問:“這種方法只能證明哪一類的三角形呢?”使學(xué)生明白,這種驗證方法有局限性,只能證明直角三角形的內(nèi)角和是180°。然后教師引導(dǎo)學(xué)生歸納出這些不同方法都有異曲同工之妙,就是都運用了轉(zhuǎn)化的策略,讓學(xué)生在不知不覺中進一步感悟轉(zhuǎn)化在數(shù)學(xué)學(xué)習(xí)中的重要作用。通過各種方法的展示交流,學(xué)生對三角形內(nèi)角和是不是180度的疑問已經(jīng)消除,所以可以把“?”改成“?!?/p>
【設(shè)計意圖:《標準》指出:“教師應(yīng)激發(fā)學(xué)生的積極性,向?qū)W生提供充分從事數(shù)學(xué)活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學(xué)知識與技能、數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動經(jīng)驗?!痹诮虒W(xué)設(shè)計中我注意體現(xiàn)這一理念,允許學(xué)生根據(jù)已有的知識經(jīng)驗進行猜測,在猜測后先獨立思考驗證的方法,再進行小組交流。給學(xué)生充分的活動時間和空間,讓學(xué)生動手操作,使學(xué)生在量、剪、拼、折等一系列實驗活動中理解和掌握三角形內(nèi)角和是180°這個圖形性質(zhì)。在探索活動中,使學(xué)生學(xué)會與他人合作,同時也使學(xué)生學(xué)到了怎樣由已知探索未知的思維方式與方法,培養(yǎng)他們主動探索的精神,讓學(xué)生在活動中學(xué)習(xí),在活動中發(fā)展。】
4、科學(xué)驗證方法
數(shù)學(xué)是一門嚴謹?shù)膶W(xué)科,數(shù)學(xué)結(jié)論的得出必須經(jīng)過嚴格的證明。那如何科學(xué)地驗證三角形內(nèi)角和是不是180°呢?用課件動態(tài)演示科學(xué)家的驗證方法。
【設(shè)計意圖:一方面使學(xué)生為自己猜想的結(jié)論能被證明而產(chǎn)生滿足感;另一方面使學(xué)生體會到數(shù)學(xué)是嚴謹?shù)模瑥男【蛻?yīng)該讓學(xué)生養(yǎng)成嚴謹、認真、實事求是的學(xué)習(xí)態(tài)度?!?/p>
(三)課外拓展,積淀文化
為了使學(xué)生在獲得數(shù)學(xué)知識的同時積淀數(shù)學(xué)文化,用課件介紹最早發(fā)現(xiàn)三角形內(nèi)角和秘密的法國科學(xué)家帕斯卡(課件)讓學(xué)生交流:聽了這個故事,你想說什么?在學(xué)生交流的基礎(chǔ)上,教師抓住契機,及時鼓勵學(xué)生:這節(jié)課才10歲的我們利用自己的智慧發(fā)現(xiàn)了帕斯卡12歲時數(shù)學(xué)發(fā)現(xiàn),我們同樣了不起,劉老師為大家感到驕傲?。ò鍟海。┻@個感嘆號不僅表示教師對學(xué)生的贊嘆,更是學(xué)生對自我的一種肯定,獲得成功的自豪感。
【設(shè)計意圖:適當?shù)囊胝n外知識,它既可以激發(fā)學(xué)生的學(xué)習(xí)興趣,又有機的滲透了向帕斯卡學(xué)習(xí),做一個善于思考、善于發(fā)現(xiàn)的孩子,對學(xué)生的情感、態(tài)度、價值觀的形成與發(fā)展能起到了潛移默化的作用。】
(四)應(yīng)用新知,解決問題
數(shù)學(xué)規(guī)律的形成與深化,不僅靠感知,還要輔以靈活、有趣、有層次的課堂訓(xùn)練,以達到練習(xí)的有效性。對此,我設(shè)計了三個層次的練習(xí):
1、把兩個小三角形拼成一起,大三形的內(nèi)角和是多少度?為什么?
【設(shè)計意圖:通過兩個三角形分與合的過程,讓學(xué)生進一步理解三角形內(nèi)角和等于180度這個結(jié)論,認識到三角形的內(nèi)角和不因三角形的大小而改變?!?/p>
2、想一想,做一做
在一個三角形ABC中,已知∠A═45°,∠B═85,求∠с的度數(shù)。
在一個直角三角形中,已知∠с═52,求∠A的度數(shù)。
爸爸給小紅買了一個等腰三角形的風箏。它的一個底角是70°,它的頂角是多少度?
【設(shè)計意圖:將三角形內(nèi)角和知識與三角形特征結(jié)合起來,引導(dǎo)學(xué)生綜合運用內(nèi)角和知識和直角三角形、等腰三角形等圖形特征求三角形內(nèi)角的度數(shù)。】
3、思考:
你能畫出一個有兩個直角或兩個鈍角的三角形嗎?為什么?
【設(shè)計意圖:將三角形內(nèi)角和知識與三角形的分類知識結(jié)合起來,引導(dǎo)學(xué)生運用三角形內(nèi)角和的知識去解釋直角三角形、鈍角三角形中角的特征,較好地溝通了知識之間的聯(lián)系?!?/p>
(五)全課小結(jié),完善新知
你在這堂課中有什么收獲?
【設(shè)計意圖:這樣用談話的方式進行總結(jié),不僅總結(jié)了所學(xué)知識技能,還體現(xiàn)了學(xué)法的指導(dǎo),增強了情感體驗。】
板書設(shè)計:
三角形的內(nèi)角和180°
三角形的形狀每個內(nèi)角的度數(shù)三個內(nèi)角和
∠1∠2∠3
總之,本節(jié)課我力圖引導(dǎo)學(xué)生通過自主探究、合作交流,讓學(xué)生充分經(jīng)歷一個知識的學(xué)習(xí)過程,讓學(xué)生學(xué)會數(shù)學(xué)、會學(xué)數(shù)學(xué)、愛學(xué)數(shù)學(xué)。在教學(xué)中,隨時會生成一些新教學(xué)資源,課堂的生成一定大于課前預(yù)設(shè),我將及時調(diào)整我的預(yù)案,以達到最佳的教學(xué)效果。
教學(xué)特色:
本節(jié)課我努力體現(xiàn)以下2個教學(xué)特色:
1、引導(dǎo)學(xué)生自主探索,激發(fā)學(xué)生的學(xué)習(xí)興趣,體現(xiàn)以學(xué)生的發(fā)展為本的教學(xué)理念。
強化學(xué)生探究學(xué)習(xí)的心理體驗,把數(shù)學(xué)學(xué)習(xí)和情感態(tài)度的發(fā)展有機的結(jié)合起來。
三角形的課件教案【篇2】
微課作品介紹本微課是蘇教版小學(xué)數(shù)學(xué)四年級下冊《三角形內(nèi)角和》的課前先學(xué)指導(dǎo),學(xué)生在家觀看視頻內(nèi)容,同時結(jié)合學(xué)習(xí)任務(wù)單,在視頻的指導(dǎo)下通過猜、量、算、剪、拼等方法探索三角形的內(nèi)角和是180度。學(xué)生在課前利用視頻完成學(xué)習(xí)任務(wù)單,然后到學(xué)校課堂中和老師、同學(xué)進行交流,再進一步提升。
教學(xué)需求分析適用對象分析該微課的適用對象是蘇教版四年級下學(xué)期的小學(xué)生,學(xué)生應(yīng)認識三角形的基本特征,學(xué)習(xí)過角和角的度量,知道平角是180度。具備了一定的動手操作能力和數(shù)學(xué)思維能力。
學(xué)習(xí)內(nèi)容分析該微課讓學(xué)生發(fā)現(xiàn)、驗證三角形的內(nèi)角和是180度的結(jié)論。這部分內(nèi)容是在學(xué)生認識了三角形的基本特征和三邊的關(guān)系后,三角形分類前學(xué)習(xí)的。這在蘇教版中和原來的教材不同,放在這里是因為三角形內(nèi)角和是學(xué)生進一步學(xué)習(xí)和探究三角形分類方法的重要前提。學(xué)生知道了三角形的內(nèi)角和是180度,對三角形分類及命名的方法,才能知其然,還能知其所以然。
教學(xué)目標分析:
1、通過學(xué)生的實際操作,理解并驗證三角形的內(nèi)角和等于180°,并能夠運用結(jié)論解決簡單的實際問題;
2、使學(xué)生通過觀察、實驗,經(jīng)歷猜想與驗證三角形內(nèi)角和的探索過程,在活動中發(fā)展學(xué)生的空間觀念和推理能力。
3、已經(jīng)有不少學(xué)生知道了三角形內(nèi)角和是180度,,但卻不知道怎樣才能得出這個結(jié)論,因此學(xué)生在學(xué)習(xí)時的主要目標是驗證三角形的內(nèi)角和是180度。
教學(xué)過程設(shè)計本微課教學(xué)過程:
一、明確多邊形的內(nèi)角、內(nèi)角和概念。
首先要明確概念,才好繼續(xù)研究。內(nèi)角、內(nèi)角和以前學(xué)生沒有學(xué)過,還是有必要給學(xué)生明確的。
二、探索三角尺的內(nèi)角和,猜想三角形的內(nèi)角和。
從學(xué)生熟悉的三角板開始計算三角板的內(nèi)角和,引發(fā)學(xué)生猜想,三角形的內(nèi)角和是多少。
三、驗證三角形內(nèi)角和是否為180°。
驗證分為三個層次:首先是量教材提供的三角形,算出內(nèi)角和,可能會有誤差。其次把三角形三個內(nèi)角拼在一起,拼成是平角180度。最后自己任意畫一個三角形剪下來,拼一拼,得出結(jié)論。讓學(xué)生經(jīng)歷由特殊到一般的認知過程。
四、拓展延伸,探究梯形、平行四邊形和六邊形內(nèi)角和。
由三角形的內(nèi)角和,學(xué)生自然就會想到已學(xué)過的梯形、平行四邊形和六邊形內(nèi)角和是多少呢。教師留下問題讓學(xué)有余力的學(xué)生進一步去探索。
五、自主學(xué)習(xí)檢測
學(xué)生觀看完了視頻是否學(xué)會了,是需要檢測的。學(xué)生通過做完自主檢測后進行校對,檢驗自己所學(xué)。
學(xué)習(xí)指導(dǎo)本微視頻應(yīng)配合下面的學(xué)習(xí)任務(wù)單共同使用,在觀看視頻時,根據(jù)視頻提示隨時暫停視頻依次完成任務(wù)單。
自主學(xué)習(xí)前準備:
請在自主學(xué)習(xí)前閱讀學(xué)習(xí)任務(wù)單的學(xué)習(xí)指南,并準備好數(shù)學(xué)書、一副三角尺、量角器、剪刀、鉛筆等學(xué)習(xí)用具。
自主學(xué)習(xí)任務(wù)單:
通過觀看教學(xué)資源自學(xué),完成下列學(xué)習(xí)任務(wù):
任務(wù)一:明確多邊形的內(nèi)角、內(nèi)角和概念
1、你認識下面的圖形嗎?他們各有幾個角,請在圖中標出來。
2、你剛才標出的角,又叫做每個圖形的()。
3、如果把一個圖形所有的內(nèi)角的度數(shù)加起來,所得的總和就是這個圖形的()。
4、你知道圖中長方形和正方形的內(nèi)角和是多少度嗎?你是怎么知道的?
長方形內(nèi)角和正方形內(nèi)角和
任務(wù)二:探索三角尺的內(nèi)角和,猜想三角形的內(nèi)角和。
1、請拿出一副三角尺,你知道每塊三角尺上各個角的度數(shù)?在圖上標出來。
2、算一算,每個三角尺3個內(nèi)角的和是多少度。
3、根據(jù)你剛才的計算結(jié)果,你能猜想一下,任意一個三角形它的內(nèi)角和的度數(shù)呢?
任務(wù)三:驗證任意三角形內(nèi)角和是否為180°
1、請從數(shù)學(xué)書本第113頁剪下3個三角形,用量角器量出每個三角形3個內(nèi)角的度數(shù)。
算一算,每個三角形3個內(nèi)角的和是多少度。
2還可以用什么辦法來驗證剪下的這3個三角形的內(nèi)角和等于180度?(把你的驗證方法展示在下面。)如果你想不出來請看下面的提示。
溫馨提示:平角正好是180°,這三個內(nèi)角能正好拼成一個平角嗎?
3、自己任意畫一個三角形,先剪下來,再拼一拼。
4、你發(fā)現(xiàn)了什么?寫在下面。
5、請你回顧一下我們研究三角形形內(nèi)角和是180度的過程?簡單的寫下來。
任務(wù)四:拓展延伸
任務(wù)一中還有梯形、平行四邊形和六邊形,如果你有興趣,你可以研究他們的內(nèi)角和。
任務(wù)五:自主學(xué)習(xí)檢測
1、右邊三角形中,∠1=75°,∠2=40°,∠3=()°
2、第3個三角形還可以怎樣計算,哪種更簡便?
3、一塊三角尺的內(nèi)角和是180°,用兩塊完全一樣的三角尺拼成一個三角形,拼成的三角形內(nèi)角和是多少度?
4、用一張長方形紙折一折,填一填
配套學(xué)習(xí)資料蘇教版小學(xué)數(shù)學(xué)四年級下冊教材
制作技術(shù)介紹CamtasiaStudio軟件制作、PPT。
三角形的課件教案【篇3】
1、通過量、剪、拼、擺等直觀操作的方法,讓學(xué)生探索并發(fā)現(xiàn)三角形內(nèi)角和等于180度。
2、在活動交流中培養(yǎng)學(xué)生合作學(xué)習(xí)的意識和能力,讓學(xué)生經(jīng)歷猜測探索總結(jié)的數(shù)學(xué)學(xué)習(xí)過程,在實驗活動中體驗探索的過程和方法。
3、通過運用三角形內(nèi)角和的性質(zhì)解決一些簡單的問題,使學(xué)生體會數(shù)學(xué)與現(xiàn)實生活的聯(lián)系,體會到數(shù)學(xué)的價值,增加學(xué)生學(xué)數(shù)學(xué)的信心和興趣。
探索發(fā)現(xiàn)三角形內(nèi)角和等于180并能應(yīng)用。
三角形內(nèi)角和是180的探索和驗證。
師:大家喜歡猜謎語嗎?
生:喜歡。
師:下面請大家猜一個謎語(大屏幕出示形狀似座山,穩(wěn)定性能堅。三竿首尾連,學(xué)問不簡單。
(打一幾何圖形))
生:三角形。
師:三角形中都有哪些學(xué)問?
生:三角形有三條邊,三個角,具有穩(wěn)定性。
生:三角形按角分,可以分成銳角三角形、直角三角形、鈍角三角形。
生:三角形按邊分,可以分成等腰三角形,不等邊三角形,其中等腰三角形又包含了兩條邊相等的三角形和等邊三角形。
生:一個三角形中最多只能有一個直角,最多只能有一個鈍角,最少有兩個銳角。
生:三角形的內(nèi)有和是180。
生:(一臉疑惑)
師:(板書:三角形的內(nèi)角和是180),你有什么疑惑? 生:什么是內(nèi)角?
生:每個三角形的內(nèi)角和都是180嗎?
(根據(jù)學(xué)生的問題,在三角形的內(nèi)角和是180后面加上一個?)
1、理解內(nèi)角 師:什么是內(nèi)角?
生:我認為三角形的內(nèi)角就是指三角形的三個角。
師:三角形的每個角都是三角形的內(nèi)角,每個三角形都有三個內(nèi)角。
2、理解內(nèi)角和。
師:那三角形的內(nèi)角和又是指什么?
生:我認為三角形的內(nèi)角和就是把三角形的三個內(nèi)角的度數(shù)加起來的和。
師:為了方便,我們將三角形的每個內(nèi)角編上序號1、2、3、我們叫它1、2、3,這三個角的度數(shù)和,就是這個三角形的內(nèi)角和。
3、實踐驗證
師:每個三角形的內(nèi)角和都是180嗎?用什么方法來驗證呢?
生:量一量每個角的度數(shù),然后加起來看看是不是180。
師:請大家拿出課前準備的三角形,親自量一量,算一算。(學(xué)生動手量一量)
師:誰愿意把你的勞動成果和大家分享一下?
生:我量的這個三角形的三個內(nèi)角的度數(shù)分別是60、60、60,加起來一共是180。
師:這位同學(xué)量的是一個銳角三角形,并且是比較特殊的三角形等邊三角形。
生:我量這個三角形的三個內(nèi)角的度數(shù)分別是45、45、90,加起來一共是180。
師:這是我們?nèi)浅咧械囊粋€,也比較特殊,是一個等腰直角三角形。
生:我量的是三角尺中的另一個,三個內(nèi)角的度數(shù)分別是60、30、90,加起來一共是180 生:我量的是鈍角三角形,三個內(nèi)角的度數(shù)分別是85、60、38,加起來一共是183。
師:你發(fā)現(xiàn)了什么?
生:有的三角形的內(nèi)角和是180,而有的三角形的內(nèi)角和卻不是180。
師:看來三角形的內(nèi)角和不一定是180。
生:老師,測量會有誤差,量出來的不是很精確,那么求出來的結(jié)果也不夠精確。雖然不都是三個內(nèi)角加起來不都是180,但都接近180。
生:都接近180就能說一定是180嗎?
師:科學(xué)來不得半點虛假,看來這個是不能讓大家信服的。那還可以用什么方法來驗證呢?下面請同學(xué)們小組合作,發(fā)揮小組成員的智慧,充分利用大家的學(xué)具進行驗證,比一比哪些組的方法富有新意,開始!
(學(xué)生在小組內(nèi)進行探索驗證。教師巡視,參與到學(xué)生的研究中)
師:請每個小組選擇一個代言人,和大家分享一下你們的智慧。
生:(邊展示邊交流)我們小組運用了折一折的方法,把三角形的三個內(nèi)角都向內(nèi)折,三個內(nèi)角就拼成了一個平角,也就是180,所以我們小組得出三角形的內(nèi)角和是180。
師:你折的只是銳角三角形,只能證明銳角三角形的內(nèi)角和是180,直角三角形,鈍角三角形是不是也是這樣的?
生:我們小組也有折的直角三角形,鈍角三角形。
(其它的成員展示不同的三角形)
師:看這個小組的同學(xué)想問題多全面呀,不僅想到了用什么方法,還想到了用不同的三角形進行驗證,老師實在是佩服你們組的智慧,讓我們把掌聲送給他們!
師:哪個小組和他們的方法不一樣?
生:我們小組把三角形的三個內(nèi)角都撕了下來,拼在了一起,正好拼成了一個平角,也就是180。我們也實驗了不同的三角形,三個內(nèi)角都可以拼成平角,所以我們小組得出結(jié)論,三角形的內(nèi)角和是180。
師:這個小組的方法簡便,易操作,很好。
生:我們小組成員是這樣想的,一個長方形有4個直角,每個直角90,那么長方形的內(nèi)角和就是360,每個長方形都可以平均分成兩個直角三角形,每個直角三角形的內(nèi)角和就是180。 師:你們小組很聰明,從長方形的內(nèi)角和聯(lián)想到直角三角形的內(nèi)角和是180,從不同的角度去思考問題,謝謝你為我們提供了這么好的方法!
4、小結(jié)
師:剛才同學(xué)們用量、折、剪、拼、計算、推理等這么多巧妙的方法得出了無論是什么樣的三角形的內(nèi)角和都是1800,你還有什么疑問嗎?
生:沒有。
師:(去掉問號)那就讓我們大聲地讀出來三角形的內(nèi)角和是1800。
1、說一說每個三角形的內(nèi)角和是多少度
師:(出示一個大三角形)這個大三角形的內(nèi)角和是多少度?
生: 180
師:(出示一個小三角形)這個小三角形的內(nèi)角和是多少度?
生:180
師:(演示)把這兩個三角形拼在一起,拼成的大三角形的內(nèi)角和是多少度?
生:180
師:為什么每個三角形的內(nèi)角和是1800,而合起來還是180呢?另外那180去哪兒了?
生:把兩個三角形拼成一個大三角形,兩個直角不再是大三角形的內(nèi)角,所以少了180
師:(演示)把一個大三角形分成兩個三角形,每個三角形的內(nèi)角和是多少度?
生:180
2、求下面各角的度數(shù)
師:如果老師告訴你一個三角形的兩個角的度數(shù),你能說出第三個角的度數(shù)嗎?
(出)
生:三角形內(nèi)角和是180,在第一個三角形中,用180-75-28,A=77
生:用180-90-35,C =55。
生:第二個三角形是直角三角形,B是直角,也可以直接用90-35=55。
生:第三個三角形中,用180-20-45,B=115。
3、一個等腰三角形的風箏,它的一個底角是70,它的頂角是多少度?
生:等腰三角形的兩個底角相等,所以用180-70-70 4、
師:三角形的內(nèi)角和在我們的生活中應(yīng)用很廣泛,老師給大家?guī)硪粋€在建筑中應(yīng)用的例子。
在設(shè)計這座大橋時,如果設(shè)計師將斜拉的鋼索與橋柱形成的夾角設(shè)計成了56,建筑師在造橋時怎樣才能確定鋼索與橋柱是否形成了這個角度?
生:用量角器量一量
師:量哪個角?量一量斜拉的鋼索與橋柱形成的夾角嗎?
生:橋面與橋柱形成一個直角,是90,斜拉的鋼索與橋柱形成的夾角是56,那么用180-90-56=34,就是斜拉的鋼索與橋面的夾角,所以只要讓斜拉的鋼索與橋面的夾角是34,那么斜拉的鋼索與橋柱形成的夾角就是56
師:你真是個善于觀察、善于思考的孩子,努力學(xué)習(xí),將來一定會成為一名優(yōu)秀的建筑師。
四、回顧總結(jié),拓展延伸
師:40分鐘很快就過去了,你愿意把自己的收獲與大家共同分享嗎?
生:我知道了三角形的內(nèi)角和是180。
生:無論是大三角形,還是小三角形,無論是銳角三角形,還是鈍角三角形,還是銳角三角形,內(nèi)角和都是180。
生:把一個大三角形分成兩個小三角形,每個三角形的內(nèi)角和還是180,把兩個小三角形拼成一個大三角形,大三角形的內(nèi)角和還是180。
生:我可以用撕、拼、折等方法來驗證三角形的內(nèi)角和是180。
師:這個同學(xué)不僅學(xué)會了知識,而且學(xué)會了方法,我們只有學(xué)會了方法,才能更好地去探究更多的知識。
師:那你現(xiàn)在知道為什么一個三角形內(nèi)只能有一個直角或一個鈍角嗎?
生:兩個直角的度數(shù)之和是180,再加上一個角,三個角的度數(shù)之和超過了180,所以一個三角形中最多只能有一個直角。
生:兩個鈍角的度數(shù)之和就超過了180,再加上一個角,就更大了,所以一個三角形中最多只能有一個鈍角。
師:我們學(xué)習(xí)知識,必須知其然并知其所以然。
師:三角形中還有許許多多的學(xué)問,讓我們在以后的學(xué)習(xí)中繼續(xù)去研究。
三角形的課件教案【篇4】
學(xué)習(xí)目標:
1、認識現(xiàn)實生活中物體的相似,能利用相似三角形的性質(zhì)解決一些簡單的實際問題。
2、通過把實際問題轉(zhuǎn)化成有關(guān)相似三角形的數(shù)學(xué)模型,培養(yǎng)分析問題、解決問題的能力.
學(xué)習(xí)過程:
一、創(chuàng)設(shè)情景,引入新課
1、說一說相似三角形的判定方法有哪些,相似三角形的性質(zhì)有哪些?
2、大家都知道矗立在城中的科技大樓是我們這里比較高的樓,那么科技大樓有多高呢?
我們?nèi)绾斡靡恍┖唵蔚姆椒ㄈy量出科技大樓的高度呢?
二合作交流,解讀探究
導(dǎo)入新課:閱讀課本73頁例6完成下列任務(wù):
例6中當金字塔的高度不能直接測量時,本題中構(gòu)造了_______和_______相似,且_______、________、_________是已知或能測量的。
說一說測量金字塔高度的方案并加以證明。
【學(xué)法指導(dǎo)】同一時刻太陽光是平行直線,從而得到角相等,得到相似三角形。
例7中河的寬度也是無法直接測量的,本題中構(gòu)造了_________和________相似,且_______、__________、__________是已知或能測量的。
說一說測量河的寬度的方案并加以證明。
三角形的課件教案【篇5】
今天我說課的內(nèi)容是人教版九年義務(wù)教育小學(xué)數(shù)學(xué)四年級下冊第五單元第67頁的《三角形的內(nèi)角和》。根據(jù)xxx教授的授課七步法,即說教材,說學(xué)情,說目標,說模式,說方法,說設(shè)計,說板書,我將進行本課的說課。
一、說教材
“三角形的內(nèi)角和”是新課標人教版四年級下冊第五單元第三節(jié)的內(nèi)容。本節(jié)課是在學(xué)生學(xué)過角的度量、三角形的特征和分類等知識的基礎(chǔ)上進行教學(xué)的,“三角形的內(nèi)角和”是三角形的一個重要性質(zhì),學(xué)好它有助于學(xué)生理解三角形內(nèi)角之間的關(guān)系,也是進一步學(xué)習(xí)幾何的基礎(chǔ)。
仔細分析教材的知識結(jié)構(gòu),它是分成3個部分來呈現(xiàn)的。第一部分是讓學(xué)生通過量一量、算一算,初步感知三角形的內(nèi)角和是180°;第二部分是通過拼角的實驗來探究并歸納三角形內(nèi)角和的規(guī)律,第三部分是運用規(guī)律、解決問題。教材這樣編排由發(fā)現(xiàn)問題,到驗證問題,再到運用規(guī)律,充分體現(xiàn)了知識結(jié)構(gòu)的有序性和強烈的數(shù)學(xué)建模思想,既符合四年級學(xué)生的認知規(guī)律,又突出了本課教學(xué)的重點。
二、說學(xué)情
1、通過前面的學(xué)習(xí),學(xué)生已經(jīng)掌握了三角形的一些基礎(chǔ)知識,會用工具量角、畫角,具備了探索三角形內(nèi)角和的知識與基礎(chǔ)技能。
2、學(xué)生的生活經(jīng)驗是可利用的教學(xué)資源。我在課前了解到,已經(jīng)有不少學(xué)生知道了三角形內(nèi)角和是180度,但卻不知道怎樣才能得出這個結(jié)論,因此學(xué)生在這節(jié)課上的主要目標是驗證三角形的內(nèi)角和是180度。
三、說目標
根據(jù)小學(xué)數(shù)學(xué)教學(xué)大綱對四年級學(xué)生的具體要求,結(jié)合教材特點及學(xué)生年齡特征,將本節(jié)課的目標制定為以下幾點:
認知技能:學(xué)生動手操作,在猜想后通過量、剪、拼、折的方法,探索并發(fā)現(xiàn)"三角形內(nèi)角和等于180度"的規(guī)律。
數(shù)學(xué)思考:在操作實驗中,讓學(xué)生感受圖形的轉(zhuǎn)化過程及數(shù)學(xué)建模思想,初步培養(yǎng)學(xué)生的空間思維觀念。
解決問題:在運用知識解決問題的過程中,感受所學(xué)知識的重要性,初步培養(yǎng)學(xué)生的應(yīng)用意識。
情感態(tài)度:通過各種實驗活動,激發(fā)學(xué)習(xí)興趣,體驗學(xué)習(xí)成功感,并在教學(xué)中,感受生活與數(shù)學(xué)的密切聯(lián)系。
將運用各種實驗方法探究三角形內(nèi)角和為180度的過程并掌握規(guī)律,運用規(guī)律解決實際問題確定為本節(jié)課的教學(xué)重點。而同時學(xué)生難以理解不易掌握的探究規(guī)律的全過程則是本節(jié)課的教學(xué)難點。
四、說模式
“三角形的內(nèi)角和”一課,知識與技能目標并不難,我認為本節(jié)課更重要的是通過自主探索與合作交流使學(xué)生經(jīng)歷知識的形成過程,領(lǐng)悟轉(zhuǎn)化思想在解決問題中的應(yīng)用,以及在探索過程中,培養(yǎng)學(xué)生實事求是、敢于質(zhì)疑的科學(xué)態(tài)度,同時合作交流中,開拓思維、提升能力?;谝陨侠砟?,本節(jié)課,我準備引導(dǎo)學(xué)生采用自主探究、猜想驗證、合作探究的學(xué)習(xí)模式。體現(xiàn)“以學(xué)生的發(fā)展為本”這一教育理念。
五、說方法
本節(jié)課主要是通過教師的精心引導(dǎo)和點撥,學(xué)生在小組中合作探索,通過量一量,折一折,撕一撕,畫一畫,選擇不同的一種或者幾種方法來驗證三角形的內(nèi)角和是180度。
因為《課程標準》明確指出:“要結(jié)合有關(guān)內(nèi)容的教學(xué),引導(dǎo)學(xué)生進行觀察,操作,猜想,培養(yǎng)學(xué)生初步的思維能力”。四年級學(xué)生經(jīng)過第一學(xué)段以及本單元的學(xué)習(xí),已經(jīng)掌握了三角形的分類,比較熟悉平角等有關(guān)知識;具備了初步的動手操作,主動探究的能力,他們正處于由形象思維向抽象思維過渡的階段。因此,本節(jié)課,我將重點引導(dǎo)學(xué)生從“猜測――驗證”展開學(xué)習(xí)活動,讓學(xué)生感受這種重要的數(shù)學(xué)思維方式。
六、說設(shè)計
根據(jù)我對教材的把握和對學(xué)情的了解,設(shè)計了4個環(huán)節(jié)展開教學(xué)。
一、創(chuàng)設(shè)情境,發(fā)現(xiàn)問題
小游戲:猜一猜藏在信封后面的是什么三角形。
師:我們在猜三角形的時候,看到一個直角,就能斷定它一定是直角三角形;看到一個鈍角,就能斷定他一定是鈍角三角形;但只看到一個銳角,就判斷不出來是哪種三角形??磥碓谝粋€三角形中,只能有一個直角或一個鈍角,為什么畫不出有兩個直角或兩個鈍角的三角形呢?
三角形的這三個角究竟存在什么奧秘呢,我們一起來研究研究。
(創(chuàng)設(shè)的不是生活中的情境,而是數(shù)學(xué)化的情境。有的孩子認為一個三角形中可能會有兩個鈍角,還有的提出等邊三角形中可能會有直角,這兩個問題顯現(xiàn)出學(xué)生在認知上的矛盾,學(xué)生用已經(jīng)學(xué)的三角形的特征只能解釋"不能是這樣",而不能解釋"為什么不能是這樣"。這樣引入問題恰好可以利用學(xué)生的這種認知沖突,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生在疑問與猜想中尋找驗證的方法。)
教學(xué)進入第二環(huán)節(jié)——引導(dǎo)探究
二、動手操作,探究規(guī)律
1.介紹內(nèi)角、內(nèi)角和,并提出猜想
師:我們現(xiàn)在研究三角形的三個角,都是它的內(nèi)角。
課件演示:三角形的三個內(nèi)角
師:今天我們就來一起探究《三角形的內(nèi)角和》。猜一猜其它三角形的內(nèi)角和是多少度呢?同桌互相說說自己的看法。
2.確定研究范圍
師:研究三角形的內(nèi)角和,是不是應(yīng)該包括所有的三角形?只研究黑板上這一個行不行?那就隨便畫,挨個研究吧。(學(xué)生反對)
請你想個辦法吧!
(通過引導(dǎo)學(xué)生分析,"研究哪幾類三角形,就能代表所有的三角形"這個問題,來滲透研究問題要全面,也就是完全歸納法的數(shù)學(xué)思想)
3.建立模型,解決問題
(一)測量法:
(1)學(xué)生自然想到要量出三角形每個角的度數(shù)就能夠求出三角形的內(nèi)角和,從而證明三角形的內(nèi)角和與三角形的大小和形狀沒有關(guān)系都接近180度。
(2)教師要組織學(xué)生進行小組合作每人用量角器量出一種三角形(銳角三角形、鈍角三角形、直角三角形)的三個內(nèi)角并計算出它們的總和是多少?
(3)記錄小組測量結(jié)果及討論結(jié)果
實驗名稱三角形內(nèi)角和
實驗?zāi)康奶骄咳切蝺?nèi)角和是多少度。
實驗材料尺子剪刀量角器銳角三角形紙片直角三角形紙片鈍角三角形紙片
方法一三角形的形狀每個內(nèi)角的度數(shù)三個內(nèi)角的
方法二
我的發(fā)現(xiàn)
(4)學(xué)生匯報量的方法,師請同學(xué)評價這種方法。
師小結(jié):直接量的方法挺好,雖然測量有誤差,不準,但我們能知道,三角形的內(nèi)角和只能在180°左右,究竟是不是一定就是180度呢,誰還有別的方法?
(二)剪拼法
學(xué)生匯報后師小結(jié):能想到這個方法不簡單,拼成的看起來像平角,到底是不是平角呢,我們一起來試試看。(教師和學(xué)生剪一剪、拼一拼)
師:把三角形的三個內(nèi)角湊到了一起,拼成了一個大角,角的兩條邊是不是在一條直線上呢?看起來挺象的,但在操作的過程中難免會產(chǎn)生誤差,有時會差一點點,誰還有別的方法確定三角形的內(nèi)角和一定是180°?
(三)折拼法
學(xué)生匯報后師小結(jié):我們要研究三角形的內(nèi)角和,實際上就是想辦法把三角形的三個內(nèi)角湊到一起,像剪和折的方法,看三個內(nèi)角拼到一起是不是180度,都是借助我們學(xué)過的平角解決的問題。
這三種方法都不錯,在操作的過程中,有時會有誤差,不太有說服力。想一想,你還能不能借助我們學(xué)過的哪種圖形,想辦法說明三角形的內(nèi)角和一定是180度?
(四)演繹推理法
(借助學(xué)過的長方形,把一個長方形沿對角線分成兩個三角形。)
師:你認為這種方法好不好?我們看看是不是這么回事。
(演示課件:兩個完全相同的三角形內(nèi)角和等于360°,一個三角形內(nèi)角和等于180°)
師小結(jié):這種方法避免了在剪拼過程中由于操作出現(xiàn)的誤差,非常準確的說明了三角形的內(nèi)角和一定是180度。
(學(xué)生通過小組合作的方式學(xué)到方法,分享經(jīng)驗,更重要的是領(lǐng)悟到科學(xué)研究問題的方法。就學(xué)生的發(fā)展而言,探究的過程比探究獲得的結(jié)論更有價值。)
學(xué)生用的方法會非常多,但它們的思維水平是不平行的。
直接測量法是學(xué)生利用已有的知識,測量出每個角的度數(shù),再用加法求和;
拼角求和法,也就是間接剪拼和折拼這兩種方法,都是通過拼成一個特殊角,也就是平角來解決問題;
而演繹推理法,即把兩個完全相同的三角形合二為一,或把長方形一分為二,成為兩個三角形,這是更深層次的思考。
前兩種方法是不完全歸納法,能使我們確定研究的范圍只能是180度左右,而不可能是其他任意猜想的度數(shù)。最后一種方法具有演繹推理的色彩,把一個長方形沿對角線分成兩個完全相同的三角形后,因為兩個三角形的內(nèi)角和是原來長方形的四個內(nèi)角之和360度,所以一個三角形的內(nèi)角和就是360°÷2=180°,這種方法從科學(xué)證明的角度闡述了三角形的內(nèi)角和,它有嚴密性和精確性。
本節(jié)課引導(dǎo)學(xué)生經(jīng)歷從直觀到抽象、思維程度從低到高的過程,感悟數(shù)學(xué)的嚴謹性。讓學(xué)生在經(jīng)歷量和拼之后,逐漸會在思維發(fā)散的過程中得到集中,集中為分的方法,最后將四邊形一分為二,五邊形一分為三,六邊形一分為四……,又會發(fā)現(xiàn)一些新的規(guī)律?!?/p>
4.驗證猜想"三角形的內(nèi)角和是180度"
5.進一步感受
(1)三角形內(nèi)角和與三角形大小的關(guān)系
教師出示一個小三角形,問學(xué)生內(nèi)角和是多少度?再出示一個大的等腰三角形,問學(xué)生它的內(nèi)角和是多少度?把這個大三角形平均分成兩份,每份內(nèi)角和是多少度?你有什么發(fā)現(xiàn)嗎?
(2)三角形內(nèi)角和與三角形形狀的關(guān)系
(演示不斷變化的三角形。)仔細觀察,在這個過程中,什么變化了?什么沒變化?(三個角的度數(shù)都在變化,內(nèi)角和卻總是不變的)你有什么新發(fā)現(xiàn)嗎?
如果老師把一個角一直往下拽,猜一猜會怎樣?
(通過變化的三角形和三個內(nèi)角的數(shù)據(jù)顯示,進一步感受三角形的內(nèi)角和與三角形的形狀、大小都沒有關(guān)系;當把三角形的一個角一直向下拽,這個角變成了一個180度的平角,另外兩個角變成了0度角,雖然已經(jīng)不再是三角形,也能從一個側(cè)面證明三角形的內(nèi)角和是180度,使學(xué)生感受到極限的思維方法。)
6.解釋課前問題
用內(nèi)角和的知識解釋課前的問題,為什么在三角形中不能有兩個直角或鈍角。
三、拓展應(yīng)用,深化創(chuàng)新
本節(jié)課的練習(xí)由易到難,設(shè)計成三個層次。
1、基本練習(xí)形成技能
2、變式練習(xí)鞏固技能
3、綜合練習(xí)發(fā)展提高技能
介紹科學(xué)家帕斯卡(出示帕斯卡的資料)
師:帕斯卡為科學(xué)作出了巨大的貢獻,在我們以后學(xué)習(xí)的知識中,也有很多是帕斯卡發(fā)現(xiàn)和驗證的,他12歲就發(fā)現(xiàn)三角形內(nèi)角和是180度,我們同學(xué)還沒到12歲,看你能不能通過自己的努力也去探索和發(fā)現(xiàn)。
多邊形邊形內(nèi)角和
(設(shè)計求多邊形的內(nèi)角和,旨在把新問題轉(zhuǎn)化歸結(jié)為求幾個三角形內(nèi)角和的問題上,滲透化歸的數(shù)學(xué)學(xué)習(xí)方法。)
四、總結(jié)全課,全面提升
我們用三角形內(nèi)角和的知識知道了六邊形內(nèi)角和,那么五邊形、七邊形……這些多邊形的內(nèi)角和是多少度?有沒有什么規(guī)律可循,你能用學(xué)到的知識和方法去探究問題,相信你還會有一些精彩的發(fā)現(xiàn)。
七、說設(shè)計
三角形的內(nèi)角和是180度。
轉(zhuǎn)化的思想:量、撕、剪、折、拼
三角形的課件教案【篇6】
教學(xué)內(nèi)容:
義務(wù)教育課程標準實驗教科書數(shù)學(xué)四年級下冊80~81頁的例1、例2
教學(xué)目標:
1、通過動手操作和觀察比較,使學(xué)生認識三角形,知道三角形的特性及三角形的高和底的含義,會在三角形內(nèi)畫高。
2、培養(yǎng)學(xué)生觀察、操作、自學(xué)的能力和應(yīng)用數(shù)學(xué)知識解決實際問題的能力。
3、體驗數(shù)學(xué)和生活的聯(lián)系,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)重點:
1、理解三角形的特性。
2、在三角形內(nèi)畫高。
教學(xué)難點:
理解三角形高和底的含義,會在三角形內(nèi)畫高。
教學(xué)準備:
多媒體課件、投影。
教學(xué)過程:
一、談話引入。
師:我們學(xué)過哪些平面圖形?
師:說一說你對三角形有哪些認識?
師:同學(xué)們對三角形已經(jīng)有了初步的了解,這節(jié)課我們繼續(xù)研究和三角形有關(guān)的知識。
(板書課題:三角形的特性)
二、探究新知。
1、三角形的特征。
(1)畫一畫。
師:請你在紙上畫一個自己喜歡的三角形。并和同桌邊指邊說一說三角形有幾條邊?幾個角?幾個頂點?
師黑板上畫一個三角形,讓學(xué)生說出各部分的名稱師板書。(教師板書各部分名稱)
(2)擺一擺。
師:每根小棒相當于一條線段。請你動手用三根小棒擺一個三角形。
找一學(xué)生上投影前擺一擺,并說一說是怎么擺的?
(3)看一看。
老師也擺了一個三角形,課件出示。
你們有什么看法?
教師用課件演示并強調(diào):有三條線段圍成的圖形(每相鄰兩條線段的端點相連)叫做三角形。
(4)找一找。
下面圖形中是三角形的請打√,不是三角形的請打×,并說出你的理由。(學(xué)生一起用手勢表示)
2、三角形的特性。
(1)動手操作發(fā)現(xiàn)三角形的特性。
師生拿出平行四邊形框架。
師:用手拉動,說一說有什么發(fā)現(xiàn)?(容易變形,不穩(wěn)定。)
指導(dǎo)學(xué)生操作:去掉一條邊,再扣上拼組成三角形框架。
師:再拉一拉有什么感覺?
師:想一想這說明三角形具備什么特性?(穩(wěn)定性)
(2)生活中尋找三角形的特性。
師:三角形的穩(wěn)定性在生活中的用處很大,你能舉個例子嗎?
課件出示例2的主題圖,請你找出各圖中哪有三角形?說一說它們有什么作用?
3、認識三角形的底和高。
(1)情境引入。
故事引入,兩個三角形爭論誰的個高。課件出示
讓學(xué)生說一說怎樣比較這兩個三角形的高,并準備好相應(yīng)的兩個三角形學(xué)具試著讓學(xué)生前面來分別指一指它們的高,并比一比。
師:請你拿出(指銳角三角形)這樣一個三角形,試著指一指它的高。
(2)看書自學(xué)。
師:什么是三角形的高?怎樣正確的畫出三角形的高呢?請打開書81頁,看看書上是怎樣說的,又是怎樣畫的,和你的想法一樣嗎?
師:誰來說一說?
請你在剛才的三角形中畫出三角形的一條高,并標出它所對應(yīng)的底。
(3)教師板演。
我把三角形的三個頂點分別用字母A、B、C表示,這個三角形可以稱作三角形ABC。想想怎樣以AC邊為底畫出這個三角形的高?
生說高的畫法,師板演,并強調(diào)用三角板畫高的方法。
(4)進一步認識三角形的高。
在三角形中標上字母ABC,和同桌說一說剛才畫的高是以哪條邊為底畫的?
師:剛才我們畫了三角形的一組底和高,想一想一個三角形只有一組底和高嗎?為什么?
(三)應(yīng)用練習(xí)。
1、填空:
三角形有()個頂點,()條邊,()個角。
2、學(xué)校的椅子壞了,課件演示,怎樣加固它呢?(教材86頁第2題)
3、小明畫了三角形的一條高,你說他畫的對嗎?為什么?
(四)課堂小結(jié)。
通過這節(jié)課的學(xué)習(xí),你對三角形又有了哪些新的認識?
你還想了解和三角形有關(guān)的哪些知識?
三角形的課件教案【篇7】
【教學(xué)目標】
教學(xué)知識點
1.等腰三角形的概念.
2.等腰三角形的性質(zhì).
3.等腰三角形的概念及性質(zhì)的應(yīng)用.
能力訓(xùn)練要求
1.經(jīng)歷作(畫)出等腰三角形的過程,從軸對稱的角度去體會等腰三角形的特點.
2.探索并掌握等腰三角形的性質(zhì).
情感與價值觀要求
通過學(xué)生的操作和思考,使學(xué)生掌握等腰三角形的相關(guān)概念,并在探究等腰三角形性質(zhì)的過程中培養(yǎng)學(xué)生認真思考的習(xí)慣.
【教學(xué)重難點】
重點:
1.等腰三角形的概念及性質(zhì).
2.等腰三角形性質(zhì)的應(yīng)用.
難點:等腰三角形三線合一的性質(zhì)的理解及其應(yīng)用.
【教學(xué)過程】
一、提出問題,創(chuàng)設(shè)情境
師:在前面的學(xué)習(xí)中,我們認識了軸對稱圖形,探究了軸對稱的性質(zhì),并且能夠作出一個簡單平面圖形關(guān)于某一直線的軸對稱圖形,還能夠通過軸對稱變換來設(shè)計一些美麗的圖案.這節(jié)課我們就是從軸對稱的角度來認識一些我們熟悉的幾何圖形.來研究:①三角形是軸對稱圖形嗎?②什么樣的三角形是軸對稱圖形?
[生]有的三角形是軸對稱圖形,有的三角形不是.
師:那什么樣的三角形是軸對稱圖形?
[生]滿足軸對稱的條件的三角形就是軸對稱圖形,也就是將三角形沿某一條直線對折后兩部分能夠完全重合的就是軸對稱圖形.
師:很好,我們這節(jié)課就來認識一種成軸對稱圖形的三角形──等腰三角形.
二、探究新知:
(一)等腰三角形的定義:
【活動1】折紙、剪紙、展紙:
觀察△ABC的特點:(1)在上述過程中,△ABC被剪刀剪過的兩邊是否相等?
(2)由此你能說說什么是等腰三角形嗎?
歸納:有兩條邊相等的三角形叫等腰三角形。其中相等的兩條邊叫腰,另一條邊叫做底邊;兩腰所夾的角叫頂角,底邊和腰所夾的角叫底角。
(二)探索等腰三角形的性質(zhì):
【活動2】觀察△ABC:(1)等腰△ABC是軸對稱圖形嗎?它的對稱軸是什么?
(2)沿著等腰△ABC中AD所在的直線對折,找出重合的線段、重合的角。
歸納:性質(zhì)1、等腰三角形的兩個底角相等(簡寫成“等邊對等角”)
性質(zhì)2、等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合(簡記為“三線合一”)
(三)等腰三角形性質(zhì)的證明:
由上面折疊的過程獲得啟發(fā),我們可以通過作出等腰三角形的對稱軸,得到兩個全等的三角形,從而利用三角形的全等來證明這些性質(zhì).同學(xué)們現(xiàn)在就動手來寫出這些證明過程.
三角形的課件教案【篇8】
一、說教材
1、教材的地位與作用
等腰三角形是在學(xué)習(xí)了軸對稱之后編排的,是軸對稱知識的延伸和應(yīng)用。等腰三角形的性質(zhì)及判定是探究線段相等、角相等及兩條直線互相垂直的重要工具,在教材中起著承上啟下的作用。
2、教學(xué)重點和難點
本著新課程標準,在吃透教材基礎(chǔ)上,我把探索等腰三角形的性質(zhì)定為本節(jié)課的重點,通過創(chuàng)設(shè)問題和解決問題來突出重點。把等腰三角形性質(zhì)的建立定為本課的難點,通過折紙實驗和小組合作探究來突破難點。
二、說教學(xué)目標
1、學(xué)情分析
我所教的學(xué)生,從認知的特點來看,好奇愛問,求知欲強,想象力豐富;并已初步具有對數(shù)學(xué)問題進行合作探究的能力。
2、三維目標
根據(jù)教材結(jié)構(gòu)和內(nèi)容分析,考慮到學(xué)生已有的認知結(jié)構(gòu)、心理特征 ,我制定如下目標:
知識與技能目標:
了解等腰三角形的概念,探索并掌握等腰三角形的性質(zhì),并會進行有關(guān)的論證和計算,以及運用所學(xué)的知識去解決實際問題。
過程與方法目標:
通過對性質(zhì)的探究活動和例題的分析,培養(yǎng)學(xué)生多角度思考問題的習(xí)慣,提高學(xué)生分析問題和解決問題的能力;使學(xué)生進一步了解發(fā)現(xiàn)真理的方法(探究-猜想-歸納-論證)。
情感態(tài)度與價值觀目標:
通過對等腰三角形的觀察、試驗、歸納,體驗數(shù)學(xué)活動充滿著探索性和創(chuàng)造性,數(shù)學(xué)就在我們身邊。在操作活動中,培養(yǎng)學(xué)生的合作精神,在獨立思考的同時能夠認同他人. 感受合作交流帶來的成功感,樹立自信心.
三、說教法與學(xué)法
1、教法
根據(jù)教材分析和目標分析,我確定本課主要的教法為探究發(fā)現(xiàn)法。采用“問題情境—探索交流—猜想驗證——建立模型”的模式安排教學(xué),并在各個環(huán)節(jié)進行分層施教。
2、學(xué)法
我們常說:“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學(xué)習(xí)方法的人”,因而在教學(xué)中我特別重視學(xué)法的指導(dǎo)。本課采用小組合作的學(xué)習(xí)方式,讓學(xué)生遵循“觀察——猜想——歸納——驗證——反饋——實踐”的主線進行學(xué)習(xí)。
四、說教學(xué)流程
《數(shù)學(xué)課程標準》強調(diào),教師應(yīng)發(fā)揚教學(xué)民主,成為學(xué)生數(shù)學(xué)學(xué)習(xí)活動的組織者、引導(dǎo)者、合作者。因此本節(jié)課我分以下六個環(huán)節(jié)組織教學(xué)。
(一)創(chuàng)設(shè)情境,激發(fā)興趣。
1、多媒體展示房屋人字架、艾佛爾鐵塔、龍塔、香港中國銀行大廈的圖片,問:你認識圖片中的建筑物嗎?圖片中存在哪些幾何圖形? (等腰三角形、四邊形、梯形)
2、四幅圖中都有哪種幾何圖形?(等腰三角形)
(通過實例的電腦展示,喚起學(xué)生的好奇心,提出問題,引導(dǎo)學(xué)生進入新知識的學(xué)習(xí),創(chuàng)造一種探索的情景。在學(xué)習(xí)中,只有調(diào)動學(xué)生的非智力因素,特別是內(nèi)在動機,才能使他們產(chǎn)生強烈的求知欲和以飽滿的熱情來學(xué)習(xí)新知識。)
ァ(二) 觀察實物,形成概念。
活動1:學(xué)生通過觀察自帶的等腰三角形紙片認識等腰三角形的有關(guān)概念。
接著,我利用電腦演示等腰三角形定義的數(shù)學(xué)語言表達方式。
(讓學(xué)生歸納定義增強學(xué)生的成就感,給出數(shù)學(xué)語言的表達,是為了培養(yǎng)學(xué)生文字語言、圖形語言和符號語言的轉(zhuǎn)化能力.同時也能培養(yǎng)學(xué)生正向思維和逆向思維的能力。)
三角形的課件教案【篇9】
設(shè)計說明:本課的教學(xué)內(nèi)容是人教版三年制初二幾何5.4節(jié)三角形相似的判定。
在充分理解教材的基礎(chǔ)上,本節(jié)課首先在新舊知識的轉(zhuǎn)折處創(chuàng)設(shè)有助于學(xué)生自主學(xué)習(xí)的問題情境,引導(dǎo)學(xué)生通過探索、交流,獲得知識,促使學(xué)生在教師指導(dǎo)下生動活潑地、主動地、富有個性地學(xué)習(xí)。其次,根據(jù)變式分層的思想設(shè)計具有一定跨度的問題串,組織學(xué)生進行變式訓(xùn)練,有效地實施分層次教學(xué),使每個學(xué)生都得到充分的發(fā)展。
1 教學(xué)目標
1.了解三角形相似的判定定理1的證明思路和方法, 能運用判定定理1解決有關(guān)問題;
2.掌握直角三角形被斜邊上的高分成的兩個直角三角形彼此相似并且都和原三角形相似;
3.學(xué)會與人合作,能與他人交流思維的過程和結(jié)果;形成評價與反思的意識;
4.能積極參與數(shù)學(xué)學(xué)習(xí)活動,體驗數(shù)學(xué)活動充滿著探索與創(chuàng)造,形成實事求是的態(tài)度以及獨立思考的習(xí)慣。
2 教學(xué)重點和難點
重點是三角形相似的判定定理1及其應(yīng)用, 難點是定理的證明方法。突破難點的關(guān)鍵是在于使用化歸、全等變換、類比等數(shù)學(xué)思想方法。
3 教學(xué)、學(xué)法
本課采用“自主探索,合作交流”這一教學(xué)組織形式,首先從問題1入手,利用圖形變換的對比手法,引導(dǎo)學(xué)生步步深入, 類比歸納出判定兩個三角形相似的條件;然后通過一組變式題,保證學(xué)生在基礎(chǔ)知識和基本技能的獲得與一定的訓(xùn)練的同時,能感受到數(shù)學(xué)創(chuàng)造的樂趣,獲得對數(shù)學(xué)較為全面的體驗與理解。
4 教學(xué)過程
4.1 創(chuàng)設(shè)問題情景,引導(dǎo)學(xué)生探索導(dǎo)出新知識
4.1.1 問題討論 顯示問題1和問題2,組織學(xué)生分小組討論。
問題1:如圖1,已知∠1=∠B,試判斷△ADE與△ABC是否相似?并說明理由。
利用電腦課件改變DE的位置,保持∠1=∠B,得到問題2。
問題2:如圖2,已知∠1=∠B,試判斷△ADE與△ABC是否相似?并說明理由。
4.1.2 小組交流與同學(xué)交流自己的想法。
鼓勵學(xué)生在獨立思考的基礎(chǔ)上,積極參與數(shù)學(xué)問題的討論,勇于發(fā)表自己的觀點,能在傾聽別人意見的過程中,逐漸完善自己的想法,感受到與同伴交流中獲益的快樂。
教師積極引導(dǎo)學(xué)生利用化歸的思想解決問題,在學(xué)生充分討論的基礎(chǔ)上,對問題解決的方法小結(jié)如下:
(1)利用同位角相等,兩直線平行(∠1=∠B,DE∥BC )將問題1化歸到上節(jié)所學(xué)的定理;
(2)通過全等變換,將問題2化歸到問題1;
電腦三維動畫顯示:將△ADE繞著∠A的平分線旋轉(zhuǎn)180°(即將△ADE翻一面)可得到△AD′E′,(如圖3所示)即△AD′E′≌△ADE,于是有∠ADE=∠AD′E′,又因為∠ADE=∠B,所以∠AD′E′=∠B,由(1)得△ADE~△ABC。
(3)學(xué)生代表口述交流問題2證明的思路,教師板書證明過程;
(4)這里由特殊到一般來探索數(shù)學(xué)規(guī)律, 是數(shù)學(xué)研究中常用的一種思想方法。
4、導(dǎo)出定理:我們知道三角形全等是三角形相似的特殊情況, 在上述學(xué)習(xí)的基礎(chǔ)上,你能否類似于三角形全等用符合某種條件來判定兩個三角形相似?
學(xué)生口述三角形相似判定定理1,教師板書。
(二)變式訓(xùn)練,引導(dǎo)學(xué)生應(yīng)用新知識和進行創(chuàng)新性學(xué)習(xí)。
1.顯示習(xí)題1、習(xí)題2,供學(xué)生獨立思考后回答。
習(xí)題1如圖4,已知在△ABC中,AB=AC,∠A=36°,BD 平分∠ABC交AC于點D,請找出圖中的相似三角形。
習(xí)題2如圖5,在Rt△ABC中,∠ABC=90°,BD⊥AC于點D, 找出圖中所有的相似三角形。
2.教師歸納小結(jié):
(1)習(xí)題1利用簡單計算,直接運用判定定理1便可找出△ABC~△BDC;
(2)習(xí)題2與習(xí)題1的解題方法一樣,但要求全面觀察圖形, 圖中共有三對三角形相似,即直角三角形被斜邊上的高分成的兩個直角三角形相似。
3.電腦顯示習(xí)題3,學(xué)生獨立練習(xí)后,小組交流,教師歸納小結(jié)。
習(xí)題3如圖6,在△ABC中,點D為AC邊上的一點,連結(jié)BD, 問∠ADB滿足什么條件時,△ADB~△ABC。
4.電腦顯示將圖6中的△ADB繞點A旋轉(zhuǎn)一定的角度,得到習(xí)題4。
習(xí)題4 如圖7,已知∠D′=∠B,∠1=∠2,求證:△AD′B′~△ABC。
5.讓學(xué)生在習(xí)題4的基礎(chǔ)上改編一道變式題,課后交流。
這個問題的參與性較強,每個學(xué)生都可以展開想象的翅膀,按照自己思考的設(shè)計原則,編擬題目(如改變條件:將∠D′=∠B改成∠B′=∠C,結(jié)論不變;也可以將圖形不變;也可以將圖形變?yōu)槿鐖D8所示),感受數(shù)學(xué)創(chuàng)造的樂趣,增進學(xué)好數(shù)學(xué)的信心,獲得對數(shù)學(xué)較為全面的體驗與理解。
(三)師生共同作本節(jié)果小結(jié)。
作者介紹:鄭碧星,福建德化第一中學(xué)
三角形的課件教案【篇10】
老師們:
你們好!
非常高興能有機會和大家交流說課活動,謹此向在座的各位老師學(xué)習(xí)。
今天我說課的內(nèi)容是人教版數(shù)學(xué)八年級上冊第十四章第3節(jié)《等腰三角形》的第一課時,下面我將從教材分析、教學(xué)方法與教材處理及教學(xué)過程等幾個方面對本課的設(shè)計進行說明。
一、 教材分析
等腰三角形是一種特殊的三角形,它除了具備有一般三角形的所有性質(zhì)外,還有許多特殊的性質(zhì),由于它的這些特殊的性質(zhì),使它比一般的三角形應(yīng)用更廣泛,而等腰三角形的許多特殊性質(zhì),又都和它是軸對稱圖形有關(guān),它也是證明兩個角相等,兩條線段相等,兩條直線互相垂直的方法,學(xué)好它可以為將來初三解決代數(shù)、幾何綜合題打下良好的基礎(chǔ)。它在理論上有這樣重要的地位,并在實際生活中也有廣泛的應(yīng)用,因此這節(jié)課的教學(xué)顯得相當重要。根據(jù)本班學(xué)生的特點我確定如下:
(一)教學(xué)目標:
1、知識與技能:能夠探究,歸納,驗證等腰三角形的性質(zhì),并學(xué)會應(yīng)用等腰三角形的性質(zhì)
2、過程與方法:經(jīng)歷剪紙,折紙等探究活動,進一步認識等腰三角形的定義和性質(zhì),了解等腰三角形是軸對稱圖形。
3、情感態(tài)度與價值觀:培養(yǎng)學(xué)生的觀察能力,激發(fā)學(xué)生的好奇心和求知欲,培養(yǎng)學(xué)習(xí)的自信心
(二)教學(xué)重點與難點
等腰三角形性質(zhì)的探索和應(yīng)用是本節(jié)課的重點。由于初二學(xué)生的幾何知識有限,而本節(jié)課性質(zhì)的證明又添加了輔助線,所以等腰三角形性質(zhì)的驗探究是本節(jié)課的難點。
二、教學(xué)方法
本節(jié)課中我遵循教師為主導(dǎo),學(xué)生為主體的原則,針對當前學(xué)生的厭學(xué)情緒,我運用課件,實物演示等多種教學(xué)手段激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生感到容易學(xué),采用創(chuàng)設(shè)情景、實驗法來分散難點讓學(xué)生感到愿意學(xué),并設(shè)置適當?shù)淖穯?、探究,讓學(xué)生來主宰課堂,成為學(xué)習(xí)的主人。
三、學(xué)法指導(dǎo)及能力培養(yǎng)
人教版數(shù)學(xué)八年級上冊(等腰三角形),標簽:初二數(shù)學(xué)說課稿,初中數(shù)學(xué)說課視頻,
好的學(xué)習(xí)方法才能培養(yǎng)能力,在學(xué)生探索知識的過程中培養(yǎng)他們掌握好的學(xué)習(xí)和解題方法,并且通過自己動手操作、動腦思考、動口表述,培養(yǎng)學(xué)生的觀察、猜想、概括、表述論證的能力
四、教學(xué)過程
(一)情景設(shè)置
首先我用一個三角形測平架,測量黑板的下邊是否水平,并讓學(xué)生猜想其中的道理和奧妙,這樣的引入既明確了本節(jié)課的主要內(nèi)容,也激發(fā)了學(xué)生的學(xué)習(xí)興趣,又使學(xué)生了解到數(shù)學(xué)來源于生活又適用于生活。
教育學(xué)中有句諺語:“告訴我我會忘記,做給我看我會記得,讓我去做我才會懂”,由此可見實驗法在教學(xué)中具有重要的作用。因此我設(shè)計了一個動手操作的環(huán)節(jié),讓學(xué)生按要求剪出一個三角形,為下面折紙操作作好鋪墊,結(jié)合剪出的等腰三角形學(xué)習(xí)相關(guān)的概念加深印象,并指明等腰三角形是軸對稱圖形。
(二)探索新知
在這個環(huán)節(jié)我安排了兩個探究,通過折紙的方法猜想并歸納。首先通過折紙讓學(xué)生猜想∠B和∠C有什么關(guān)系?鼓勵學(xué)生用多種方法來驗證他們的猜想,并歸納出等腰三角形的第一條性質(zhì)。這個地方我設(shè)計一個疑問,來強調(diào)等邊對等角有一個前提條件就必須是在同一個三角形中,為了保證學(xué)生思維的連貫性,在這里我是這樣引入探究二的,“從剛才輔助線的作法中,你發(fā)現(xiàn)了什么?”讓學(xué)生感覺到這三條輔助線好像是一條線段,然后在通過折紙歸納出性質(zhì)二。
學(xué)生在長時間的學(xué)習(xí)和探究中大腦已感到疲勞,隨即引出課前設(shè)置的疑問,再次激發(fā)學(xué)生的學(xué)習(xí)熱情。由于“三線合一”的性質(zhì)在描述上經(jīng)常出錯,所以我設(shè)置了一個辨析,然后用填空的形式規(guī)范“三線合一”的符號表示形式,讓學(xué)生理解性質(zhì)的內(nèi)涵。
(三)鞏固練習(xí)
我用兩個練習(xí)鞏固等腰三角形的性質(zhì)并讓學(xué)生體驗分類討論的思想在解題中的應(yīng)用。由于本節(jié)課的例題較難,因此我對它進行了改編,先讓學(xué)生解決“等腰三角形一個底角的外角是108°時,三個內(nèi)角分別是多少度?”然后再延長CD,得到一個新的等腰三角形,運用性質(zhì)一就可以解決這兩個問題,然后今天的例題就可以迎刃而解了,同時也要強調(diào)此題圖形的特殊性,只有頂角是36°的等腰三角形才能滿足這樣的性質(zhì)。
(四)課堂小結(jié)
課堂教學(xué),一是注重引入激發(fā)興趣,二是注重教學(xué)過程、重視方法,三就是注重概括總結(jié)。首先我讓學(xué)生回想一下本節(jié)課的內(nèi)容,“通過本節(jié)課的學(xué)習(xí),你對等腰三角形有什么新的認識嗎?”然后教師肯定學(xué)生的積極性。
(五)作業(yè)布置(略)
人教版數(shù)學(xué)八年級上冊(等腰三角形),標簽:初二數(shù)學(xué)說課稿,初中數(shù)學(xué)說課視頻,
(六)板書設(shè)計(略)
總之,在整個教學(xué)過程中,我遵循著“教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線”的原則,在課上的每個環(huán)節(jié)中通過各種媒體,各種手段,始終注重興趣的激發(fā),培養(yǎng)學(xué)生的學(xué)習(xí)熱情,讓他們在輕松愉快中學(xué)習(xí)知識。
以上是我對這節(jié)課的教學(xué)設(shè)計,望各位老師批評指正,謝謝!
等腰三角形教案(精選9篇)
以下是由欄目小編為您帶來的等腰三角形教案。教案課件是老師上課做的提前準備,這就需要我們老師自己抽時間去完成。寫好教案課件,可以避免重中之重被遺漏。還希望您能從本網(wǎng)頁有所收獲!
等腰三角形教案 篇1
教學(xué)目標
重難點
1、知識與技能
(1)理解掌握等腰三角形的性質(zhì).
(2)運用等腰三角行的性質(zhì)進行證明和計算.
(3)發(fā)展合情推理,培養(yǎng)觀察、分析、歸納問題的能力.
2、過程與方法
通過動手操作、觀察、歸納,經(jīng)歷探索等腰三角形的性質(zhì)的過程,體會獲得數(shù)學(xué)結(jié)論的過程,逐漸形成自己對數(shù)學(xué)知識的理解和有效的學(xué)習(xí)策略.
3、情感態(tài)度與價值觀
(1)通過引導(dǎo)學(xué)生動手操作,對圖形的觀察發(fā)現(xiàn),激發(fā)學(xué)生的學(xué)習(xí)興趣.
(2)在師生之間、生生之間的合作交流中進一步樹立合作意識,培養(yǎng)合作能力,體驗學(xué)習(xí)的快樂.
(3)在運用數(shù)學(xué)知識解答問題的活動中獲取成功的體驗,建立學(xué)習(xí)的自信心.
4、教學(xué)重點:等腰三角形的`性質(zhì)的發(fā)現(xiàn)和應(yīng)用.
5、教學(xué)難點:等腰三角形性質(zhì)的證明
教學(xué)過程
(交互式白板使用功能)
1、情境創(chuàng)設(shè)
問題:地震過后,同學(xué)用下面方法檢測教室的房梁是否水平:在等腰直角三角板斜邊中點綁一條線繩,線繩的另一端懸掛一個鉛錘。把三角板斜邊緊貼在橫梁上。這就能檢查橫梁是否水平,你知道為什么嗎?1。提出問題。
2、演示課件(1):介紹方法,設(shè)下懸念,引出課題。思考作答;
帶著問題進入學(xué)習(xí)。激發(fā)學(xué)生思考,設(shè)置懸念,激活學(xué)習(xí)所必需的先前經(jīng)驗,喚起學(xué)生的學(xué)習(xí)需要,激發(fā)學(xué)生的學(xué)習(xí)興趣。用課件演示檢測方法:旋轉(zhuǎn)“房梁和三角板”,保持鉛垂線不動,判斷房梁是否水平。演示可能的情況,給學(xué)生直觀感受,激發(fā)學(xué)生的學(xué)習(xí)興趣。
3、動手操作
(1)把一張長方形的紙片對折,并剪下陰影部分(教科書圖12.3—1),再把它展開,得到一個什么圖形?
(2)上述過程中得到的
問題(1):△ABC有什么特點?
問題(2):除了以上方法,還可以怎樣剪出一個等腰三角形?發(fā)出指令引導(dǎo)學(xué)生操作;畫圖介紹腰、底、頂角、底角。
問題(3)讓學(xué)生各抒己見的基礎(chǔ)上介紹自己的想法
要關(guān)注學(xué)生是否積極參與到活動中來。
動手操作,觀察。討論、回答問題給學(xué)生提供參與活動的時間與空間,調(diào)動學(xué)生主觀能動性,激發(fā)學(xué)習(xí)
等腰三角形教案 篇2
一、說教材
1、教學(xué)主要內(nèi)容、前后聯(lián)系、地位和作用
本節(jié)課的內(nèi)容是冀教版義務(wù)教育課程標準實驗教科書《數(shù)學(xué)》八年級(上)§15。5等腰三角形第一課時,主要內(nèi)容是學(xué)習(xí)等腰三角形的兩條性質(zhì):“等邊對等角”和“三線合一”。
本節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了三角形的有關(guān)概念和“認識軸對稱圖形”的基礎(chǔ)上接著學(xué)習(xí)的。這節(jié)課的內(nèi)容不僅是對前面所學(xué)知識的運用,也是今后證明角相等、線段相等及直線垂直的重要工具,它在教材中處于非常重要的地位。
2、教學(xué)目標及依據(jù)
根據(jù)學(xué)生認識基礎(chǔ)及教學(xué)內(nèi)容的特點,依據(jù)《數(shù)學(xué)課程標準》確定本節(jié)課的教學(xué)目標為:
(1)使學(xué)生了解等腰三角形的有關(guān)概念,掌握等腰三角形的性質(zhì),
(2)通過折紙實驗探索等腰三角形的性質(zhì),讓學(xué)生進一步經(jīng)歷觀察、實驗、歸納、推理、交流等活動,體驗數(shù)學(xué)證明的必要性,培養(yǎng)學(xué)生數(shù)學(xué)說理的習(xí)慣。
(3)通過例題的教學(xué),學(xué)會利用代數(shù)法求解幾何問題,培養(yǎng)學(xué)生學(xué)數(shù)學(xué)應(yīng)用數(shù)學(xué)的意識。
(4)了解等邊三角形的概念并探索其性質(zhì)
3、教學(xué)重難點及依據(jù)
等腰三角形的性質(zhì)在今后應(yīng)用較廣,但“三線合一”這一性質(zhì)的條件和結(jié)論容易混淆,學(xué)生不會靈活運用。因此本節(jié)課的重難點是:
(1)重點:等腰三角形等邊對等角性質(zhì)是本節(jié)教學(xué)的重點。
(2)難點:等腰三角形“三線合一”性質(zhì)的靈活運用。
二、學(xué)情分析
學(xué)生以前接觸過等腰三角形有關(guān)知識,并且學(xué)生已經(jīng)歷畫圖方法感知“三線合一”這一性質(zhì),所以等要三角形的這兩個性質(zhì)學(xué)生可以通過折疊發(fā)現(xiàn)出來,但對“三線合一”中的“三線”指代學(xué)生可能出現(xiàn)混淆情況,且對“三線合一”這一性質(zhì)“三線合一”這一性質(zhì)不夠重視,但它是本節(jié)課的難點又是今后用得較廣泛的性質(zhì)之一。由于本班中學(xué)生各科的基礎(chǔ)都較差,合作、交流的意識不強,不敢提問,不善于探索與實踐,所以教師要給予適當?shù)囊龑?dǎo)、啟發(fā),要多加激勵和鼓勵。
三、說教法、學(xué)法
初中生的觀察、記憶、邏輯思維等能力逐步增強,他們能夠在觀察中注意到事物的細微處,具備了一定的邏輯推理能力和抽象地表達事物本質(zhì)特征的能力,模仿力強,但七年級的學(xué)生思維往往要依賴于直觀具體的形象,而學(xué)生剛學(xué)過軸對稱圖形,對軸對稱圖形的分析想對比較好。
根據(jù)學(xué)生這一年齡特征和這節(jié)課的內(nèi)容特點,在教師的組織、引導(dǎo)、點撥啟發(fā)下,采用直觀教學(xué)法,探究、發(fā)現(xiàn)的教學(xué)方法,讓學(xué)生主動參與,積極動手、動腦、動口,操作實驗、直觀感知、自主探索、合作交流,通過師生互動、情感交流,培養(yǎng)學(xué)生多觀察、動腦想、大膽猜的研討式學(xué)習(xí)模式,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的內(nèi)容。
教具準備:多媒體計算機、課件、投影機。
學(xué)具準備:三角板、透明紙片、剪刀、鉛筆。
四、說教學(xué)程序
(一)復(fù)習(xí)回顧,引入新課
1、因為已經(jīng)學(xué)過有兩邊相等的三角形是等腰三角形,所以讓學(xué)生在事先準備好的半透明紙上畫一個等腰三角形,并標上字母A、B、C。
選一位學(xué)生畫好的等腰三角形投影到大屏幕上,結(jié)合學(xué)生的圖形介紹等腰三角形的一些有關(guān)概念。
〔設(shè)計意圖〕從一開始就提供給學(xué)生動手操作的空間和時間讓他們在無意中,了解等腰三角形的一些概念,同時覺得有一種輕松感。
3、讓學(xué)生做練習(xí),在已知的等腰三角形ABC中,畫底邊BC上的中線和高以及頂角的平分線,并量一量課本圖中兩個底角的度數(shù)。
〔設(shè)計意圖〕讓學(xué)生通過畫圖、測量,先整體感知等腰三角形“等邊對等角”,“三線合一”這兩條性質(zhì),然后再經(jīng)過后面的動手、動腦折疊等腰三角形的實驗來驗證等腰三角形的性質(zhì)。使學(xué)生初步體會到:觀察實驗的方法可以給我們帶來一個直觀形象的數(shù)學(xué)結(jié)論。
(二)動手實驗,合作探究
1、讓同桌或前后的同學(xué)互相檢查對方剛才所畫的三角形是否“等腰”。然后把各自畫好的等腰三角形剪下來,并把紙片對折,讓兩腰AB、AC重疊在一起,折痕為AD。最后問同學(xué):你發(fā)現(xiàn)了什么現(xiàn)象?你能用自己的語言說出來嗎?
〔設(shè)計意圖〕通過富有激勵和挑戰(zhàn)的語句來激發(fā)、引導(dǎo)學(xué)生。
2、留給學(xué)生充分的時間觀察、思考、交流,然后互相補充,并請學(xué)生起來發(fā)言,同時老師用多媒體演示模型,并在大屏幕上顯示如下內(nèi)容:
發(fā)現(xiàn):(1)三角形是軸對稱圖形,折痕AD所在的直線是它的對稱軸。
(2)∠B=∠C。
(3)BD=CD,AD是底邊上的中線。
(4)∠ADB=∠ADC=90°,AD為底邊上的高。
(5)∠BAD=∠CAD,AD為頂角的平分線。
3、由學(xué)生用文字歸納結(jié)論(2),教師糾正并投影:等腰三角形的兩個底角想等。(簡寫成“等邊對等角”)
師問:你能用數(shù)學(xué)語言表達這句話嗎?
學(xué)生:討論交流、發(fā)言。
投影:在△ABC中,因為AB=AC,所以∠B=∠C。
4、問學(xué)生你能用一句話來歸納結(jié)論(3)(4)(5)嗎?
教師提示:可聯(lián)系開始所復(fù)習(xí)的練習(xí)(畫等腰三角形“三線合一”),接著用多媒體演示“三線合一”動畫。
投影:等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合。(簡稱“三線合一”)
〔設(shè)計意圖〕通過直觀感知、操作確認,有助于培養(yǎng)學(xué)生的合情推理和演繹推理能力,體驗數(shù)學(xué)學(xué)習(xí)的樂趣,逐步積累數(shù)學(xué)活動經(jīng)驗,經(jīng)歷自主探索和合作交流的過程,形成積極的學(xué)習(xí)態(tài)度和情感。
5、對比練習(xí)(補充):畫一個等腰三角形的一個底角的平分線及該角所對的中線和高,看看他們是否重合(即是否有“三線合一”這一性質(zhì))。
6、大家談?wù)?,由同學(xué)們互相討論了解概念并探索其性質(zhì)。積極發(fā)揮學(xué)生的能動性。
(三)初步應(yīng)用,鞏固拓展
例1已知:在△ABC中,AB=AC,∠B=80°,求∠C和∠A的度數(shù)。(投影顯示,P83例1)
生:交流、討論、口述。
師:板書解題過程(在黑板上寫)
解:因為AB=AC。
所以∠C=∠B=80°
又∠A+∠B+∠C=180°
所以∠A=180—80—80 = 20°
引申練習(xí)(補充):已知在△ABC中AB=AC,∠A=30。求∠B和∠C的度數(shù)。(投影顯示)
生:交流、討論、并寫在紙上。
師:巡視,選兩位學(xué)生板演并講評。
小結(jié)(老師問、學(xué)生答):
在等腰三角形中,
(1)已知一個角,就能求另外兩個角。
(2)頂角+2×底角=180°
(3)0°
師問:在一般的三角形中,已知一個角能求另外兩個角嗎?為什么等腰三角形可以?
生答:因為隱含一個條件:兩個底角相等——等邊對等角。
例2。建筑工人在蓋房子的時候,要看房梁是否水平,可以用一塊等腰三角板放在梁上(如圖),從頂點系一重物的繩正好經(jīng)過三角板底邊中點,房梁就是水平的,你能說出為什么嗎?(投影顯示例2和圖形。)
學(xué)生思考,分組討論,交流并回答。
教師糾正,并投影顯示解答。
解:系重物的繩子正好經(jīng)過等腰三角形的底邊上的中點,根據(jù)“三線合一”可以知道這條繩子也垂直于房梁,故房梁是水平的。
〔設(shè)計意圖〕通過本例讓學(xué)生對“三線合一”這一性質(zhì)進一步得到鞏固,也讓學(xué)生體驗到數(shù)學(xué)知識在現(xiàn)實生活中的應(yīng)用,培養(yǎng)學(xué)生的應(yīng)用意識。
(四)反饋練習(xí)
課本P65練習(xí)。1、2、3
補充:如圖,在△ABC和△ABD中。因為,AB=AC,所以,∠C=∠D。對嗎?
〔設(shè)計意圖〕讓學(xué)生注意“等邊對等角”,是在同一個三角形內(nèi)用的。
(五)歸納小結(jié)
由師:今天這節(jié)課即將結(jié)束,你能告訴老師你的收獲嗎?
學(xué)生相互歸納和補充(幻燈片顯示):
1、等腰三角形的兩條性質(zhì):“等邊對等角”,“三線合一”。
2、已知等腰三角形一個角(或一條邊)時,要注意分類討論,判斷是頂角還是底角(是腰還是底邊)。
3、注意:等邊對等角是指在一個三角形內(nèi)用的。
4、等邊三角形的性質(zhì)。
等腰三角形教案 篇3
教學(xué)目標
1.掌握等腰三角形的判定定理.
2.知道等邊三角形的性質(zhì)以及等邊三角形的判定定理.
3.經(jīng)歷折紙、畫圖、觀察、推理等操作活動的合理性進行證明的過程,不斷感受合情推理和演繹推理都是人們正確認識事物的重要途徑.
4.會用“因為……所以……理由是……”或“根據(jù)……因為……所以……”等方式來進行說理,進一步發(fā)展有條理地思考和表達,提高演繹推理的能力.
教學(xué)重點
熟練地掌握等腰三角形的判定定理.
教學(xué)難點
正確熟練地運用定理解決問題及簡潔地邏輯推理.
教學(xué)過程(教師活動)
學(xué)生活動
設(shè)計思路
前面我們學(xué)習(xí)了等腰三角形的軸對稱性,說說你對等腰三角形的認識.
本節(jié)課我們將繼續(xù)學(xué)習(xí)等腰三角形的軸對稱性.
一、創(chuàng)設(shè)情境
如圖所示△abc是等腰三角形,ab=ac,它的一部分被墨水涂沒了,只留下一條底邊bc和一個底角∠c.請同學(xué)們想一想,有沒有辦法把原來的等腰三角形abc重新畫出來?大家試試看.
1.學(xué)生觀察思考,提出猜想.
2.小組交流討論.
一方面回憶等邊對等角及其研究方法,為學(xué)生研究等角對等邊提供研究的方法,另一方面通過創(chuàng)設(shè)情境,自然地引入課題.
二、探索發(fā)現(xiàn)一
請同學(xué)們分別拿出一張半透明紙,做一個實驗,按以下方法進行操作:
(1)在半透明紙上畫一條長為6cm的線段bc.
(2)以bc為始邊,分別以點b和點c為頂點,在bc的同側(cè)用量角器畫兩個相等的銳角,兩角終邊的交點為a.
(3)用刻度尺找出bc的中點d,連接ad,然后沿ad對折.
問題1:ab與ac有什么數(shù)量關(guān)系?
問題2:請用語言敘述你的發(fā)現(xiàn).
1.根據(jù)實驗要求進行操作.
2.畫出圖形、觀察猜想.
3.小組合作交流、展示學(xué)習(xí)成果.
演示折疊過程為進一步的說理和推理提供思路.
通過動手操作、演示、觀察、猜想、體驗、感悟等學(xué)習(xí)活動,獲得知識為今后學(xué)生進行探索活動積累數(shù)學(xué)活動經(jīng)驗.
三、分析證明
思考:我們利用了折疊、度量得到了上述結(jié)論,那么如何證明這些結(jié)論呢?
問題3:已知如圖,在△abc中,
∠b=∠c.求證:ab=ac.
引導(dǎo)學(xué)分析問題,綜合證明.
思考:你還有不同的證明方法嗎?
問題4:“等邊對等角”與“等角對等邊”, 它們有什么區(qū)別和聯(lián)系?
思考——討論——展示.
1.學(xué)生獨立完成證明過程的基礎(chǔ)上進行小組交流.
2.班級展示:小組代表展示學(xué)習(xí)成果.
在實驗的基礎(chǔ)上獲得問題解決的思路,在合情推理的基礎(chǔ)上讓學(xué)生經(jīng)歷演繹推理的過程,培養(yǎng)學(xué)生的.邏輯思維能力.
通過“你有不同的證明方法嗎”的問題,讓學(xué)生學(xué)會質(zhì)疑,學(xué)會從不同的角度思考問題,培養(yǎng)學(xué)生的發(fā)散性思維,激發(fā)探究問題的欲望和興趣,通過對問題4的思考讓學(xué)生加深對性質(zhì)與判定的理解.
四、探索發(fā)現(xiàn)二
問題5:什么是等邊三角形?等邊三角形與等腰三角形有什么區(qū)別和聯(lián)系?
問題6:等邊三角形有什么性質(zhì)?
問題7:一個三角形滿足什么條件就是等邊三角形了?為什么?
1.學(xué)生閱讀教材,進行自主學(xué)習(xí).
2.小組討論交流.
3.展示學(xué)習(xí)成果:等邊三角形的概念、等邊三角形的性質(zhì)、
等腰三角形教案 篇4
一、教材分析
1、教材分析之地位和作用
《等腰三角形的性質(zhì)》是“華東師大版七年級數(shù)學(xué)(下)”第九章第三節(jié)的內(nèi)容。本課安排在《軸對稱的認識》后,明確了《等腰三角形的性質(zhì)》與《軸對稱的認識》的聯(lián)系,起到知識的鏈接與開拓的作用。本課內(nèi)容在初中數(shù)學(xué)教學(xué)中起著比較重要的作用,它是對三角形的性質(zhì)的呈現(xiàn)。通過等腰三角形的性質(zhì)反映在一個三角形中“等邊對等角”的邊角關(guān)系,并且是對軸對稱圖形性質(zhì)的直觀反映(三線合一)。它所倡導(dǎo)的“觀察---發(fā)現(xiàn)---猜想---論證”的數(shù)學(xué)思想方法是今后研究數(shù)學(xué)的基本思想方法。因此,本節(jié)內(nèi)容在教材中處于非常重要的地位,起著承前啟后的作用。
2、教材分析之教學(xué)目標
①知識與技能目標:
掌握等腰三角形的有關(guān)概念和相關(guān)性質(zhì)。熟練運用等腰三角形的性質(zhì)解決等腰三角形內(nèi)角以及邊的計算問題。
②過程與方法目標:
通過對性質(zhì)的探究活動和例題的分析,培養(yǎng)學(xué)生多角度思考問題的習(xí)慣,提高學(xué)生分析問題和解決問題的能力。
③情感與態(tài)度目標:
通過對等腰三角形的觀察、試驗、歸納,體驗數(shù)學(xué)活動充滿著探索性和創(chuàng)造性,突出數(shù)學(xué)就在我們身邊。在操作活動中,培養(yǎng)學(xué)生之間的合作精神,在獨立思考的同時能夠認同他人。
3、教材分析之教學(xué)重難點
重點:探索等腰三角形“等邊對等角”和“三線合一”的性質(zhì)。
(這兩個性質(zhì)對于平面幾何中的計算,以及今后的證明尤為重要,故確定為重點)
難點:等腰三角形中關(guān)于底和腰,底角和頂角的計算問題。
(由于等腰三角形底和腰,底角和頂角性質(zhì)特點很容易混淆,而且它們在用法和討論上很有考究,只能練習(xí)實踐中獲取經(jīng)驗,故確定為難點。)
4、教材分析之教法
數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科,因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”,“教必有法而教無定法”,只有方法得當,才會有效。根據(jù)本課內(nèi)容特點和初一學(xué)生思維活動的特點,我采用了教具直觀教學(xué)法,聯(lián)想發(fā)現(xiàn)教學(xué)法,設(shè)疑思考法,逐步滲透法和師生交際相結(jié)合的方法。
5、教材分析之學(xué)法
最有價值的知識是關(guān)于方法的知識,首先對于我們教師應(yīng)該創(chuàng)造一種環(huán)境,引導(dǎo)學(xué)生從已知的、熟悉的知識入手,讓學(xué)生自己不知不覺中運用舊知識的鑰匙去打開新知識的大門,進入新知識的領(lǐng)域。本節(jié)課我將采用學(xué)生小組合作,實驗操作,觀察發(fā)現(xiàn),師生互動,學(xué)生互動的學(xué)習(xí)方式。學(xué)生通過小組合作學(xué)會“主動探究----主動總結(jié)---主動提高”。突出學(xué)生是學(xué)習(xí)的主體,他們在感受知識的過程中,提高他們“探究---發(fā)現(xiàn)---聯(lián)想---概括”的能力!
二、教學(xué)過程:
1、創(chuàng)設(shè)情景
①復(fù)習(xí)提問:向同學(xué)們出示幾張精美的建筑物圖片;
問題:軸對稱圖形的概念?這些圖片中有軸對稱圖形嗎?
②引入新課:再次通過精美的建筑物圖片,找出里面的等腰三角形。
問題:等腰三角形是軸對稱圖形嗎?
③相關(guān)概念:定義:兩條邊相等的三角形叫做等腰三角形。
邊:等腰三角形中,相等的兩條邊叫做腰,另一條邊叫做底邊.
角:等腰三角形中,兩腰的夾角叫做頂角,腰和底邊的夾角叫做底角.
2、探究問題
①動動手:讓同學(xué)們做出一張等腰三角形的半透明的紙片,每個人的等腰三角形的大小和形狀可以不一樣,把紙片對折,讓兩腰重合在一起,你能發(fā)現(xiàn)什么現(xiàn)象?請你盡可能多的寫出結(jié)論。
②得出結(jié)論:可讓學(xué)生有充分的時間觀察、思考、交流、可能得到的結(jié)論:
(1)等腰三角形是軸對稱圖形
(2)∠B=∠C
(3)BD=CD,AD為底邊上的中線
(4)∠ADB=∠ADC=90°,AD為底邊上的高線
(5)∠BAD=∠CAD,AD為頂角平分線
3、重要性質(zhì)
性質(zhì)1:等腰三角形的兩底角相等。(簡寫成“等邊對等角”)
性質(zhì)2:等腰三角形的頂角的平分線,底邊上的中線,底邊上的高互相重合。
(簡稱“三線合一”)
如圖,在△ABC中,AB=AC,點D在BC上
(1)如果∠BAD=∠CAD,那么AD⊥BC,BD=CD
(2)如果BD=CD,那么∠BAD=∠CAD,AD⊥BC
(3)如果AD⊥BC,那么∠BAD=∠CAD,BD=CD
(為了方便記憶可以說成“知一求二!”)
三、例題部分:
例一:1、在等腰△ABC中,AB=3,AC=4,則△ABC的周長=________
2、在等腰△ABC中,AB=3,AC=7,則△ABC的周長=________
此例題的重點是運用等腰三角形的定義,以及等腰三角形腰和底邊的關(guān)系,仔細比較以上兩個例題,并強調(diào)在沒有明確腰和底邊之前,應(yīng)該分兩種情況討論。而且在討論后還應(yīng)該思考一個問題,就是這樣的三條邊能否夠成三角形。
例二:1、在等腰△ABC中,AB=AC,∠A=50°,則∠B=_____,∠C=______
2、在等腰△ABC中,∠A=100°,則∠B=______,∠C=______
此例題的重點是運用等腰三角形“等邊對等角”這一性質(zhì),突出頂角和底角的關(guān)系,強調(diào)等腰三角形中頂角和底角的取值范圍:0°<頂角<180°,0°<底角<90°。仔細比較以上兩個例題,得出結(jié)論一個經(jīng)驗:在等腰三角形中,已知一個角就可以求出另外兩個角。
例三:在等腰△ABC中,∠A=40°,則∠B=______
此題是一道陷阱題,可以先讓學(xué)生進行分析,和例二的2小題比較,估計會出一些狀況,大多數(shù)學(xué)生會按照兩種情況討論,得到兩個答案。然后跟學(xué)生畫出圖形進行分析,分兩種情況討論,但是答案是“三個”。強調(diào)需要自己畫圖解題時,一定要三思而后行!
例四:在△ABC中,AB=AC,點D是BC的中點,∠B=40°,求∠BAD的度數(shù)?
此題的目的在于等腰三角形“等邊對等角”和“三線合一”性質(zhì)的綜合運用,以及怎么書寫解答題,強調(diào)“三線合一”的表達過程。
解:在△ABC中,
∵AB=AC,∠B=40°,∴∠B=∠C=40°
又∵∠A+∠B+∠C=180°,∴∠A=100°
在△ABC中,AB=AC,點D是BC的中點,
∴AD是底邊上的中線根據(jù)等腰三角形“三線合一”知:
AD是∠BAC的平分線,即∠BAD=∠CAD=50°
四、練習(xí)部分:
練功房Ⅰ(基礎(chǔ)知識)填空題
1、在△ABC中,若AB=AC,若頂角為80°,則底角的外角為_________.
2、在△ABC中,若AB=AC,∠B=∠A,則∠C=____________.
3、在△ABC中,若AB=AC,∠B的余角為25°,則∠A=____________.
4、已知:如圖,在△ABC中,D是AB邊上的一點,AD=DC,∠B=35°,
∠ACD=43°,則∠BCD=____________
開展小組競賽,比一比那個小組算的又快又準!
練功房Ⅱ(實踐運用)實踐題
如圖,是西安半坡博物館屋頂?shù)慕孛鎴D,已經(jīng)知道它的兩邊AB和AC是相等的建筑工人師傅對這個建筑物做出了兩個判斷:
①工人師傅在測量了∠B為37°以后,并沒有測量∠C,就說∠C的度數(shù)也是37°。
②工人師傅要加固屋頂,他們通過測量找到了橫梁BC的中點D,然后在AD兩點之間釘上一根木樁,他們認為木樁是垂直橫梁的。
請同學(xué)們想想,工人師傅的說法對嗎?請說明理由。
練功房Ⅲ(思維發(fā)散)選做題
已知:如圖,在△ABC中,AB=AC,E在AC上,D在BA的延長線上,AD=AE,連結(jié)DE。請問:DE⊥BC成立嗎?
五.小結(jié)部分
提問:今天我們學(xué)習(xí)了什么?你覺得在等腰三角形的學(xué)習(xí)中要注意哪些問題?
1、等腰三角形是軸對稱圖形,等腰三角形的定義,以及相關(guān)概念。
2、等腰三角形的兩底角相等。(簡寫成“等邊對等角”)
3、等腰三角形的頂角的平分線,底邊上的中線,底邊上的高互相重合。
(簡稱“三線合一”)
4、注意等腰三角形關(guān)于底和腰的計算題,特別是需要的討論的時候,最后還要進行
檢驗,看看這樣的三條邊是否可以構(gòu)成三角形。
5、注意等腰三角形的頂角和底角的取值范圍:0°<頂角<180°,0°<底角<90°
6、重視需要自己畫圖解題時一定要“三思而后行”!
六.作業(yè)部分
1、教科書P86習(xí)題9.31,2,3,4題
2、請問:在等腰三角形中,等腰三角形兩腰上的中線(高線)是否相等?
為什么?
3、等腰三角形是特殊的三角形,思考一下,什么三角形又是特殊的等腰三角
形呢?帶著問題預(yù)習(xí)教科書P83—84。
七、板書設(shè)計
八、教學(xué)說明
本節(jié)課的設(shè)計力求體現(xiàn)使學(xué)生“學(xué)會學(xué)習(xí),為終身學(xué)習(xí)做準備”的理念,努力實現(xiàn)學(xué)生的主體地位,使數(shù)學(xué)教學(xué)成為一種過程教學(xué),讓學(xué)生在活動中獲得知識、形成技能和能力;在教學(xué)中注意教師角色的轉(zhuǎn)變,教師是組織者、參與者、合作者,教師的責任是為學(xué)生創(chuàng)造一種寬松、和諧、適合發(fā)展的學(xué)習(xí)環(huán)境,創(chuàng)設(shè)一種有利于思考、討論、探索的學(xué)習(xí)氛圍。在教法上采用啟發(fā)探索式教學(xué)模式,整堂課以問題為思維主線,引導(dǎo)學(xué)生通過觀察,自主探索,使學(xué)生觀察、主動思考,充分體驗探索的快樂和成功的樂趣,并充分利用計算機輔助教學(xué),以加強感性認識并培養(yǎng)學(xué)生用運動聯(lián)系的觀點觀察現(xiàn)象、解決問題。整個教學(xué)環(huán)節(jié)層層推進、步步深入,融基礎(chǔ)性、靈活性、實踐性、開放性于一體,注重調(diào)動學(xué)生思維的積極性,把知識的形成過程轉(zhuǎn)化為學(xué)生親自觀察、實驗、發(fā)現(xiàn)、探索、運用的過程。使學(xué)生在獲得知識的同時提高興趣、增強信心、提高能力。本課就教學(xué)過程作以下幾點說明:
1、知識結(jié)構(gòu)安排:
本課以“問題情境--------獲取新知--------應(yīng)用與拓展”的模式展開,符合初一學(xué)生的認知規(guī)律。
2、教學(xué)反饋與評價:
本課從學(xué)生回答問題,練習(xí)情況等方面反饋學(xué)生對知識的理解、運用,教師根據(jù)反饋信息適時點撥;同時從新課標評價理念出發(fā),抓住學(xué)生語言、思想、動手能力方面的亮點給予表揚,不足的方面給予幫助、指導(dǎo)和恰如其分的鼓勵,形成發(fā)展性評價,提高學(xué)生學(xué)數(shù)學(xué),用數(shù)學(xué)的信心。
3、對于本節(jié)的幾點思考
①本節(jié)的學(xué)習(xí)任務(wù)比較重要,有等腰三角形性質(zhì)的推導(dǎo)、性質(zhì)的應(yīng)用,所
以本人針對學(xué)生的特點,在課例的掌握好的情況下,讓學(xué)生自己去發(fā)現(xiàn)、去聯(lián)想,
能充分地發(fā)揮學(xué)生主觀能動性。
②通過學(xué)生自己動手實驗得到等腰三角形性質(zhì)的內(nèi)容,可以使他們比較好的掌握知識、提高學(xué)習(xí)數(shù)學(xué)的興趣,達到了事半功倍之效。
③在整個教學(xué)過程中,本人利用多種教學(xué)方法,使學(xué)生在實驗中提出問題,解決問題的途徑,而不知不覺地進入學(xué)習(xí)氛圍,把學(xué)生從被動學(xué)習(xí)步入主動想學(xué)的習(xí)慣。
總之,在本節(jié)教學(xué)中,我始終堅持以學(xué)生為主體,教師為主導(dǎo),師生互動,生生互動,致力啟用學(xué)生已掌握的知識,充分調(diào)動學(xué)生的興趣和積極性,使他們最大限度地參與到課堂的活動中,在整個教學(xué)過程中我以啟發(fā)學(xué)生,挖掘?qū)W生潛力,讓他們展開聯(lián)想的思維,培養(yǎng)其能力為主旨而發(fā)展。
等腰三角形教案 篇5
尊敬的各位評委老師:
大家好!下面我從教學(xué)理念、教材分析、教法、學(xué)法、教學(xué)流程、板書設(shè)計六個方面進行闡述:
一、教學(xué)設(shè)計理念:
1、教師的責任重不在“教”,而是在于“導(dǎo)”:倡導(dǎo)學(xué)生主動參與,勇于探索;引導(dǎo)學(xué)生由“學(xué)會”向“會學(xué)”這個更高層次過渡;
2、每個學(xué)生都帶著自己的經(jīng)驗背景,帶著自己獨特的感受,來到課堂進行交流,因此,應(yīng)尊重每位學(xué)生的個性化理解,關(guān)注他們的合作,讓思維在撞擊中生出“火花”;
3、課堂不僅是帶著學(xué)生學(xué)知識,同時更是活動、是體驗,要學(xué)會營造一個激勵探索和理解的氣氛,啟發(fā)學(xué)生善于質(zhì)疑,從而培養(yǎng)學(xué)生的問題意識,引導(dǎo)學(xué)生學(xué)會分享彼此的思想和結(jié)果,指導(dǎo)和培養(yǎng)學(xué)生形成良好的學(xué)習(xí)習(xí)慣。
4、關(guān)注學(xué)生的終身發(fā)展趨勢,讓課程不僅帶給學(xué)生知識的增進、能力的提高,更培養(yǎng)他們良好的學(xué)習(xí)習(xí)慣,讓他們學(xué)有所得,有所收獲,進而享受到成功的快樂
二、教材分析:
1、教材的地位和作用:
《等腰三角形》第2課時,選自人教版八年級下冊第12章第3節(jié),等腰三角形的判定是初中幾何的一個重要定理,也是本章的重點內(nèi)容。本節(jié)內(nèi)容是在學(xué)生已有的平行線性質(zhì)、命題以及等腰三角形的性質(zhì)等知識基礎(chǔ)上進一步研究的問題,特點之一是它揭示了同一個三角形的邊、角關(guān)系;特點之二它與等腰三角形性質(zhì)互為逆定理;特點之三是它為我們提供了證明兩條線段相等的新方法,為以后的幾何學(xué)習(xí)提供了重要的證明和計算依據(jù),有助于培養(yǎng)學(xué)生思維的靈活性和廣闊性。所以本段教材承上啟下、至關(guān)重要。
2、教學(xué)目標的確定:
依據(jù)《數(shù)學(xué)課程標準》本段教材特點和學(xué)生已有的知識基礎(chǔ),我確定如下目標:
知識技能:理解掌握等腰三角形的判定。
數(shù)學(xué)思考:通過觀察、挖掘、歸納、證明等腰三角形的判定定理,發(fā)展學(xué)生的合情推理能力和演繹推理能力,發(fā)展學(xué)生證明用文字表達幾何命題的能力。
解決問題:滲透轉(zhuǎn)化、類比、數(shù)形結(jié)合的數(shù)學(xué)思想和方法;通過圖形變化,開拓學(xué)生思路,培養(yǎng)學(xué)生的視圖能力和發(fā)散思維能力。
情感態(tài)度:引導(dǎo)學(xué)生對圖形的觀察、發(fā)現(xiàn)、激發(fā)學(xué)生的好奇心和求知欲望,并在主動參與數(shù)學(xué)活動中獲得成功體驗。
3、重點:等腰三角形的判定定理及運用。
4、難點:證明定理時輔助線的作法。
三、教學(xué)方法及教學(xué)環(huán)境:
教學(xué)有法,教無定法,貴在得法。新課程理念強調(diào)我們的課程不僅是文本課程,更是體驗課程,它不再是知識的載體,而是教師和學(xué)生共同探究新知識的過程;使教學(xué)成為是一種對話、交往,一種溝通,是合作、共建,是以教促學(xué)、互教互學(xué)。基于以上考慮,結(jié)合本段教材特點和八年級學(xué)生的年齡特點,我選擇的教法是啟發(fā)、引導(dǎo)探究、練習(xí)相結(jié)合的方法,整堂課以教師為主導(dǎo),學(xué)生為主體,教師引導(dǎo)學(xué)生自主探究、合作交流并參與學(xué)生的學(xué)習(xí),給學(xué)生創(chuàng)造充分從事數(shù)學(xué)活動的機會,提供揭示數(shù)學(xué)規(guī)律的環(huán)境,培養(yǎng)學(xué)生積極進取,大膽參與的數(shù)學(xué)創(chuàng)新意識,幫助他們認識自我、建立信心,在獲得知識的同時真正體會到成功的樂趣。
教學(xué)環(huán)境的選擇:為彌補傳統(tǒng)幾何知識教學(xué)在直觀性和動態(tài)感等方面的不足,為了更有效地吸引學(xué)生的注意力,激發(fā)學(xué)生的興趣,啟迪學(xué)生思維,增加課堂容量,提高教學(xué)效率,本堂課選擇制作多媒體課件。
四、學(xué)法指導(dǎo):
1、通過本節(jié)課的學(xué)習(xí),使學(xué)生領(lǐng)會認識事物的一般方法:由具體到抽象,由一般到特殊,由感性到理性,從而形成良好的思維品質(zhì)和嚴謹?shù)乃季S習(xí)慣;通過圖形變化,開拓學(xué)生的思路,培養(yǎng)學(xué)生的發(fā)散思維能力,并能更好地用所學(xué)知識解決實際問題。
2、通過等腰三角形判定定理的學(xué)習(xí),向?qū)W生滲透轉(zhuǎn)化、類比、數(shù)形結(jié)合的數(shù)學(xué)思想和方法。
五、教學(xué)過程的設(shè)計:
1、復(fù)習(xí)提問,鞏固舊知
復(fù)習(xí)等腰三角形的性質(zhì)。
指明學(xué)生口頭回答:等邊對等角,三線合一。(配PPT說明)
(設(shè)計理念:通過學(xué)生回憶等腰三角形的性質(zhì),鞏固所學(xué)知識。為新授課打基礎(chǔ),同時為等腰三角形判定的證明做鋪墊,從而分散難點。)
2、結(jié)合實際,情境導(dǎo)入
思考:
如圖(1),位于在海上A、B兩處的兩艘救生船接到O處遇險船只的報警,當時測得∠A=∠B.如果這兩艘救生船以同樣的速度同時出發(fā),能不能大約同時趕到出事地點(不考慮風浪因素)?
(設(shè)計理念:此環(huán)節(jié)1分鐘,由書本實例引入,創(chuàng)設(shè)情境,激發(fā)興趣,通過學(xué)生觀察、思考,產(chǎn)生懸念,使學(xué)生從生活走進數(shù)學(xué),自然地滲透數(shù)學(xué)來源于實踐的思想。鼓勵學(xué)生大膽猜想,發(fā)現(xiàn)結(jié)論。)
以上實例,教師引導(dǎo)學(xué)生嘗試采用數(shù)形結(jié)合,由學(xué)生口頭表述,把實際問題轉(zhuǎn)換為數(shù)學(xué)模型,從而引出下一個環(huán)節(jié):
3、合作探究,完成證明
已知:如圖(2),在△ABC中,若∠B =∠C,
求證:AB=AC。(PPT配合)
分析:引導(dǎo)學(xué)生類比等腰三角形性質(zhì)定理的證明思路,添加輔助線,構(gòu)造以AB、AC為邊的兩個三角形,并證明它們相等。(利用證三角形全等是目前證明兩條線段相等的基本思路。)
從三種情況分析:
(1)作∠BAC的平分線;
(2)作BC邊上的高;
(3)作BC邊上的中線。
【學(xué)法指導(dǎo):作為全課難點,我安排8分鐘讓學(xué)生分成小組,充分討論,予以解決】
【預(yù)期成果:學(xué)生討論后,自己發(fā)現(xiàn):在性質(zhì)定理的證明過程中,三種輔助線作法均可;而這里只能過點A作AD⊥BC于D或作AD平分∠BAC,交BC于點D,即用(1)和(2),但是不能作BC邊上的中線,因為“SSA”不能直接作為三角形全等的判定,也無法利用其它輔助手段來證明。】
(設(shè)計理念:學(xué)生通過討論探索,產(chǎn)生思維碰撞,獲得對數(shù)學(xué)最深切的感受,體會成功的樂趣,發(fā)展思維能力,從而培養(yǎng)學(xué)生良好的思維品質(zhì)。進而完成本課難點的突破。)
4、及時反饋,強化認識
等腰三角形的性質(zhì)與判定的區(qū)別:
性質(zhì):等邊→等角
判定:等角→等邊
【學(xué)法指導(dǎo):組織學(xué)生采用比較、歸納的方法,讓學(xué)生充分認識:等腰三角形的性質(zhì)與判定的條件、結(jié)論的互逆性。從而更好地鞏固對兩則定理的理解、區(qū)別與識記,】
(設(shè)計理念:學(xué)生通過自主比較發(fā)現(xiàn),真正實現(xiàn)知識點的“再創(chuàng)造”過程,體會學(xué)習(xí)生成、觸類旁通之樂。)
5、例題分析,應(yīng)用引申
①例題分析:
求證:如果三角形一個外角的平分線平行于三角形的一邊,
那么這個三角形是等腰三角形。
設(shè)問:這是一個命題的證明,一般要有哪些步驟?
已知:如圖(3),∠CAE是△ ABC的外角,∠1=∠2,AD∥BC。
求證:AB=AC
分析:要證AB=AC,
↑
關(guān)鍵證∠B=∠C
↑
由已知∠1=∠2;AD∥BC。
證明:……
題目說明:此題為書本P52頁例2
【學(xué)法指導(dǎo):學(xué)生在課堂練習(xí)紙動筆嘗試:數(shù)形結(jié)合演練。前面等腰三角形性質(zhì)定理的學(xué)習(xí)中學(xué)生已有證明文字命題的經(jīng)驗,所以這里要求學(xué)生自己根據(jù)題意,分清題設(shè)、結(jié)論,畫圖并寫出已知和求證。此環(huán)節(jié)重點培養(yǎng)學(xué)生動手能力。】
【教師參與:在這里注意糾正學(xué)生不規(guī)范敘述。本題主要考察角平分線的性質(zhì)和判定“等角對等邊”的使用。提醒學(xué)生遇到外角考慮外角特性:①它與相鄰內(nèi)角互補;②它等于與它不相鄰的兩個內(nèi)角的和?!?/p>
(設(shè)計理念:發(fā)現(xiàn)性學(xué)習(xí),完全忽略接受性學(xué)習(xí)的課堂教學(xué),忽視教師對知識的系統(tǒng)講授,這樣會在培養(yǎng)學(xué)生學(xué)習(xí)的主動性和創(chuàng)造性的同時降低了學(xué)生的學(xué)習(xí)效率,破壞學(xué)生對系統(tǒng)知識的學(xué)習(xí)和掌握。這里我適時點撥啟發(fā),給學(xué)生以規(guī)范,通過證明培養(yǎng)學(xué)生良好的思維品質(zhì)。)
②小試牛刀
已知:如圖(4),AD∥BC,BD平分∠ABC.
求證:AB=AD.
【學(xué)法指導(dǎo):學(xué)生上黑板板演,全班交流評議?!?/p>
③拓展延伸(PPT呈現(xiàn))
已知:如圖(5),BI平分∠ABC,CI平分∠ACB,DE經(jīng)過點I,且DE∥BC.
(1)若AB=AC,則圖中有幾個等腰三角形?
(2)若AB≠AC,則線段DE與BD、CE之間有何數(shù)量關(guān)系?并說明理由。
(3)已知AB=5,AC =6,求△ADE的周長。
(設(shè)計理念:為拓展學(xué)生思維,我根據(jù)學(xué)生所學(xué),將10年一道中考題改編、組合。通過圖形變化,培養(yǎng)學(xué)生思維的靈活性和廣闊性。題目設(shè)計,力求有思考價值,有梯度,層層深入,步步遞進,既反映學(xué)生對基礎(chǔ)知識的掌握情況、基本技能的形成情況,又能激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生的心理達到一種“欲罷不能”的狀態(tài),更好地使學(xué)生運用所學(xué)數(shù)學(xué)知識解決數(shù)學(xué)問題,富有成就感。)
【學(xué)法教法:師生互動:教師引領(lǐng),學(xué)生參與,以自主、合作、探究等方法,重點培養(yǎng)學(xué)生聽、說、寫、評綜合能力。此環(huán)節(jié)10分鐘,力爭完成教學(xué)重點二?!?/p>
6、互動演練,鞏固成果
(設(shè)計靈感:我根據(jù)中央電視臺《非常6+1》設(shè)計了砸金蛋互動演練。八年級學(xué)生思維活躍,容易被新鮮事物所吸引,有強烈的好奇心、求知欲,教學(xué)中這一環(huán)節(jié),很好地激發(fā)了學(xué)生的參與熱情,將知識在娛樂中,在潛移默化間被學(xué)生所理解、所掌握,最終輕松實現(xiàn)本堂課教學(xué)重點。)
互動游戲:6個金蛋你可以任選一個,如果出現(xiàn)“恭喜你”的字樣,你將直接過關(guān);否則將有考驗?zāi)愕臄?shù)學(xué)問題,當然你可以自己作答,也可以求助你的同學(xué)。其中有5道數(shù)學(xué)問題和一個“恭喜你”過關(guān)字樣,5個問題如下:
(1)如圖(6),∠A=36°,∠DBC=36°,∠C=72°,分別計算∠1、∠2的度
數(shù),并說明圖中有哪些等腰三角形.
(2)如圖(7),把一張矩形的紙沿對角線折疊.重合部分是一個等腰三角形嗎?為什么?
(3)如圖(8),AC和BD相交于點O,且AB∥DC,OA=OB,求證:OC=OD.
(4)已知在直角坐標系中,點A(3,0),B(0,2),在x軸上找一點C,
使△ ABC為等腰三角形,這樣的點能找?guī)讉€?你能說出你的畫法嗎?
(5)如圖(9),標桿AB高5m,為了將它固定,需要由它的中
點C向地面上與點B距離相等的D,E兩點拉兩條繩子,使得點
D、B、E在一條直線上。量得DE=4m,繩子CD和CE要多長?
【學(xué)生活動:全班分為六組,推薦代表上臺參加游戲,最后評比獎勵?!?/p>
(題目說明:5道題目,充分考慮了難、中、易結(jié)合,游戲激趣的同時,使得全班學(xué)生能人人參與,人人有所收獲,體驗到成功帶來的快樂。)
7、課堂小結(jié),布置作業(yè)
小結(jié):
等腰三角形的判定
等腰三角形的性質(zhì)與判定的區(qū)別
作業(yè):
課本P56:第5、 7題
(設(shè)計理念:教師組織學(xué)生小結(jié),對小結(jié)過程及時調(diào)控,學(xué)生回憶所學(xué),語言歸納,理清知識,抓住重點,使本節(jié)課知識系統(tǒng)化,并體會數(shù)學(xué)思想方法。通過布置作業(yè),給學(xué)生以自由發(fā)展的空間,滿足多樣化的學(xué)習(xí)需求。)
六、板書設(shè)計:
12.3.1等腰三角形的判定:
一、判定定理:二、應(yīng)用:
如果一個三角形中有兩個角相等,
那么這兩個角所對的邊也相等。 【學(xué)生板演,解決問題】
(簡寫成“等角對等邊”)
【學(xué)生板演定理證明】
等腰三角形教案 篇6
教學(xué)內(nèi)容:
p.30~32
教材簡析:
本課認識等腰三角形和等邊三角形已經(jīng)它們的特征。教材先給出有兩條邊相等的銳角三角形、直角三角形和鈍角三角形各一個,讓學(xué)生量一量每個三角形各條邊的長,發(fā)現(xiàn)它們的共同特點是有兩條邊相等,然后概括等腰三角形的概念。接著通過用紙對折簡出等腰三角形,使學(xué)生進一步體會等腰三角形的特征。最后認識等腰三角形各部分的名稱,明確等腰三角形的兩個底角也相等。認識等邊深刻系的編排與等腰三角形類似,其中等邊三角形的3個角都相等的特征是讓學(xué)生在對折中發(fā)現(xiàn)的。
教學(xué)重點:
認識等腰三角形和等邊三角形以及它們的特征
教學(xué)目標:
1、讓學(xué)生在實際操作中認識等腰三角形和等邊三角形,知道等腰三角形邊和角的名稱,知道等腰三角形兩個底角相等,等邊三角形3個內(nèi)角相等。
2、讓學(xué)生在探索圖形特征以及相關(guān)結(jié)論的活動中,進一步發(fā)展空間觀念,鍛煉思維能力。
3、讓學(xué)生在學(xué)習(xí)活動中,進一步產(chǎn)生對數(shù)學(xué)的好奇心,增強動手能力和創(chuàng)新意識。
教學(xué)準備:
長方形、正方形紙,剪刀、尺等
教學(xué)過程:
一、復(fù)習(xí):關(guān)于三角形,你有那些知識?
1、按角分成三種角
2、三個內(nèi)角和是180度
算第三個角的度數(shù),如果是一般三角形,那就用180去減;如果是直角三角形,那就是90去減
二、認識等腰三角形
1、比較老師手邊的兩塊三角板,他們有什么相同?(都是直角三角形)
有什么不同?(其中有一塊三角板的兩條邊相等,兩個角相等;而另一塊三角板的角和邊都不相同。)
指出:像這種兩條邊相等的三角形,我們叫它等腰三角形
2、折一折、剪一剪
取一張長方形紙,對折;畫出它的對角線,沿對角線剪開;展開
觀察:這樣剪出來的三角形就是我們今天要認識的等腰三角形。想一想:為什么要對折后再剪呢?(這樣剪出來的兩條邊肯定是相等的。)
除了兩條邊是相等的,還有什么也是相等的?你是怎么知道的?
等腰三角形教案 篇7
教材分析
1、本小節(jié)內(nèi)容安排在第十四章“軸對稱”的第三節(jié)。等腰三角形是一種特殊的三角形,它是軸對稱圖形,可以借助軸對稱變換來研究等腰三角形的一些特殊性質(zhì)。這一節(jié)的主要內(nèi)容是等腰三角形的性質(zhì)與判定,以及等邊三角形的相關(guān)知識,重點是等腰三角形的性質(zhì)與判定,它是研究等邊三角形,是證明線段相等角相等的重要依據(jù),這也是全章的重點之一。
2、本節(jié)重在呈現(xiàn)一個動手操作得出概念、觀察實驗得出性質(zhì)、推理證明論證性質(zhì)的過程,學(xué)生通過學(xué)習(xí),既體會到一個觀察、實驗、猜想、論證的研究幾何圖形問題的全過程,又能夠運用等腰三角形的性質(zhì)解決有關(guān)的問題,提高運用知識和技能解決問題的能力。
學(xué)情分析
1、學(xué)生在此之前已接觸過等腰三角形,具有運用全等三角形的判定及軸對稱的知識和技能,本節(jié)教學(xué)要突出“自主探究”的特點,即教師引導(dǎo)學(xué)生通過觀察、實驗、猜想、論證,得出等腰三角形的性質(zhì),讓學(xué)生做學(xué)習(xí)的主人,享受探求新知、獲得新知的樂趣。
2、在與等腰三角形有關(guān)的一些命題的證明過程中,會遇到一些添加輔助線的問題,這會給學(xué)生的學(xué)習(xí)帶來困難。另外,以前學(xué)生證明問題是習(xí)慣于找全等三角形,形成了依賴全等三角形的思維定勢,對于可直接利用等腰三角形性質(zhì)的問題,沒有注意選擇簡便方法。
教學(xué)目標
知識技能:1、理解掌握等腰三角形的性質(zhì)。
2、運用等腰三角形的性質(zhì)進行證明和計算。
數(shù)學(xué)思考:1、觀察等腰三角形的對稱性,發(fā)展形象思維。
2、通過時間、觀察、證明等腰三角形性質(zhì),發(fā)展學(xué)生合情推理能力和演繹推理能力。
情感態(tài)度:引導(dǎo)學(xué)生對圖形的觀察、發(fā)現(xiàn),激發(fā)學(xué)生的好奇心和求知欲,并在運用數(shù)學(xué)知識解決問題的活動中獲取成功的體驗,建立學(xué)習(xí)的自信心。
教學(xué)重點和難點
重點:等腰三角形的性質(zhì)及應(yīng)用。
難點:等腰三角形的性質(zhì)證明。
等腰三角形教案 篇8
一、設(shè)計理念
《數(shù)學(xué)課程標準》指出:“數(shù)學(xué)是人們對客觀世界定性把握和定量刻畫,逐漸抽象概括,形成方法和理論,并進行廣泛應(yīng)用的過程”,“有效的數(shù)學(xué)學(xué)習(xí)活動不能單純地依賴模仿與記憶,動手實踐、自主探究與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式”。因此,在本節(jié)課的教學(xué)設(shè)計中,將始終體現(xiàn)以下教育教學(xué)理念:
1、突出體現(xiàn)數(shù)學(xué)課程的基礎(chǔ)性、普及性和發(fā)展性,使數(shù)學(xué)教育面向全體學(xué)生。
2、學(xué)生是學(xué)習(xí)的“主人”,教學(xué)活動要遵循數(shù)學(xué)學(xué)習(xí)的心理規(guī)律,從已有的生活經(jīng)驗出發(fā),讓學(xué)生親身經(jīng)歷將已有的實際問題抽象成數(shù)學(xué)模型,并解釋和應(yīng)用數(shù)學(xué)知識的過程。
3、教師是學(xué)習(xí)活動的組織者、引導(dǎo)者,教師應(yīng)組織和引導(dǎo)學(xué)生在自主探索、合作交流的過程中理解和掌握數(shù)學(xué)知識與技能、數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動經(jīng)驗。
4、聯(lián)系現(xiàn)實生活進行教學(xué),讓學(xué)生初步具有“數(shù)學(xué)知識來源于生活,應(yīng)用于生活”的思想,增強數(shù)學(xué)知識的應(yīng)用意識。
二、教材分析
1、教學(xué)內(nèi)容:
本節(jié)課是義務(wù)教育課程標準實驗教材數(shù)學(xué)八年級上冊第十四章第三節(jié)《等腰三角形》的第一課時的內(nèi)容——等腰三角形的性質(zhì),等腰三角形是一種特殊的三角形,它除了具有一般三角形的性質(zhì)以外,還具有一些特殊的性質(zhì)。它是軸對稱圖形,具有對稱性,本節(jié)課就是要利用對稱的知識來研究等腰三角形的有關(guān)性質(zhì),并利用全等三角形的知識證明這些性質(zhì)。
2、在教材中的地位與作用:
本節(jié)課是在學(xué)生掌握了一般三角形和軸對稱的知識,具有初步的推理證明能力的基礎(chǔ)上進行學(xué)習(xí)的,擔負著進一步訓(xùn)練學(xué)生學(xué)會分析、學(xué)會證明的任務(wù),在培養(yǎng)學(xué)生的思維能力和推理能力等方面有重要的作用;而“等邊對等角”和“三線合一”的性質(zhì)是今后論證兩個角相等、兩條線段相等、兩條直線垂直的重要依據(jù),本節(jié)課是第三課時研究等邊三角形的基礎(chǔ),是全章的重點之一。
3、教學(xué)目標:
知識技能:1、理解掌握等腰三角形的性質(zhì)。
2、運用等腰三角形的性質(zhì)進行證明和計算。
數(shù)學(xué)思考:1、觀察等腰三角形的對稱性,發(fā)展形象思維。
2、通過實踐、觀察、證明等腰三角形的性質(zhì),發(fā)展學(xué)生合情推理能力和演繹推理能力。
解決問題:1、通過觀察等腰三角形的對稱性,培養(yǎng)學(xué)生觀察、分析、歸納問題的能力。
2、通過運用等腰三角形的性質(zhì)解決有關(guān)的問題,提高運用知識和技能解決問題的能力,發(fā)展應(yīng)用意識。
情感態(tài)度:通過引導(dǎo)學(xué)生對圖形的觀察、發(fā)現(xiàn),激發(fā)學(xué)生的好奇心和求知欲,并在運用數(shù)學(xué)知識解答問題的活動中獲取成功的體驗,建立學(xué)習(xí)的自信心。
4、教學(xué)重點與難點:
重點:等腰三角形的性質(zhì)的探索和應(yīng)用。
難點:等腰三角形的性質(zhì)的驗證。
5、教學(xué)準備:CAI課件,長方形的紙片,剪刀,常用畫圖工具。
三、學(xué)情分析
八年級學(xué)生的抽象思維趨于成熟,形象直觀思維能力較強,具有一定的獨立思考、實踐操作、合作交流、歸納概括等能力,能進行簡單的推理論證,掌握了一般三角形和軸對稱的知識。因此,在本節(jié)課的教學(xué)中,可讓學(xué)生從已有的生活經(jīng)驗出發(fā),參與知識的產(chǎn)生過程,在實踐操作、自主探索、思考討論、合作交流等數(shù)學(xué)活動中,理解和掌握數(shù)學(xué)知識和技能,形成數(shù)學(xué)思想和方法,讓每個學(xué)生在數(shù)學(xué)上得到不同的發(fā)展,人人都獲得必需的數(shù)學(xué)。
四、教法設(shè)想
——讓學(xué)生參與教學(xué)過程,注重培養(yǎng)學(xué)生的建構(gòu)習(xí)慣,提高學(xué)生的數(shù)學(xué)素質(zhì)。
《新課程標準》要求課堂教學(xué)要充分體現(xiàn)以學(xué)生發(fā)展為本的精神,因此,在本節(jié)課的教學(xué)設(shè)計中,我采用了“問題情境——建立模型——解釋、應(yīng)用與拓展”的教學(xué)模式,讓學(xué)生經(jīng)歷知識的形成與應(yīng)用的過程,從而更好地理解數(shù)學(xué)知識的意義,掌握必要的基礎(chǔ)知識和基本技能,發(fā)展應(yīng)用數(shù)學(xué)知識的意識與能力,增強學(xué)好數(shù)學(xué)的愿望和信心。
在教學(xué)中,遵循因材施教的原則,堅持以學(xué)生為主體,靈活運用教具直觀教學(xué)、聯(lián)想發(fā)現(xiàn)教學(xué)、設(shè)疑思考和逐步滲透等教學(xué)方法,充分發(fā)揮學(xué)生的主觀能動性,注重學(xué)生探究能力的培養(yǎng),讓學(xué)生去親身體驗知識的產(chǎn)生過程,拓展學(xué)生的創(chuàng)造性思維,加強對學(xué)生的啟發(fā)、引導(dǎo)和鼓勵,培養(yǎng)學(xué)生大膽猜想、小心求證的科學(xué)研究思想,為學(xué)生創(chuàng)設(shè)情境,激發(fā)學(xué)生的求知欲和學(xué)習(xí)興趣,促使他們不斷克服學(xué)習(xí)中的被動心理,讓學(xué)生在輕松愉快的學(xué)習(xí)中掌握知識、發(fā)展智力、受到教育。
采用多媒體輔助教學(xué),呈現(xiàn)更直觀的形象,激發(fā)學(xué)生的積極性、主動性,增大課堂容量,提高教學(xué)效率。
五、學(xué)法設(shè)計
《數(shù)學(xué)課程標準》指出:數(shù)學(xué)的抽象結(jié)論,應(yīng)以觀察、實驗為前提,幾何教學(xué)應(yīng)該把實驗方法與邏輯分析結(jié)合起來。教學(xué)中,讓學(xué)生在教師的引導(dǎo)下,一邊進行折疊重合的模型演示,一邊進行閱讀討論,通過看、想、議、練等活動,自己“發(fā)現(xiàn)”等腰三角形的性質(zhì);從而避免了傳統(tǒng)教學(xué)中的灌輸式、注入式。這樣做有利于活躍學(xué)生的思維,幫助他們探本求源,體現(xiàn)了“學(xué)習(xí)任何東西的最好途徑是自己去發(fā)現(xiàn)”和“學(xué)問之道,問而得,不如求而得之深固也”的思想。把重點放在學(xué)生如何學(xué)這一方面,通過直觀演示得到感性認識,在實踐、觀察、討論、交流等活動中,讓學(xué)生經(jīng)歷由驗證歸納到推理論證的認知過程,掌握知識和技能,形成思想和方法,培養(yǎng)學(xué)生的造性思維。
六、教學(xué)過程設(shè)計
(一)回顧與思考(2′)
1、課件出示人字型屋頂?shù)膱D象,提問:(1)、屋頂設(shè)計成了哪種幾何圖形?(2)、它有什么特征?它是軸對稱圖形嗎?對稱軸是哪一條?(由日常生活中的等腰三角形引出課題,目的在于讓學(xué)生體會數(shù)學(xué)來源于生活,培養(yǎng)學(xué)生從實際問題中抽象出數(shù)學(xué)問題的能力,同時,為學(xué)習(xí)新知創(chuàng)造豐富的舊知環(huán)境,有利于幫助學(xué)生找準新舊知識的連接點,特別是問題(2),其實就是等腰三角形三線合一性質(zhì)的伏筆。)
2、學(xué)生思考回答后,教師再提問引入課題:等腰三角形還有其他的特殊性質(zhì)嗎?這節(jié)課我們就來研究等腰三角形的性質(zhì)。(現(xiàn)代教學(xué)論認為:在正式進行探索和發(fā)現(xiàn)前,要讓學(xué)生對探索的目標、意義有十分明確的認識,做好探索前的物質(zhì)準備和精神準備。)
(二)觀察與表達(4′)
剪一剪:教師引導(dǎo)學(xué)生將課前準備的長方形紙片按教材要求對折后剪下,再把它展開,看得到了一個什么圖形?(通過讓學(xué)生動手剪紙,獲得圖形的直觀感受,并為下面的折紙操作做好鋪墊,為學(xué)生提供參與數(shù)學(xué)活動的時間和空間,調(diào)動學(xué)生的主觀能動性,激發(fā)其好奇心和求知欲。)
想一想:1、剪紙過程中得到的⊿ABC有什么特點?
學(xué)生思考并交流意見,教師歸納并板書:在⊿ABC中,AB=AC,像這樣有兩邊相等的三角形叫等腰三角形。
再讓學(xué)生找一找生活中的等腰三角形。
2、除了剪紙的方法外,你還可以其他的方法作(畫)出等腰三角形嗎?
學(xué)生思考、討論、交流,教師在學(xué)生充分發(fā)表自己想法的基礎(chǔ)上給出等腰三角形的畫法,并畫出圖形,然后結(jié)合前面剪、畫的圖形介紹“腰”、“底邊”、“頂角”、“底角”等概念。(結(jié)合自已剪出的等腰三角形和畫出的圖形學(xué)習(xí)相關(guān)概念,加深印象。)
(三)了解與探究(14′)
1、提問:剛才剪出的等腰三角形ABC是軸對稱圖形嗎?它的對稱軸是什么?
學(xué)生思考、回顧剪紙過程,動手把等腰三角形ABC沿折痕對折,容易回答出⊿ABC是軸對稱圖形,折痕AD所在的直線是它的對稱軸。(讓學(xué)生認識到動手操作也是一種驗證方式。)
2、把剪出的等腰三角形ABC沿折痕對折,找出其中重合的線段和角,并填在書上的表格中,你發(fā)現(xiàn)了什么現(xiàn)象?能猜一猜等腰三角形ABC有哪些性質(zhì)嗎?
①∠B=∠C →兩個底角相等
②BD=CD →AD為底邊BC上的中線
③∠BAD=∠CAD →AD為頂角∠BAC的平分線
④∠ADB=∠ADC=90°→AD為底邊BC上的高
教師在學(xué)生猜想的基礎(chǔ)上,引導(dǎo)學(xué)生觀察、完善、歸納出性質(zhì)1和性質(zhì)2:
性質(zhì)1等腰三角形的兩個底角相等(簡寫成“等邊對等角”);
性質(zhì)2等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合(簡寫成“三線合一”)
(通過教師的引導(dǎo),學(xué)生利用等腰三角形的對稱性,討論、歸納出等腰三角形的兩條性質(zhì),在這個過程中訓(xùn)練學(xué)生文字語言與符號語言的互換,培養(yǎng)學(xué)生自主探究的學(xué)習(xí)品質(zhì)和觀察分析、歸納概括的能力,發(fā)展形象思維。)
3、用全等三角形的知識驗證等腰三角形的性質(zhì)
(1)性質(zhì)1(等腰三角形的兩個底角相等)的條件和結(jié)論分別是什么?用數(shù)學(xué)符號如何表達條件和結(jié)論?如何證明?
教師引導(dǎo)學(xué)生根據(jù)猜想的結(jié)論畫出相應(yīng)的圖形,寫出已知和求證,師生共同分析證明思路,強調(diào)以下兩點:
①利用三角形的全等來證明兩角相等,為證∠B=∠C,需證明以∠B、∠C為元素的兩個三角形全等,需要添加輔助線構(gòu)造符合證明要求的兩個三角形。
②添加輔助線的方法有很多種,常見的有作頂角∠BAC的平分線,或作底邊BC上的中線,或作底邊BC上的高等,讓學(xué)生選擇一種輔助線并完成證明過程。
(2)回顧性質(zhì)1的證明方法,你能用這種方法證明性質(zhì)2(等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合)嗎?
讓學(xué)生模仿證明性質(zhì)2,并鼓勵學(xué)生用多種方法證明。
(等腰三角形的性質(zhì)的探索與驗證是本節(jié)課的重點和難點,本環(huán)節(jié)中,充分調(diào)動學(xué)生的主觀能動性,讓學(xué)生大膽猜想、小心求證,經(jīng)歷性質(zhì)證明的過程,增強理性認識,體驗性質(zhì)的正確性和輔助線在幾何論證中的作用,在學(xué)生的自主探索中,完成了重點知識的教學(xué),突破了教學(xué)難點,培養(yǎng)了學(xué)生的合情推理能力和演繹推理的能力。)
(四)應(yīng)用與提高(10′)
1、課件出示:某房屋的頂角∠BAC=120°,過屋頂A的立柱AD⊥BC,屋椽AB=AC,求頂架上的∠B、∠C、∠CAD的度數(shù)。
(本節(jié)課從居民建筑人字梁結(jié)構(gòu)中抽象出幾何問題,通過實踐探究活動得出等腰三角形的性質(zhì)這一結(jié)論,在此,再將得到的結(jié)論應(yīng)用到實踐中,解決人字梁結(jié)構(gòu)中的實際問題,這樣既有前后呼應(yīng),又體現(xiàn)了“數(shù)學(xué)來源于生活,應(yīng)用于生活”的思想,有利于增強學(xué)生的數(shù)學(xué)應(yīng)用意識。)
⑴∵AB=AC,AD⊥BC
∴∠_=∠_,_=_;
⑵∵AB=AC,BD=DC
∴∠_=∠_,_⊥_;
⑶∵AB=AC,AD平分∠BAC
∴_⊥_,_=_
(讓學(xué)生再次理解和運用等腰三角形的“三線合一”性質(zhì),以填空的形式及時鞏固所學(xué)知識,了解學(xué)生的學(xué)習(xí)效果,增強學(xué)生應(yīng)用知識的能力。)
3、課件出示:如圖(二),在⊿ABC中,AB=AC,點D在AC上,
且BD=AD,
⑴圖中共有幾個等腰三角形?分別寫出它們的頂角與底角;
⑵你能求出各角的度數(shù)嗎?
師生共同分析:⑴已知中沒有給出角度,需利用三角形內(nèi)角和為180°的條件來求具體度數(shù),但由于未知數(shù)過多,需根據(jù)已知各邊的關(guān)系尋找到⊿ABC的各角關(guān)系,由圖中的三個等腰三角形的底角及外角性質(zhì),可設(shè)∠A=X°,列方程解決。⑵強調(diào)此題圖形特殊,只有頂角為36°的等腰三角形才能滿足。
(改編課本例題,使問題更富層次性與探究性,使學(xué)生認識到從復(fù)雜圖形中分解出等腰三角形是利用性質(zhì)解決問題的關(guān)鍵,培養(yǎng)學(xué)生數(shù)形結(jié)合的能力和方程的思想。)
等腰三角形的性質(zhì)的應(yīng)用,是這節(jié)課的又一重點,本環(huán)節(jié)就是通過運用這一性質(zhì)解決有關(guān)問題,讓學(xué)生在解答活動中提高運用知識和技能的能力,在掌握重點知識的同時,獲得成功的體驗,建立學(xué)習(xí)的自信心。
(五)拓展與延伸(5′)
⑴等腰三角形底邊中點到兩腰的距離相等嗎?
教師指導(dǎo)學(xué)生動手畫圖,折紙,思考,討論得出結(jié)論,并用適當?shù)姆椒炞C這一結(jié)論。
⑵利用類似的方法,還可以得到等腰三角形中哪些線段相等?
教師引導(dǎo)學(xué)生尋找等腰三角形中其他相等的線段,如:兩腰上的高,兩腰上的中線,兩底角的平分線等。
(通過學(xué)生動手實踐,增強學(xué)生動手能力,引導(dǎo)學(xué)生合作探究,更深入地認識等腰三角形和性質(zhì),啟迪學(xué)生的發(fā)散思維。)
(六)心得與體會(4′)
這節(jié)課我們主要研究了什么內(nèi)容?你有哪些收獲?
請用“通過今天這堂課的研究,我明白了(),我的收獲與感受有(),我還有疑惑之處是()”的模式來總結(jié)、評價這堂課的學(xué)習(xí)。
(讓學(xué)生按上述的模式進行小結(jié),通過對本節(jié)課的回顧,增強學(xué)生對等腰三角形的理解和對軸對稱圖形的理解,培養(yǎng)學(xué)生“學(xué)習(xí)、總結(jié)、學(xué)習(xí)、反思”的良好習(xí)慣,同時通過自我的評價來獲得成功的快樂,提高學(xué)生學(xué)習(xí)的自信心。)
(七)練習(xí)與作業(yè)(1′)
1、略(詳見課件);
2、教科書習(xí)題14.3第1、4、6題;
3、教科書第143頁練習(xí)題1、2、3。
(讓學(xué)生體會等腰三角形的性質(zhì)在現(xiàn)實生活中的應(yīng)用價值,學(xué)會用數(shù)學(xué)知識解決實際問題,進一步鞏固所學(xué)知識,及時反饋,查漏補缺,分層次布置作業(yè),滿足不同學(xué)生的發(fā)展需求,體現(xiàn)層次性和開放性。)
設(shè)計思想:
現(xiàn)代數(shù)學(xué)教學(xué)觀念要求學(xué)生從“學(xué)會”向“會學(xué)”轉(zhuǎn)變。所以本節(jié)課在教學(xué)方法的設(shè)計上,把重點放在了逐步展示知識的形成過程上,先讓學(xué)生通過剪紙來認識等腰三角形;再通過折紙、猜測、驗證等腰三角形的性質(zhì);然后運用全等三角形的知識加以論證,在教學(xué)設(shè)計中遵循由個別形象到一般抽象、由感性到理性的認知規(guī)律,使學(xué)生的思維由形象直觀過渡到抽象的邏輯演繹,層層展開,步步深入,真正實現(xiàn)學(xué)生為主體的教學(xué)宗旨。在教學(xué)設(shè)計中還突出了三個注重:1、注重讓學(xué)生參與知識的形成過程,體現(xiàn)應(yīng)用數(shù)學(xué)知識解決問題的樂趣;2、注重師生間、學(xué)生間的互動協(xié)作,共同提高;3、注重知能統(tǒng)一,讓學(xué)生在獲取知識的同時,掌握方法,靈活運用。
等腰三角形教案 篇9
一、說教材分析:
1. 教材內(nèi)容:
本課是九年義務(wù)教育課程標準實驗教科書七年級(下)9.3章等腰三角形,本課內(nèi)容在初中數(shù)學(xué)教學(xué)中起著比較重要的作用。通過等腰三角形的特征反映在一個三角形中等邊對等角關(guān)系,并且對軸對稱圖形特征的直觀反映(三線合一),對以后直角三角形和相似三角形學(xué)習(xí)起到相當重要的作用。
2、教學(xué)目標:
(1)認知目標:
要求學(xué)生掌握等腰三角形的特征和三線合一的特征,使學(xué)生會用等腰三角形的特征進行證明或計算,逐步滲透幾何證題的基本方法:分析法和綜合法;
(2)能力目標:培養(yǎng)觀察能力、分析能力、聯(lián)想能力、表達能力;使學(xué)生初步學(xué)會分析幾何證明題的思路,從而提高學(xué)生的邏輯思維能力及分析問題、解決問題的能力;
(3)情感目標:通過親自動手,發(fā)現(xiàn)“等腰三角形兩底角相等”和“三線合一”特征,對學(xué)生進行數(shù)學(xué)美育教育。
3、教學(xué)重難點:
(1)教學(xué)重點:
等腰三角形兩底角相等的特征是本課的重點。
(2)教學(xué)難點:
等腰三角形“三線合一”特征的運用是本課的難點。
4、教具準備:
為了使學(xué)生了解這堂課,本節(jié)課要求學(xué)生自制若干個不同等腰三角形和一般性三角形紙片模型。
二、說教學(xué)方法:
由于七年級學(xué)生的理解能力和思維特征,他們往往需要依賴直觀具體形象的圖形的年齡特點,以及七年級學(xué)生剛剛學(xué)習(xí)軸對稱圖形,對軸對稱圖形的分析相對比較好,再加上七年級學(xué)生思維的感官性,所以本課由學(xué)生通過翻折等腰三角形紙片去發(fā)現(xiàn)等腰三角形的兩個特征,也為使課堂生動、有趣、高效,特將整節(jié)課以觀察、思考、討論貫穿于整個教學(xué)環(huán)節(jié)之中,我通過實驗觀察,采用教具直觀教學(xué)法,啟發(fā)式教學(xué)法和師生互動式教學(xué)模式進行教學(xué)。
教學(xué)過程中注意師生之間的情感交流,培養(yǎng)學(xué)生“多觀察、動腦想、大膽猜、勤鉆研”的研討式學(xué)習(xí)模式,培養(yǎng)學(xué)生的數(shù)形結(jié)合的思想。對于等腰三角形的“兩底角相等”和“三線合一”這兩個特征,通過讓學(xué)生動手操作,讓學(xué)生翻折不同的等腰三角形,如頂角是銳角、鈍角或直角的等腰三角形,以及一般三角形的模版,從而讓學(xué)生逐步通過等腰三角形的軸對稱變換探索出相關(guān)的特征。針對“三線合一”這一特征,學(xué)生不容易引起重視,而它又是本課的難點和今后的廣泛應(yīng)用,故在教學(xué)中適當補充例題進行教學(xué),重在引起學(xué)生對這一特征的鞏固和掌握.
為充分發(fā)揮學(xué)生的主體性和教師的主導(dǎo)輔助作用,教學(xué)過程中設(shè)計了七個教學(xué)環(huán)節(jié):
(一)、溫故知新,激發(fā)情趣
(二)、構(gòu)設(shè)懸念,創(chuàng)設(shè)情境
(三)、目標導(dǎo)向,自然引入
(四)、設(shè)問質(zhì)疑,探究嘗試
(五)、啟發(fā)誘導(dǎo),初步運用
(六)、歸納小結(jié),強化思想
(七)、布置作業(yè),引導(dǎo)預(yù)習(xí)
三、說學(xué)生學(xué)法:
⑴知識掌握上,七年級學(xué)生在小學(xué)階段已經(jīng)接觸了三角形和等腰三角形的相關(guān)知識以及剛剛學(xué)習(xí)軸對稱圖形和三角形內(nèi)容,再加上七年級學(xué)生對于圖形的直觀性容易接受,所以本課安排學(xué)生通過翻折等腰三角形去發(fā)現(xiàn)等腰三角形的兩個特征不存在太大的問題.
⑵學(xué)生學(xué)習(xí)本節(jié)課的知識障礙:學(xué)習(xí)等腰三角形的兩底角相等和三線合一的應(yīng)用有難度,學(xué)生不易靈活應(yīng)用,容易造成應(yīng)用中的掉三落四的現(xiàn)象,所以教學(xué)中靈活結(jié)合學(xué)生練習(xí)中可能存在的問題,進行簡單明了、深入淺出的分析講解。
⑶七年級學(xué)生的理解能力和思維特征以及生理特征,學(xué)生好動性,注意力易分散,愛發(fā)表見解,希望得到老師的表揚等特點,所以在教學(xué)中靈活抓住學(xué)生這一生理心理特點,一方面運用直觀生動的形象,引發(fā)學(xué)生的興趣,使他們的注意力始終集中在課堂上;另一方面積極創(chuàng)造條件和機會,讓學(xué)生發(fā)表見解,發(fā)揮學(xué)生學(xué)習(xí)的主動性。
⑷在心理上,老師抓住學(xué)生對數(shù)學(xué)課興趣這有利因素,引導(dǎo)學(xué)生認識到數(shù)學(xué)的科學(xué)性和應(yīng)用性,學(xué)好數(shù)學(xué)有利于其他學(xué)科的學(xué)習(xí)以及學(xué)科知識的滲透性。
四、說教學(xué)程序設(shè)計:
(一)、溫故知新,激發(fā)情趣:
1、軸對稱圖形的有關(guān)概念,什么樣的三角形叫做等腰三角形?
2、指出等腰三角形的腰、底邊、頂角、底角。
(首先教師提問了解前置知識掌握情況,學(xué)生動腦思考、口答。)
(二) 、構(gòu)設(shè)懸念,創(chuàng)設(shè)情境:
3、一般三角形有哪些特征? (三條邊、三個內(nèi)角、高、中線、角平分線)
4、等腰三角形除具有一般三角形的特征外,還有那些特殊特征?
(把問題3作為教學(xué)的出發(fā)點,激發(fā)學(xué)生的學(xué)習(xí)興趣。問題4給學(xué)生留下懸念。)
(三)、目標導(dǎo)向,自然引入:
本節(jié)課我們一起研究——9.3 等腰三角形
(板書課題) 9.3 等腰三角形 (了解本節(jié)課的學(xué)習(xí)內(nèi)容)
三角形的內(nèi)角和教案六篇
居安思危,思則有備,有備無患。杰出的幼兒教學(xué)工作者能使孩子們充分的學(xué)習(xí)吸收到課本知識,為了將學(xué)生的效率提上來,老師會準備一份教案,教案有利于老師在課堂上與學(xué)生更好的交流。幼兒園教案的內(nèi)容要寫些什么更好呢?有請駐留片刻,小編為你推薦三角形的內(nèi)角和教案六篇,但愿對你的學(xué)習(xí)工作帶來幫助。
三角形的內(nèi)角和教案(篇1)
(一)創(chuàng)設(shè)情境,懸念引入
一堂新課的引入是老師與學(xué)生交往活動的開始,是學(xué)生學(xué)習(xí)新知識的心理鋪墊,是拉近師生之間的距離,破除疑難心理、乏味心理的`關(guān)鍵。一個成功的引入,是讓學(xué)生感覺到他熟知的生活,可使學(xué)生迅速投入到課堂中來,對知識在最短的時間內(nèi)產(chǎn)生極大的興趣和求知欲,接下來教學(xué)活動將成為他們樂此不疲的快事了。
具體做法:拋出問題:“學(xué)校后勤部折疊長梯(電腦顯示圖形)打開時頂端的角是多少度呢?一名學(xué)生測出了兩個梯腿與地面的成角后,立即說出了答案,你知道其中的道理嗎?”待學(xué)生思考片刻后,我因勢利導(dǎo),指出學(xué)習(xí)了本節(jié)課你便能夠回答這個問題了。從而引入新課。
(二)探索新知
1、動手實踐,嘗試發(fā)現(xiàn):要求學(xué)生將事先準備好的三角形紙板按線剪開,然后用剪下的∠A、∠B與完整的三角形紙板中的∠C拼圖,使三者頂點重合,問能發(fā)現(xiàn)怎樣的現(xiàn)象?有的學(xué)生會發(fā)現(xiàn),三者拼成一個平角。此時讓學(xué)生互相觀察拼圖,驗證結(jié)果。從觀察交流中,互學(xué)方法,達到生生互動。待交流充分,分小組張貼所拼圖形,教師點評,總結(jié)分類,將所拼圖形分為∠A、∠B分別在∠C同側(cè)和兩側(cè)兩種情況。對有合作精神的小組給與表揚。
(將拼圖展示在黑板上)
2、嘗試猜想:教師提問,從活動中你有怎樣的發(fā)現(xiàn)?采取組內(nèi)交流的方式,產(chǎn)生思維碰撞。此時我走到學(xué)生中去,對有困難的小組給與適當?shù)囊龑?dǎo)。之后由學(xué)生匯報組內(nèi)的發(fā)現(xiàn)。即三角形三個內(nèi)角的和等于180度。
3、證明猜想:先幫助學(xué)生回憶命題證明的基本步驟,然后讓學(xué)生獨立完成畫圖、寫出已知、求證的步驟,其他同學(xué)補充完善。下面讓學(xué)生對照剛才的動手實踐,分小組探求證明方法。此環(huán)節(jié)應(yīng)留給學(xué)生充分的思考、討論、發(fā)現(xiàn)、體驗的時間,讓學(xué)生在交流中互取所長,合作探索,找到證明的切入點,體驗成功。對有困難的學(xué)生要多加關(guān)注和指導(dǎo),不放棄任何一個學(xué)生,借此增進教師與學(xué)有困難學(xué)生之間的關(guān)系,為繼續(xù)學(xué)習(xí)奠定基礎(chǔ)。合作探究后,匯報證明方法,注意規(guī)范證明格式。此處自然的引入輔助線的概念。但要說明,添加輔助線不是盲目的,而是為了證明某一結(jié)論,需要引用某個定義、公理、定理,但原圖形不具備直接使用它們的條件,這時就需要添輔助線創(chuàng)造條件,以達到證明的目的。
4、學(xué)以致用,反饋練習(xí)
(1)在△ABC中,已知∠A=80°,能否知∠B+∠C的度數(shù)?
解:∵∠A+∠B+∠C=180°(三角形內(nèi)角和定理)
∴∠B+∠C=100°在△ABC中,
(2)已知:∠A=80°,∠B=52°,則∠C=?
解:∵∠A+∠B+∠C=180°(三角形內(nèi)角和定理)
又∵∠A=80°∠B=52°(已知)
∴∠C=48°
(3)在△ABC中,已知∠A=80°,∠B—∠C=40°,則∠C=?
(4)已知∠A+∠B=100°,∠C=2∠A,能否求出∠A、∠B、∠C的度數(shù)?
(5)在△ABC中,已知∠A:∠B:∠C=1:3:5,能否求出∠A、∠B、∠C的度數(shù)?
解:設(shè)∠A=x°,則∠B=3x°,∠C=5x°
由三角形內(nèi)角和定理得,x+3x+5x=180
解得,x=20
∴∠A=20°∠B=60°∠C=100°
(6)已知在△ABC中,∠C=∠ABC=2∠A,求(1)∠B的度數(shù)?(2)若BD是AC邊上的高,∠DBC的度數(shù)?
第(6)題是書中例題的改用,此題由輔助線輔助課件打出,給學(xué)生以圖形由簡單到繁的直觀演示。
通過這組練習(xí)滲透把圖形簡單化的思想,繼續(xù)滲透統(tǒng)一思想,用代數(shù)方法解決幾何問題。
5、鞏固提高,以生為本
(1)如圖:B、C、D在一條直線上,∠ACD=105°,且∠A=∠ACB,則∠B=——度。
(2)如圖AD是△ABC的角平分線,且∠B=70°,∠C=25°,則∠ADB=——度,∠ADC=——度。
本組練習(xí)是三角形內(nèi)角和定理與平角定義及角平分線等知識的綜合應(yīng)用。能較好的培養(yǎng)學(xué)生的分析問題、解決問題的能力,有助于獲得一些經(jīng)驗。
6、思維拓展,開放發(fā)散
如圖,已知△PAD中,∠APD=120°,B、C為AD上的點,△PBC為等邊三角形。試盡可能多地找出各幾何量之間的相互關(guān)系。
本題旨在激發(fā)學(xué)生獨立思考和創(chuàng)新意識,培養(yǎng)創(chuàng)新精神和實踐能力,發(fā)展個性思維。
(三)歸納總結(jié),同化順應(yīng)
1、學(xué)生談體會
2、教師總結(jié),出示本節(jié)知識要點
3、教師點評,對學(xué)生在課堂上的積極合作,大膽思考給與肯定,提出希望。
(四)作業(yè)
1、必做題:習(xí)題3.1第10、11、12題
2、選做題:習(xí)題3.1第13、14題
(五)板書設(shè)計
三角形內(nèi)角和
學(xué)生拼圖展示已知:求證:
證明:開放題:
三角形的內(nèi)角和教案(篇2)
“三角形內(nèi)角和”教學(xué)設(shè)計
教學(xué)內(nèi)容:義務(wù)教育教科書《數(shù)學(xué)》(人教版) 四年級下冊第67頁例6。 教學(xué)目標:
1.讓學(xué)生親自動手,通過量、剪、拼等活動發(fā)現(xiàn)、證實三角形內(nèi)角和是180°,并會應(yīng)用這一知識解決生活中簡單的實際問題。
2.讓學(xué)生在動手獲取知識的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識、探索精神和實踐能力。并通過動手操作把三角形內(nèi)角和轉(zhuǎn)化為平角的探究活動,向?qū)W生滲透“轉(zhuǎn)化”數(shù)學(xué)思想。
3.使學(xué)生體驗成功的喜悅,激發(fā)學(xué)生主動學(xué)習(xí)數(shù)學(xué)的興趣。 教學(xué)重點:
學(xué)生經(jīng)歷“三角形內(nèi)角和是180°”這一知識的形成、發(fā)展和應(yīng)用的全過程。 教學(xué)難點:
學(xué)生理解不同探究方法的內(nèi)涵和對所得結(jié)論的靈活運用。 設(shè)計思路:
三角形的內(nèi)角和是三角形的一個重要特征,它是在學(xué)生已經(jīng)熟悉長方形、平角等有關(guān)知識,并掌握了三角形的特征及分類之后的基礎(chǔ)上學(xué)習(xí)的。四年級的學(xué)生已具備了初步的動手操作能力、主動探究能力以及合作學(xué)習(xí)的習(xí)慣,他們正處于由形象思維向抽象思維過渡的階段?!墩n標》明確指出“要結(jié)合有關(guān)內(nèi)容的教學(xué),引導(dǎo)學(xué)生進行觀察、操作、猜想,培養(yǎng)學(xué)生初步的思維能力”。因此,這節(jié)課我將重點引導(dǎo)學(xué)生從“猜測—驗證—得出結(jié)論”展開學(xué)習(xí)活動,讓學(xué)生感受這種重要的思維方式。并在教學(xué)中滲透“從特殊到一般”、“利用舊知解決新知”、“進行轉(zhuǎn)化”等數(shù)學(xué)思想。
同時借助交互式電子白板的畫圖、手寫、圖片處理、屏幕捕獲、隱藏、拖拽、鏈接及較好的交互功能等,讓學(xué)生通過自主探索、實驗、發(fā)現(xiàn)、討論、交流獲得知識,形成結(jié)論。
教學(xué)準備:多媒體課件、三角尺等。 教學(xué)過程:
一、激趣引入
(一)認識三角形內(nèi)角
師:我們已經(jīng)認識了什么是三角形,誰能說出三角形有什么特點? 生1:三角形是由三條線段圍成的圖形。 生2:三角形有三個角,……
師:請看屏幕(課件演示三條線段圍成三角形的過程)。
師:三條線段圍成三角形后,在三角形內(nèi)形成了三個角,(白板:畫弧線,標上∠
1、∠
2、∠3),我們把三角形里面的這三個角分別叫做三角形的內(nèi)角。 (利用交互式電子白板的畫圖、手寫功能,直接演示找三角形三個內(nèi)角的過程并標示出來,幫助學(xué)生理解三角形的內(nèi)角的概念。)
(二)設(shè)疑,激發(fā)學(xué)生探究新知的心理 師:請同學(xué)們幫老師畫一個三角形,能做到嗎?(激發(fā)學(xué)生主動學(xué)習(xí)的心理) 生:能。 師:請聽要求,畫一個有兩個內(nèi)角是直角的三角形,開始。 師:有誰畫出來啦? 生1:不能畫。
生2:只能畫兩個直角,圍不成三角形。 生3:只能畫長方形。
師(課件演示):是不是畫成這個樣子了?哦,只能畫兩個直角。 師:問題出現(xiàn)在哪兒呢?這一定有什么奧秘?想不想知道? 生:想。
師:那就讓我們一起來研究吧! (揭示矛盾,巧妙引入新知的探究)
(利用交互式電子白板的畫圖、手寫功能,讓學(xué)生直觀感受三角形中不可能有2個90度的內(nèi)角。設(shè)置認知矛盾,使學(xué)生在矛盾中去發(fā)現(xiàn)問題、探究問題。)
二、動手操作,探究新知
(一)研究特殊三角形的內(nèi)角和
師:請看屏幕。(播放課件)熟悉這副三角板嗎?請拿出形狀與這塊一樣的三角板,并同桌互相指一指各個角的度數(shù)。(課件閃動其中的一塊三角板)
生:90°、60°、30°。(課件演示:由三角板抽象出三角形) 師:也就是這個三角形各角的度數(shù)。它們的和怎樣? 生:是180°。
師:你是怎樣知道的?
生:90°+60°+30°=180°。
師:對,把三角形三個內(nèi)角的度數(shù)合起來就叫三角形的內(nèi)角和。
師:(課件演示另一塊三角板的各角的度數(shù)。)這個呢?它的內(nèi)角和是多少度呢?
生:90°+45°+45°=180°。
師:從剛才兩個三角形內(nèi)角和的計算中,你發(fā)現(xiàn)什么? 生1:這兩個三角形的內(nèi)角和都是180°。
生2:這兩個三角形都是直角三角形,并且是特殊的三角形。 (利用交互式電子白板的手寫功能,直接在由三角板抽象出來的三角形上標出各個角的度數(shù)并列式求出其內(nèi)角和。)
(二)研究一般三角形內(nèi)角和 1.猜一猜。
師:猜一猜其它三角形的內(nèi)角和是多少度呢?同桌互相說說自己的看法。 生1:180°。 生2:不一定。 ……
2.操作、驗證一般三角形內(nèi)角和是180°。 (1)小組合作、進行探究。
師:所有三角形的內(nèi)角和究竟是不是180°,你能用什么辦法來證明,使別人相信呢?
生:可以先量出每個內(nèi)角的度數(shù),再加起來。
師:哦,也就是測量計算,是嗎?那就請四人小組共同研究吧! 師:每個小組都有不同類型的三角形。每種類型的三角形都需要驗證,先討論一下,怎樣才能很快完成這個任務(wù)。(課前每個小組都發(fā)有銳角三角形、直角三角形、鈍角三角形,指導(dǎo)學(xué)生選擇解決問題的策略,進行合理分工,提高效率。)
(2)小組匯報結(jié)果。
師:請各小組匯報探究結(jié)果。 生1:180°。 生2:175°。 生3:182°。 ……
(三)繼續(xù)探究
師:沒有得到統(tǒng)一的結(jié)果。這個辦法不能使人很信服,怎么辦?還有其它辦法嗎?
生1:有。
生2:用拼合的辦法,就是把三角形的三個內(nèi)角放在一起,可以拼成一個平角。
師:怎樣才能把三個內(nèi)角放在一起呢? 生:把它們剪下來放在一起。 1.用拼合的方法驗證。
師:很好,請用不同的三角形來驗證。
師:小組內(nèi)完成,仍然先分工怎樣才能很快完成任務(wù),開始吧。 2.匯報驗證結(jié)果。
師:先驗證銳角三角形,我們得出什么結(jié)論?
生1:銳角三角形的內(nèi)角拼在一起是一個平角,所以銳角三角形的內(nèi)角和是180°。
生2:直角三角形的內(nèi)角和也是180°。 生3:鈍角三角形的內(nèi)角和還是180°。 3.課件演示驗證結(jié)果。
師:請看屏幕,老師也來驗證一下,是不是跟你們得到的結(jié)果一樣?(播放課件)
(此部分內(nèi)容是本節(jié)課的重點及難點所在,因此,在教學(xué)中:
1、利用交互式電子白板資源共享中即時顯示度數(shù)的量角器,令學(xué)生上臺演示量三角形各個角的大小的操作變得更簡單、準確。增強了師生及生生之間的互動性。
2、利用交互式電子白板強大的鏈接功能,將網(wǎng)絡(luò)資源鏈接過來:動畫形象演示“拼”的方法驗證三角形內(nèi)角和的過程,彌補了人工操作無法直觀再現(xiàn)學(xué)生的思維過程的短處。通過以上兩點,將學(xué)生在研究三角形內(nèi)角和為什么是180°的思維過程呈現(xiàn)出來,達到突出重點以及突破難點的目的。) 師:我們可以得出一個怎樣的結(jié)論? 生:三角形的內(nèi)角和是180°。
(屏幕顯示:三角形的內(nèi)角和是180°學(xué)生齊讀一遍。)
(利用交互式電子白板的隱藏、拖拽功能,將結(jié)論在適當?shù)臅r候呈現(xiàn)。)
師:為什么用測量計算的方法不能得到統(tǒng)一的結(jié)果呢? 生1:量的不準。
生2:有的量角器有誤差。 師:對,這就是測量的誤差。
三、解決疑問。
師:現(xiàn)在誰能說說不能畫出有兩個直角的一個三角形的原因?(讓學(xué)生體驗成功的喜悅)
生:因 為三角形的內(nèi)角和是180°,在一個三角形中如果有兩個直角,它的內(nèi)角和就大于180°。
師:在一個三角形中,有沒有可能有兩個鈍角呢? 生:不可能。 師:為什么?
生:因為兩個銳角和已經(jīng)超過了180°。 師:那有沒有可能有兩個銳角呢?
生:有,在一個三角形中最少有兩個內(nèi)角是銳角。
四、應(yīng)用三角形的內(nèi)角和解決問題。
1.看圖求出未知角的度數(shù)。(知識的直接運用,數(shù)學(xué)信息很淺顯)
2.按要求計算。(數(shù)學(xué)信息較為隱藏和生活中的實際問題)
(
1、利用交互式電子白板的屏幕捕獲、鏈接等功能,讓練習(xí)逐步呈現(xiàn),讓學(xué)生解決問題時更加專注。
2、利用交互式電子白板的手寫功能,將學(xué)生解決問題的多種方法同時呈現(xiàn),進行對比,加強了師生及生生之間的互動交流。)
五、全課小結(jié)。
師:今天你學(xué)到了哪些知識?是怎樣獲取這些知識的?(學(xué)生自由發(fā)言) (利用交互式電子白板的即時記憶功能,用課堂生成的課件資源回顧總結(jié),便于學(xué)生再次回顧課堂學(xué)習(xí)過程,明確學(xué)習(xí)所得。)
三角形的內(nèi)角和教案(篇3)
【設(shè)計理念】
新課標重視讓學(xué)生經(jīng)歷數(shù)學(xué)知識的形成過程,要求教師創(chuàng)設(shè)有效的問題情境激發(fā)學(xué)生的參與欲望,提供足夠的時間和空間讓學(xué)生經(jīng)歷觀察、猜測、驗證、交流反思等過程,使學(xué)生在動手操作、合作交流等活動中親身經(jīng)歷知識的形成過程。這樣,學(xué)生不僅可以掌握知識,而且可以積累探究數(shù)學(xué)問題的活動經(jīng)驗,發(fā)展空間觀念和推理能力。
【教材內(nèi)容】
新人教版義務(wù)教育課程標準實驗教科書四年級下冊數(shù)學(xué)第67頁例6、“做一做”及練習(xí)十六的第1、2、3題。
【教材分析】
三角形的內(nèi)角和是三角形的一個重要特征。本課是安排在三角形的概念及分類之后教學(xué)的,它是學(xué)生以后學(xué)習(xí)多邊形的內(nèi)角和及解決其它實際問題的基礎(chǔ)。教材很重視知識的探索與發(fā)現(xiàn),安排兩次實驗操作活動。教材呈現(xiàn)教學(xué)內(nèi)容時,不但重視體現(xiàn)知識的形成過程,而且注意留給學(xué)生充分進行自主探索和交流的空間和時間,為教師靈活組織教學(xué)提供了清晰的思路。概念的形成沒有直接給出結(jié)論,而是通過量、拼等活動,讓學(xué)生探索、實驗、交流、推理歸納出三角形的內(nèi)角和是180°。
【學(xué)情分析】
1、在學(xué)習(xí)本課時,學(xué)生已經(jīng)有了探索三角形內(nèi)角和的知識基礎(chǔ):知道直角和平角的度數(shù),會用量角器度量角的度數(shù);認識長方形、正方形,知道他們的四個角都是直角;認識了三角形,知道了三角形按角分有銳角三角形、直角三角形和鈍角三角形;已經(jīng)知道了等腰三角形和正三角形。
2、已經(jīng)有一部分學(xué)生知道了三角形內(nèi)角和是180°,只是知其然而不知所以然。
【教學(xué)目標】
1通過“量、剪、拼”等活動發(fā)現(xiàn)、驗證三角形的內(nèi)角和是180°,并能運用這個知識解決一些簡單的問題。
2.在觀察、猜想、操作、合作、分析交流等具體活動中,提高動手操作能力,積累基本的數(shù)學(xué)活動經(jīng)驗,發(fā)展空間觀念和推理能力。
3.在參與數(shù)學(xué)學(xué)習(xí)活動的過程中,獲得成功的體驗,感受數(shù)學(xué)探究的嚴謹與樂趣。
【教學(xué)重點】
探索發(fā)現(xiàn)、驗證“三角形內(nèi)角和是180°”,并運用這個知識解決實際問題。
【教學(xué)難點】
驗證“三角形的內(nèi)角和是180°”。
【教(學(xué))具準備】
多媒體課件; 銳角三角形、直角三角形、鈍角三角形紙片若干個各類三角形(也包括等邊、等腰)、長方形、正方形若干個;每人一個量角器;一把剪刀;每人一副三角尺。
【教學(xué)步驟】
一、復(fù)習(xí)舊知 引出課題
1、你已經(jīng)知道有關(guān)三角形的哪些知識?
2、出示課題:三角形的內(nèi)角和
【設(shè)計意圖:也自然導(dǎo)入新課?!?/p>
二、提出問題 引發(fā)猜想
1、提出問題:看到這個課題,你有什么問題想問的?
預(yù)設(shè):(1)三角形的內(nèi)角指的是哪些角? (2)三角形的內(nèi)角和是什么意思?
(3)三角形的內(nèi)角一共是多少度?
2、引發(fā)猜想
猜一猜:三角形的內(nèi)角和是多少度?你是怎么猜的?
【設(shè)計意圖:提出一個問題比解決一個問題更重要。課始在復(fù)習(xí)三角形已學(xué)知識后,引導(dǎo)學(xué)生提出有關(guān)三角形的新問題,讓學(xué)生學(xué)習(xí)自己想研究的內(nèi)容,無疑激發(fā)了學(xué)生的學(xué)習(xí)興趣,培養(yǎng)了學(xué)生的問題意識。由于學(xué)生在平時使用三角板時已經(jīng)若隱若現(xiàn)地有了特殊的直角三角形的內(nèi)角和是180度這一感覺,因此本環(huán)節(jié),要求學(xué)生猜一猜三角形的內(nèi)角和是多少,并說說是怎么猜的,以激發(fā)學(xué)生已有知識經(jīng)驗,并體會到猜想要合理且有根據(jù),同時也為推理驗證的引出作必要的鋪墊?!?/p>
三、操作驗證 形成結(jié)論
1、交流驗證方法:
(1)用什么方法證明三角形的內(nèi)角和是180度呢?
預(yù)設(shè): ①量算法 ②剪拼法 ③折拼法等
(2)三角形的個數(shù)有無數(shù)個,驗證哪些三角形可以代表所有的三角形?我們的操作過程怎么分工才會做到省時又高效?
2、動手驗證
3、全班匯報交流
4、小結(jié):剛才通過大家的動手操作驗證了三角形的內(nèi)角和是180 °度。但動手操作會存在一定的誤差,我們的結(jié)論也可能存在偏差。
5、方法拓展
推理驗證:用直角三角形的內(nèi)角和來證明其他三角形內(nèi)角和是180 °的方法。
6、形成結(jié)論:任意三角形的內(nèi)角和是180 °。
【設(shè)計意圖:
《標準》指出:“教師應(yīng)激發(fā)學(xué)生的積極性,向?qū)W生提供充分從事數(shù)學(xué)活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學(xué)知識與技能、數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動經(jīng)驗?!辈聹y后先獨立思考驗證的方法,再進行全班交流,給學(xué)生充分的活動時間和空間,讓學(xué)生動手操作,使學(xué)生在量、剪、拼、折等一系列操作活動中發(fā)現(xiàn)了三角形內(nèi)角和是180°這個結(jié)論。在探索活動前,交流如何使研究樣本具有代表性和全面性與如何分工做到操作省時高效這兩個問題,培養(yǎng)學(xué)生嚴謹、科學(xué)正確的研究態(tài)度,讓學(xué)生在活動中積累基本的數(shù)學(xué)活動經(jīng)驗,為后續(xù)的學(xué)習(xí)提供了經(jīng)驗支撐?!?/p>
四、應(yīng)用結(jié)論 解決問題
1、鞏固新知:想一想,算一算。
2、解決問題:等腰三角形風箏的頂角是多少度?
3、辨析訓(xùn)練,完善結(jié)論。
五、課堂總結(jié),歸納研究方法
今天這節(jié)課你學(xué)到了哪些知識?你是怎樣得到這些知識的?
六、課后延伸:用今天所學(xué)的方法繼續(xù)研究四邊形的內(nèi)角和。
七、板書設(shè)計:
三角形的內(nèi)角和
猜測: 三角形的內(nèi)角和是180°?
驗證: 量 拼
結(jié)論: 任意三角形的內(nèi)角和是180°
三角形的內(nèi)角和教案(篇4)
探索與發(fā)現(xiàn)
(一)-----三 角 形 內(nèi) 角 和
說 課 稿
一、教材分析
“三角形內(nèi)角和”是北師大版小學(xué)數(shù)學(xué)四年級下冊第二單元第三節(jié)的內(nèi)容,是在學(xué)生認識了三角形的主要特征和三角形的分類的基礎(chǔ)上進一步探究三角形有關(guān)性質(zhì)中的三個內(nèi)角的性質(zhì)?!叭切蔚膬?nèi)角和”是三角形的一個重要性質(zhì),是“空間與圖形”領(lǐng)域的重要內(nèi)容之一,學(xué)好它有助于學(xué)生理解三角形內(nèi)角之間的關(guān)系,也是進一步探索發(fā)現(xiàn)三邊性質(zhì)的基礎(chǔ)。
二、設(shè)計思路
基于教材的內(nèi)容安排和呈現(xiàn)結(jié)構(gòu)特點我擬定本節(jié)課的教學(xué)目標為: 1.通過自主探索、合作交流,發(fā)現(xiàn)三角形內(nèi)角和等于180度。
2.通過學(xué)生畫、量、撕拼、折拼、觀察等活動,培養(yǎng)學(xué)生的探索發(fā)現(xiàn)動手操作能力及閱讀插圖找信息的能力。
3.能運用三角形內(nèi)角和這一性質(zhì)解決簡單的實際問題。
4.讓學(xué)生在探索活動中產(chǎn)生對數(shù)學(xué)的好奇心,發(fā)展學(xué)生的空間觀念;體驗探索的樂趣和成功的快樂,增強學(xué)好數(shù)學(xué)的信心。教學(xué)重點:
探索并發(fā)現(xiàn)三角形內(nèi)角和等于180度。教學(xué)難點:
運用三角形的內(nèi)角和的性質(zhì)解決簡單的實際問題。教學(xué)方法:
課件演示、小組合作 教學(xué)準備:
三角尺、量角器、三角形紙片、雙面膠、課件 教學(xué)流程:
根據(jù)設(shè)定的教學(xué)目標和教材呈現(xiàn)的各個情境主題圖為線索,我把“三角形內(nèi)角和”的知識分四個步驟來完成:
一、“創(chuàng)設(shè)情境,建立模型”:
復(fù)習(xí)三角形的有關(guān)知識為新知的學(xué)習(xí)做好鋪墊,改編創(chuàng)設(shè)書上27頁“大小三角形爭論”情景引入新課,引起學(xué)生好奇心,激發(fā)探究欲望。
二、動手操作,自主探究: 1.活動一,量一量,通過測量發(fā)現(xiàn)大小,形狀不同的每個三角形,三個內(nèi)角的度數(shù)和都接近180度;
2.活動二,撕一撕,拼一拼。學(xué)生會發(fā)現(xiàn)撕下的三個角,可以拼成一個平角,也進一步證明了三角形的三個內(nèi)角和是180°。
3.活動三,折一折。折疊一個三角形的三個內(nèi)角,把三個角折疊在一起,三個角在一條直線上,從面得到三角形的三個內(nèi)角和等于180°。
學(xué)生通過上面三個活動的操作,得出了一個結(jié)論:三角形內(nèi)角和是180°.三、鞏固與應(yīng)用
利用今天所學(xué)知識回到課始判斷大小三角形誰說得對.設(shè)計一般三角形已知兩個角度度數(shù),求第三個角的度數(shù),學(xué)會運用三角形內(nèi)角和是180度來解決,在這里我也注重對學(xué)生閱讀插圖能力的培養(yǎng),讓學(xué)生看書先說說圖上告訴了哪些信息,要求什么,然后再想辦法計算。
四、總結(jié)與拓展
假如你是一個三角形,你該如何向別人介紹自己? 根據(jù)三角形內(nèi)角和等于180°,你能求出四邊形的內(nèi)角和是多少嗎?
富兵
2014年3月4日
北師大版四年級數(shù)學(xué)下冊
探 索 與 發(fā) 現(xiàn)
(一)----三角形內(nèi)角和(說課稿)
官 莊 學(xué) 區(qū) 中 心 小 學(xué)
富 兵
2014年3月4日
三角形的內(nèi)角和教案(篇5)
一、說教材
1、教學(xué)內(nèi)容蘇教版《義務(wù)教育六年制小學(xué)教科書·數(shù)學(xué)》四年級下冊第130~131頁。
2、教材簡析
本節(jié)課是在學(xué)生學(xué)過角的度量、三角形的特征和分類等知識的基礎(chǔ)上進行教學(xué)的。通過學(xué)習(xí)三角形的內(nèi)角和使學(xué)生學(xué)會求三角形中第三個內(nèi)角的度數(shù)的方法,同時讓學(xué)生經(jīng)歷探索、猜想、歸納等過程,發(fā)展學(xué)生的合情推理能力。
3、教學(xué)目標
(1)讓學(xué)生探索發(fā)現(xiàn)三角形的內(nèi)角和是180°。
(2)通過動手拼擺等活動提高學(xué)生的動手能力和思維能力,感受數(shù)學(xué)的轉(zhuǎn)化思想。
(3)進一步發(fā)展學(xué)生空間觀念。
4、教學(xué)重點
探索發(fā)現(xiàn)三角形的內(nèi)角和是180°。
5、教具準備
多媒體課件
6、學(xué)具準備
每人準備幾個不同類型的三角形。
二、說教法、學(xué)法
新課程明確倡導(dǎo)動手實踐、自主探究、合作交流的學(xué)習(xí)方式。這就要求教師的角色,應(yīng)當從過去知識的傳授者轉(zhuǎn)變?yōu)閷W(xué)生自主性、探究性、合作性學(xué)習(xí)活動的設(shè)計者和組織者。在教學(xué)過程中,我給學(xué)生設(shè)置了一個開放的、富有挑戰(zhàn)性的問題情境,讓學(xué)生獨立、自主地去探究驗證,通過實驗、操作、交流等活動,獲得知識與能力,掌握解決問題的方法,獲得情感體驗。
三、說教學(xué)過程
(一)猜角設(shè)疑,揭示課題我們來做個游戲叫“猜角”。請同學(xué)們拿起桌子上量好角角度的三角形。你只要報出三角形中任意兩個角的度數(shù),我就能猜出你第三個角的度數(shù)。想信嗎?(不相信),下面我們來試一試。(師生猜角活動。)師:你想知道老師是怎么猜的嗎?其中的奧秘就在今天我們要探索的知識。(板書:“的內(nèi)角和”并齊讀課題)[設(shè)計意圖]在教學(xué)中激勵學(xué)生展開積極的思維活動。先創(chuàng)設(shè)猜角的游戲情境,讓學(xué)生對三角形三個角的度數(shù)關(guān)系產(chǎn)生好奇,引發(fā)學(xué)生的探究欲望。通過本節(jié)課的學(xué)習(xí),你有什么收獲?你還有什么問題嗎?
三角形的內(nèi)角和教案(篇6)
三角形內(nèi)角和定理的證明說課稿
馬建祿
一、說教材:
(一)、教材的地位及作用:
本節(jié)課是北師大版實驗教科書八年級下冊第六章第五節(jié)的內(nèi)容。是在學(xué)習(xí)了平角、同位角、內(nèi)錯角、同旁內(nèi)角、探索兩直線平行的條件及三角形內(nèi)角和定理的基礎(chǔ)上,進一步探索三角形內(nèi)角和定理的證明.為今后學(xué)習(xí)多邊形內(nèi)角和、外角和,圓等知識打下良好的基礎(chǔ),具有承上啟下的作用。且三角形內(nèi)角和定理在日常生活中,如機械制造、工程設(shè)計、國防等領(lǐng)域具有廣泛應(yīng)用。
(二)、教學(xué)目標設(shè)計:
1、知識與技能:
(1)掌握“三角形內(nèi)角和定理”的證明及其簡單應(yīng)用。(2)對比過去撕紙等探索過程,體會思維實驗和符號化的理性作用。
(3)通過一題多解,初步體會思維的多向性,引導(dǎo)學(xué)生的個性化發(fā)展。
2、過程與方法:通過動手操作、探索、觀察、分析、歸納培養(yǎng)學(xué)生獲得數(shù)學(xué)結(jié)論的能力。
3、情感與價值觀:培養(yǎng)學(xué)生創(chuàng)造性,弘揚個性發(fā)展,體驗解決
用為主線來展開。采用了教具演示的教學(xué)手段,使圖形直觀、形象地便于學(xué)生理解。以學(xué)生發(fā)展為本的原則,我運用啟發(fā)式教學(xué)方法,引導(dǎo)學(xué)生動手操作、探索、討論、歸納。在教學(xué)過程中,引導(dǎo)學(xué)生去探索,使學(xué)生感受到添加輔助線的數(shù)學(xué)思想,更好地掌握三角形內(nèi)角和定理的證明及簡單的應(yīng)用,從而實現(xiàn)教師是引導(dǎo)者和學(xué)生是主體者的課堂教學(xué)理念。
(二)說學(xué)法
根據(jù)本節(jié)課特點和學(xué)生的實際,八年級學(xué)生基本具備動手操作、探索討論、猜想、說理的能力,主要采用“操作—觀察—討論—證明—應(yīng)用 ”的探究式的學(xué)習(xí)方式,教會學(xué)生“ 動手做,動腦想,大膽猜、會說理,學(xué)致用”的學(xué)習(xí)方法。增加學(xué)生參與的機會,使學(xué)生在掌握知識、形成技能的同時,培養(yǎng)科學(xué)的學(xué)習(xí)方法和自信心。
四、說教學(xué)過程設(shè)計
教學(xué)過程的設(shè)計應(yīng)根據(jù)學(xué)生的實際情況,教法、學(xué)法的確定,以完成教學(xué)目標為目的。
(一)、創(chuàng)設(shè)問題情境,引入新課:
1.提出疑問:前面的課程學(xué)習(xí)了三角形三條邊的關(guān)系,那么三角形的三個內(nèi)角又存在怎樣的關(guān)系呢?
2.動手實踐:我們知道三角形三個內(nèi)角的和等于180°.你還記得這個結(jié)論的探索過程嗎?